|
Banerjee, S., Sangwan, V., McGinn, O., Chugh, R., Dudeja, V., Vickers, S.M., and Saluja, A.K. (2013). Triptolide-induced cell death in pancreatic cancer is mediated by O-GlcNAc modification of transcription factor Sp1. The journal of biological chemistry 288, 33927-33938. Butkinaree, C., Park, K., and Hart, G.W. (2010). O-linked beta-N-acetylglucosamine (O-GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochimica et biophysica acta 1800, 96-106. Comer, F.I., and Hart, G.W. (1999). O-GlcNAc and the control of gene expression. Biochimica et biophysica acta 1473, 161-171. Dias, W.B., and Hart, G.W. (2007). O-GlcNAc modification in diabetes and Alzheimer's disease. Molecular bioSystems 3, 766-772. Goldberg, H.J., Scholey, J., and Fantus, I.G. (2000). Glucosamine activates the plasminogen activator inhibitor 1 gene promoter through Sp1 DNA binding sites in glomerular mesangial cells. Diabetes 49, 863-871. Gottesman, M.M. (2002). Mechanisms of cancer drug resistance. Annual review of medicine 53, 615-627. Haltiwanger, R.S., Blomberg, M.A., and Hart, G.W. (1992). Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetylglucosamine: polypeptide beta-N-acetylglucosaminyltransferase. The journal of biological chemistry 267, 9005-9013. Haltiwanger, R.S., Holt, G.D., and Hart, G.W. (1990). Enzymatic addition of O-GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho-N-acetylglucosamine: peptide beta-N-acetylglucosaminyltransferase. The journal of biological chemistry 265, 2563-2568. Hanover, J.A., Krause, M.W., and Love, D.C. (2010). The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochimica et biophysica acta 1800, 80-95. Hart, G.W., Slawson, C., Ramirez-Correa, G., and Lagerlof, O. (2011). Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu rev biochem 80, 825-858. Holt, G.D., and Hart, G.W. (1986). The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc. The journal of biological chemistry 261, 8049-8057. Huang, X., Pan, Q., Sun, D., Chen, W., Shen, A., Huang, M., Ding, J., and Geng, M. (2013). O-GlcNAcylation of cofilin promotes breast cancer cell invasion. The journal of biological chemistry 288, 36418-36425. Itkonen, H.M., Minner, S., Guldvik, I.J., Sandmann, M.J., Tsourlakis, M.C., Berge, V., Svindland, A., Schlomm, T., and Mills, I.G. (2013). O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells. Cancer res 73, 5277-5287. Iyer, A.K., Singh, A., Ganta, S., and Amiji, M.M. (2013). Role of integrated cancer nanomedicine in overcoming drug resistance. Advanced drug delivery reviews 65, 1784-1802. Kanwal, S., Fardini, Y., Pagesy, P., N'Tumba-Byn, T., Pierre-Eugene, C., Masson, E., Hampe, C., and Issad, T. (2013). O-GlcNAcylation-inducing treatments inhibit estrogen receptor alpha expression and confer resistance to 4-OH-tamoxifen in human breast cancer-derived MCF-7 cells. PloS one 8, e69150. Krzeslak, A., Forma, E., Bernaciak, M., Romanowicz, H., and Brys, M. (2012). Gene expression of O-GlcNAc cycling enzymes in human breast cancers. Clinical and experimental medicine 12, 61-65. Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G.W., and Gong, C.X. (2004). O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America 101, 10804-10809. Longley, D.B., and Johnston, P.G. (2005). Molecular mechanisms of drug resistance. The journal of pathology 205, 275-292. Lynch, T.P., Ferrer, C.M., Jackson, S.R., Shahriari, K.S., Vosseller, K., and Reginato, M.J. (2012). Critical role of O-Linked beta-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis. The journal of biological chemistry 287, 11070-11081. Ma, J., Lyu, H., Huang, J., and Liu, B. (2014). Targeting of erbB3 receptor to overcome resistance in cancer treatment. Molecular cancer 13, 105. Ma, Z., and Vosseller, K. (2013). O-GlcNAc in cancer biology. Amino acids 45, 719-733. McClain, D.A. (2002). Hexosamines as mediators of nutrient sensing and regulation in diabetes. Journal of diabetes and its complications 16, 72-80. Mi, W., Gu, Y., Han, C., Liu, H., Fan, Q., Zhang, X., Cong, Q., and Yu, W. (2011). O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy. Biochimica et biophysica acta 1812, 514-519. Nolte, D., and Muller, U. (2002). Human O-GlcNAc transferase (OGT): genomic structure, analysis of splice variants, fine mapping in Xq13.1. Mammalian genome : Official journal of the International Mammalian Genome Society 13, 62-64. Patil, Y.B., Swaminathan, S.K., Sadhukha, T., Ma, L., and Panyam, J. (2010). The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials 31, 358-365. Phoomak, C., Silsirivanit, A., Wongkham, C., Sripa, B., Puapairoj, A., and Wongkham, S. (2012). Overexpression of O-GlcNAc-transferase associates with aggressiveness of mass-forming cholangiocarcinoma. Asian pacific journal of cancer prevention : APJCP 13 Suppl, 101-105. Shafi, R., Iyer, S.P., Ellies, L.G., O'Donnell, N., Marek, K.W., Chui, D., Hart, G.W., and Marth, J.D. (2000). The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proceedings of the National Academy of Sciences of the United States of America 97, 5735-5739. Singh, J.P., Zhang, K., Wu, J., and Yang, X. (2014). O-GlcNAc signaling in cancer metabolism and epigenetics. Cancer letters. St-Denis, N.A., and Litchfield, D.W. (2009). Protein kinase CK2 in health and disease: From birth to death: the role of protein kinase CK2 in the regulation of cell proliferation and survival. Cellular and molecular life sciences : CMLS 66, 1817-1829. Tarrant, M.K., Rho, H.S., Xie, Z., Jiang, Y.L., Gross, C., Culhane, J.C., Yan, G., Qian, J., Ichikawa, Y., Matsuoka, T., et al. (2012). Regulation of CK2 by phosphorylation and O-GlcNAcylation revealed by semisynthesis. Nature chemical biology 8, 262-269. Torres, C.R., and Hart, G.W. (1984). Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. The journal of biological chemistry 259, 3308-3317. Yang, W.H., Kim, J.E., Nam, H.W., Ju, J.W., Kim, H.S., Kim, Y.S., and Cho, J.W. (2006). Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nature cell biology 8, 1074-1083. Yang, X., Ongusaha, P.P., Miles, P.D., Havstad, J.C., Zhang, F., So, W.V., Kudlow, J.E., Michell, R.H., Olefsky, J.M., Field, S.J., et al. (2008). Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451, 964-969. Yuzwa, S.A., Macauley, M.S., Heinonen, J.E., Shan, X., Dennis, R.J., He, Y., Whitworth, G.E., Stubbs, K.A., McEachern, E.J., Davies, G.J., et al. (2008). A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nature chemical biology 4, 483-490. Zachara, N.E., and Hart, G.W. (2004). O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochimica et biophysica acta 1673, 13-28. Zachara, N.E., O'Donnell, N., Cheung, W.D., Mercer, J.J., Marth, J.D., and Hart, G.W. (2004). Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. The journal of biological chemistry 279, 30133-30142.
|