跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/11 06:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁鏡鵬
研究生(外文):Ching-Peng Liang
論文名稱:含壓電片之複材疊層加強板動態特性之探討
論文名稱(外文):Studies of the dynamic behaviour of stiffened laminated composite plates containing Piezoelectric materials
指導教授:張銘永
指導教授(外文):Min-Yung Chang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:128
中文關鍵詞:有限元素法複合材料加強板
外文關鍵詞:Finite ElementComposite MaterialsStiffened Plates
相關次數:
  • 被引用被引用:1
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:1
運用有限元素法探討含加強肋材板結構的問題時,許多的文獻大都是採用古典板理論,以及使用樑元素來模擬其加強肋材部分。但是,如果所分析之結構,其加強肋材尺寸中寬長比較大時,則使用樑元素來模擬加強肋材部分可能就較不合適了。
本文採用板元素同時模擬主板與及加強肋材部分,且為了能夠更精確模擬板及其加強肋材之變形,在此採用一簡單的高階位移場變形理論,配合二維四邊形九節點的拉格朗治有限元素,及運用漢米爾頓原理,發展出一套分析含加強肋材複材疊層板之有限元素模式。
為了確保本文所發展有限元素模式的正確性,本文中以模態實驗驗證,測試不同型式的鋁合金加強板。本文並與有限元素套裝軟體(I-deas、Msc/Nastran)分析的結果比較,以便得到更進一步的確認;本文最後,針對含不同加強肋材之異向性複材疊層板做分析,並與上述之有限元素套裝軟體之分析結果來做比較,兩者相當一致。
Concerning the analysis of stiffened plates using the finite element method, lots of the literatures published to date have adopted the classical plate theory. Furthermore, the stiffeners are mostly modeled as beams. However, when the breadth to length ratio of the stiffener is large, modeling the stiffener as a beam may no longer be appropriate. In this paper, both the plate and its stiffeners are modeled using the plate finite elements. In order to model more accurately the deformation of the plate as well as its stiffeners, a simple higher-order displacement theory of plates is used. Two-dimensional rectangular nine-node Lagrangian finite elements are considered. By employing the Hamilton’s principle, A finite element model for analyzing the vibration of the rib-stiffened laminated composite plates is developed.
In order to check the validity of the present finite element model, experiments are carried out where four types of stiffened plates made of the aluminum alloy are prepared and performed the modal testing. The results are also compared with those obtained from commercial softwares, I-deas and Msc/Nastran. Finally, different types of stiffened laminated composite plates are analyzed. The results agree rather well with those of commercial softwares mentioned above.
致謝
中文摘要
英文摘要
章節目錄
符號說明
圖目錄
表目錄
第一章 緒論
1.1 前言
1.2 文獻回顧
1.3 研究目的與內容
第二章 理論基礎與推導
2.1 材料特性
2.1.1 單層複合材料
2.1.2 壓電材料
2.2 理論模式與推導
2.2.1 高階位移場假設
2.2.2 應變和位移的關係
2.2.3 有限元素模式
2.2.4 漢米爾頓原理
2.2.5 轉換矩陣之勁度與質量矩陣
2.2.6 撞擊之暫態分析
2.3 有限元素分析軟體介紹
2.3.1 I-deas
2.3.2 MSC/Nastran
第三章 模態實驗之介紹與分析
3.1 實驗目的
3.2 實驗設備
3.3 基本量測系統
3.4 模態測試及分析步驟
3.4.1 量測架設與準備
3.4.2 設定分析儀的功能
3.4.3 加速規校正
3.4.4 頻率響應函數量測
3.4.5 模態參數分析
第四章 驗證與實例分析
4.1 文獻驗證
4.2 鋁合金加強板之模態實驗驗證
4.3 含加強肋材之複材疊層板
4.4 含加強肋材複材疊層板撞擊分析
第五章 結論與展望
5.1 結論
5.2 展望
參考文獻
附錄一 元素之質量矩陣
附錄二 元素之勁度矩陣
1. Olson, M.D., and Hazell, C.R., “Vibration Studies on Some Integral Rib-Stiffened Plates,” Journal of Sound and Vibration , Vol. 50,1977, pp. 43-61.
