|
Bibliography [1] Cuda. http://www.nvidia.com.tw/object/cuda_home_new_tw.html. [2] Download cuda. http://developer.nvidia.com/object/cuda.htm. [3] Nvidia cuda programming guide. http://developer.download.nvidia.com/ compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf. [4] Nvidia cuda sdk. http://developer.nvidia.com/cuda-cc-sdk-code-samples. [5] nvidia. http://www.nvidia.com. [6] Gpgpu. http://en.wikipedia.org/wiki/GPGPU. [7] Opencl. http://www.khronos.org/opencl/. [8] Opencl-wiki. http://en.wikipedia.org/wiki/OpenCL. [9] Full virtualization. http://en.wikipedia.org/wiki/Full_virtualization. [10] Para virtualization. http://en.wikipedia.org/wiki/Paravirtualization. [11] Kvm. http://www.linux-kvm.org/page/Main_Page. [12] Xen. http://www.xen.org/. [13] Qemu. http://wiki.qemu.org/Main_Page. [14] Pci-pass-through. http://www.ibm.com/developerworks/linux/library/l-pcipassthrough. [15] J. Duato, A.J. Pena, F. Silla, J.C. Fernandez, R. Mayo, and E.S. Quintana- Orti. Enabling cuda acceleration within virtual machines using rcuda. In High Performance Computing (HiPC), 2011 18th International Conference on, pages 1–10, 2011. [16] J. Duato, A.J. Pena, F. Silla, R. Mayo, and E.S. Quintana-Orti. Performance of cuda virtualized remote gpus in high performance clusters. In Parallel Processing (ICPP), 2011 International Conference on, pages 365–374, 2011. [17] J. Duato, A.J. Pena, F. Silla, R. Mayo, and E.S. Quintana-Orti. rcuda: Reducing the number of gpu-based accelerators in high performance clusters. In High Performance Computing and Simulation (HPCS), 2010 International Conference on, pages 224–231, 2010. [18] Lin Shi, Hao Chen, Jianhua Sun, and Kenli Li. vcuda: Gpu-accelerated highperformance computing in virtual machines. Computers, IEEE Transactions on, 61(6):804–816, 2012. [19] Vishakha Gupta, Ada Gavrilovska, Karsten Schwan, Harshvardhan Kharche, Niraj Tolia, Vanish Talwar, and Parthasarathy Ranganathan. Gvim: Gpuaccelerated virtual machines. In Proceedings of the 3rd ACM Workshop on System-level Virtualization for High Performance Computing, HPCVirt ’09, pages 17–24, New York, NY, USA, 2009. ACM. [20] Giulio Giunta, Raffaele Montella, Giuseppe Agrillo, and Giuseppe Coviello. A gpgpu transparent virtualization component for high performance computing clouds. In Proceedings of the 16th international Euro-Par conference on Parallel processing: Part I, EuroPar’10, pages 379–391, Berlin, Heidelberg, 2010. Springer-Verlag. [21] Front and back ends. http://en.wikipedia.org/wiki/Front_and_back_ends. [22] Yi-Man Ma, Che-Rung Lee, and Yeh-Ching Chung. Infiniband virtualization on kvm. 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, 0:777–781, 2012. [23] M.E. Kanal and M. Demiralp. A modified method of calculating high dimensional model representation (hdmr) terms for parallelization with mpi and cuda. The Journal of Supercomputing, 62(1):199–213, 2012. [24] P. Alonso, R. Cortina, F.J. Martínez-Zaldívar, and J. Ranilla. Neville elimination on multi- and many-core systems: Openmp, mpi and cuda. The Journal of Supercomputing, 58(2):215–225, 2011. [25] Yue-Shan Chang, Ruey-Kai Sheu, Shyan-Ming Yuan, and Jyn-Jie Hsu. Scaling database performance on gpus. Information Systems Frontiers, 14(4): 909–924, 2012. [26] T.D. Han and T.S. Abdelrahman. hicuda: High-level gpgpu programming. Parallel and Distributed Systems, IEEE Transactions on, 22(1):78–90, 2011. [27] Virtualbox. https://www.virtualbox.org/. [28] Virtualization. http://en.wikipedia.org/wiki/Virtualization. [29] National institute of standards and technology. http://www.nist.gov/index. html. [30] Cloud computing. http://en.wikipedia.org/wiki/Cloud_computing. [31] Top 500. http://www.top500.org/. [32] Mellanox. http://www.mellanox.com/index.php. [33] Jithin Jose, Mingzhe Li, Xiaoyi Lu, Krishna Chaitanya Kandalla, Mark Daniel Arnold, and Dhabaleswar K. Panda. Sr-iov support for virtualization on infiniband clusters: Early experience. In Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM International Symposium on, pages 385– 392, 2013. [34] H. Subramoni, S. Potluri, K. Kandalla, B. Barth, J. Vienne, J. Keasler, K. Tomko, K. Schulz, A. Moody, and D.K. Panda. Design of a scalable infiniband topology service to enable network-topology-aware placement of processes. In High Performance Computing, Networking, Storage and Analysis (SC), 2012 International Conference for, pages 1–12, 2012. [35] H. Subramoni, K. Kandalla, J. Vienne, S. Sur, B. Barth, K. Tomko, R. McLay, K. Schulz, and D.K. Panda. Design and evaluation of network topology-/ speed- aware broadcast algorithms for infiniband clusters. In Cluster Computing (CLUSTER), 2011 IEEE International Conference on, pages 317–325, 2011. [36] K. Kandalla, H. Subramoni, J. Vienne, S.P. Raikar, K. Tomko, S. Sur, and D.K. Panda. Designing non-blocking broadcast with collective offload on infiniband clusters: A case study with hpl. In High Performance Interconnects (HOTI), 2011 IEEE 19th Annual Symposium on, pages 27–34, 2011. [37] J. Vienne, J. Chen, M. Wasi-ur Rahman, N.S. Islam, H. Subramoni, and D.K. Panda. Performance analysis and evaluation of infiniband fdr and 40gige roce on hpc and cloud computing systems. In High-Performance Interconnects (HOTI), 2012 IEEE 20th Annual Symposium on, pages 48–55, 2012. [38] N.S. Islam, M.W. Rahman, J. Jose, R. Rajachandrasekar, H. Wang, H. Subramoni, C. Murthy, and D.K. Panda. High performance rdma-based design of hdfs over infiniband. In High Performance Computing, Networking, Storage and Analysis (SC), 2012 International Conference for, pages 1–12, 2012. [39] Jian Huang, Xiangyong Ouyang, J. Jose, M. Wasi-ur Rahman, Hao Wang, Miao Luo, H. Subramoni, C. Murthy, and D.K. Panda. High-performance design of hbase with rdma over infiniband. In Parallel Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International, pages 774–785, 2012. [40] S. Sur, S. Potluri, K. Kandalla, H. Subramoni, D.K. Panda, and K. Tomko. Codesign for infiniband clusters. Computer, 44(11):31–36, 2011. [41] C. Reano, A.J. Pea, F. Silla, J. Duato, R. Mayo, and E.S. Quintana-Orti. Cu2rcu: Towards the complete rcuda remote gpu virtualization and sharing solution. In High Performance Computing (HiPC), 2012 19th International Conference on, pages 1–10, 2012. [42] M.S. Vinaya, N. Vydyanathan, and M. Gajjar. An evaluation of cuda-enabled virtualization solutions. In Parallel Distributed and Grid Computing (PDGC), 2012 2nd IEEE International Conference on, pages 621–626, 2012. [43] Chao-Tung Yang, Hsien-Yi Wang, Wei-Shen Ou, Yu-Tso Liu, and Ching- Hsien Hsu. On implementation of gpu virtualization using pci pass-through. In Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th International Conference on, pages 711–716, 2012. [44] F.N. Almari, P. Zavarsky, R. Ruhl, D. Lindskog, and A. Aljaedi. Performance analysis of oracle database in virtual environments. In Advanced Information Networking and Applications Workshops (WAINA), 2012 26th International Conference on, pages 1238–1245, 2012. [45] R. Owens and Weichao Wang. Non-interactive os fingerprinting through memory de-duplication technique in virtual machines. In Performance Computing and Communications Conference (IPCCC), 2011 IEEE 30th International, pages 1–8, 2011. [46] O. Sukwong, A. Sangpetch, and H.S. Kim. Sageshift: Managing slas for highly consolidated cloud. In INFOCOM, 2012 Proceedings IEEE, pages 208–216, 2012. [47] M. Ahmed and Yang Xiang. Trust ticket deployment: A notion of a data owner’s trust in cloud computing. In Trust, Security and Privacy in Computing and Communications (TrustCom), 2011 IEEE 10th International Conference on, pages 111–117, 2011. [48] Xiaofei Huang, Xiaoying Bai, and Richard M. Lee. An empirical study of vmm overhead, configuration performance and scalability. In Service Oriented System Engineering (SOSE), 2013 IEEE 7th International Symposium on, pages 359–366, 2013. [49] P. Muditha Perera and Chamath Keppitiyagama. A performance comparison of hypervisors. In Advances in ICT for Emerging Regions (ICTer), 2011 International Conference on, pages 120–120, 2011. [50] G. Kukreja and S. Singh. Virtio based transcendent memory. In Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE International Conference on, volume 1, pages 723–727, 2010. [51] R. Shea and Jiangchuan Liu. Understanding the impact of denial of service attacks on virtual machines. In Quality of Service (IWQoS), 2012 IEEE 20th International Workshop on, pages 1–9, 2012. [52] Jiuxing Liu. Evaluating standard-based self-virtualizing devices: A performance study on 10 gbe nics with sr-iov support. In Parallel Distributed Processing (IPDPS), 2010 IEEE International Symposium on, pages 1–12, 2010. [53] Zhaoliang Guo and Qinfen Hao. Optimization of kvm network based on cpu affinity on multi-cores. In Information Technology, Computer Engineering and Management Sciences (ICM), 2011 International Conference on, volume 4, pages 347–351, 2011. [54] N. Regola and J.-C. Ducom. Recommendations for virtualization technologies in high performance computing. In Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second International Conference on, pages 409–416, 2010. [55] I. Tafa, E. Beqiri, H. Paci, E. Kajo, and A. Xhuvani. The evaluation of transfer time, cpu consumption and memory utilization in xen-pv, xen-hvm, openvz, kvm-fv and kvm-pv hypervisors using ftp and http approaches. In Intelligent Networking and Collaborative Systems (INCoS), 2011 Third International Conference on, pages 502–507, 2011. [56] D. Petrovic and A. Schiper. Implementing virtual machine replication: A case study using xen and kvm. In Advanced Information Networking and Applications (AINA), 2012 IEEE 26th International Conference on, pages 73–80, 2012. [57] S3544-3d-apps-vmware-horizon-view. http:// on-demand.gputechconf.com/ gtc/2013/presentations/S3544-3D-Apps-VMware-Horizon-View.pdf. [58] S3355-deploying-grid-citrix-vmware-vd-environments. http:// ondemand. gputechconf.com/ gtc/ 2013/ presentations/ S3355-Deploying-GRIDCitrix- VMWare-VD-Environments.pdf. [59] Directx-wiki. http://en.wikipedia.org/wiki/DirectX. [60] Opengl-wiki. http://en.wikipedia.org/wiki/OpenGL.
|