2. Varadan, T.K., and Pandalai, K.A.V., “Large Amplitude Flexural Vibration of Eccentrically Stiffened Plates,” Journal of sound and Vibration,Vol.67,No.3,1979, pp. 329-340.
3. Nair, P.S. and Rao, M.S., “On Vibration of Plates with Varying Stiff-ener Length,” Journal of Sound and Vibration ,Vol. 95,1984,pp. 19-29.
4. Gupta, B. V. R., and Ganesan, N., and Narayanan, S., “Finite Element Free Vibration Analysis of Damped Stiffened Panels,” Computer and Structures, Vol. 24, no.3, 1986, pp. 485-489.
5. Koko, T.S., and Olson, M.D., “Vibration Analysis of Stiffened Plates by Super Elements” Journal of Sound and Vibration, 1992,pp. 149-167.
6. Palani, G.S., and Iyer, N.R., and Appa Rao, T.V.S.R.,“ An Efficient Finite Element Modal for Static and Vibration Analysis of Plates with Arbitraily Located Eccentric Stiffeners,” Journal of Sound and Vi-bration, Vol. 166,1993,pp. 409-427.
7. Barik, Manoranjan., and Mukhopadhyay, Madhujit., “Free Flexural Vibration Analysis of Arbitary Plates with Arbitary Stiffener,” Jour-nal of vibration and control, 1999, pp. 667-683.
8. Aksu, G.,“ Free Vibration Analysis of Stiffened Plate by Including the Effect of Inplane Inertia, ”Journal of Applied Mechanics,Vol. 49, 1982,pp. 206-212.
9. Mukhopadhyay, M.,“ Vibration and Stability Analysis of Stiffened Plates by Semi-Analytic Finite Difference Method. Part I:Considera-tion of Bending Displacement only, ”Journal of Sound and Vibration, Vol. 130,1989a,pp.27-39.
10. Mukhopadhyay, M.,“ Vibration and Stability Analysis of Stiffened Plates by Semi-Analytic Finite Difference Method. Part II:Considera-tion of Bending and Axial Displacement, ”Journal of Sound and Vi-bration,Vol. 130, 1989b,pp. 41-53.
11. Nicholson, J.W., “Free Vibration of Stiffened Rectangualr Plates us-ing Green’s Functions and Integral Equations,” AIAA Journal, Vol. 24,no.3,Mar 1986, pp. 485-491.
12. Wu, J.R., and Liu, W.H.,“Vibration of Rectangular Plates with Edge Restraints and Intermediate Stiffeners, ”Journal of Sound and Vibra-tion, Vol. 123,1988, pp. 103-113.
13. Liew, K.M., and Lam, K.Y., “Vibration Analysis of Multi-Span Plates Having Orthogonal Straight Edges,” Journal of Sound and Vibration ,Vol. 147,1993, pp. 255-264.
14. Liew, K.M., Xiang, Y., kitipornchai, S., and Lim, M.K.,“Vibration of Rectangular Mindlin Plates with Intermediate Stiffeners, ”ASME Journal of Vibration abd Acoustics, Vol. 116, 1994,pp. 529-535
15. 陳昭男,含壓電感測器之脫層複合材料板受撞擊之分析,碩士論文, 中興大學機械研究所, 1997.
16. Willis, J.R., “Hertzian Contact of Anisotropic Bodies,” Journal of Mechanics and Physics of Solids, Vol. 14, 1996, pp. 163-176.
17. Yang, S.H., and Sun, C.T., “Indentation Law for Composite Lami-nates,” ASTM, STP 787, American Society for Testing and Design, 1982, pp. 425-449.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top