|
[1] A. J. Hugo, P.A. Taylor and J, D, Wright, 1996, “Approximate dynamic models for recycle systems”, Ind. End. Chem. Res., vol. 35, no. 2, pp.485-487. [2] Y. S. Zhong, 2001, “Extreme stability margins of interval systems”, IEE Proceedings on Control Theory and Applications, vol.148, no. 1, pp.77-80. [3] C. S. Hsieh and C. Hwang, 1989, “Model reduction of continuous-time systems using a modified Routh approximation method”, IEE Proceedings on Control Theory and Applications, vol.136, no. 4, pp.151-156. [4] X. Tai, H. Zhang and Y. Sun, 2006, “A minimum output information loss method for stochastic model reduction”, IEEE Proceedings of 6th World Congress on Intelligent Control and Automation, pp. 1186-1190. [5] P. Houlis and V. Sreeram, 2006, “A parametrized controller reduction technique”, IEEE Proceedings of 45th on Decision and Control, pp. 3430-3435. [6] X. X. Huang, W. Y. Yan and K. L. Teo, 2001, “ near-optimal model reduction”, IEEE Trans. Automat. Contr, vol. 46, no. 8, pp. 1279-1284. [7] A. Ferrante, W. Krajewski, A. Lepschy and U. Viaro, 1999, “Convergent algorithms for model reduction”, Automatica, vol. 35, pp. 75-79. [8] S. L. Cheng and C. Hwang, 2001, “Optimal approximation of linear systems by a differential evolution algorithm”, IEEE Trans. Sys., Man and Cyber., vol. 31, no.6, pp. 698-707 [9] A. Megretski, 2006, “H-infinity model reduction with guaranteed suboptimality bound”, IEEE Proceedings of the 2006 American Control Conference, pp. 448-453. [10] K. M. Grigoriadis, 1995, “Optimal model reduction via linear matrix inequalities: Continuous- and discrete-time cases”, Syst. Contr. Lett., vol. 26, no. 5, pp. 321-333. [11] J. F. Leu and C. Hwang, 2001, “Optimal model reduction using genetic algorithms”, J. of the Chinese Institute of Engineers, vol. 24, no. 5, pp. 607-618. [12] D. Kavranoglu and M. Bettayeb, 1994, “Characterization and computation of the solution to the optimal approximation problem,” IEEE Trans. Automat. Contr., vol. 39, pp. 1899–1904. [13] R. Storn, 1997, “Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces”, J. Global. vol. 11, pp. 341–359. [14] R. Storn and K.Price, 1995, “Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces”, Technical Report TR-95-012, International Computer Science Institute, Berkeley, USA. [15] R. Storn and K. Price, 1996, “Minimizing the real functions of the ICEC’96 contest by differential evolution”, Proceedings IEEE Conference on Evolutionary Computation, pp. 842-844. [16] 蘇朝墩,2002,品質工程,中華民國品質學會,台北,台灣。 [17] 周至宏,2005,”實驗設計與品質工程”上課講義,國立高雄第一科技大學系統與控制工程研究所,高雄,台灣。 [18] D. E. Goldberg, 1989, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Massachusetts. [19] T. Y. Guo and C. Hwang, 1996, “Optimal reduced-order models for unstable and nonminimum-phase systems”, IEEE Trans. Circuits Syst. I, vol. 43, no. 9, pp. 800-805. [20] P. J. Parker and B.D.O. Anderson, 1987, “Unstable rational function approximation”, Int. J. Contr., vol. 46, no. 5, pp. 1783-1801. [21] K. Glover, 1984, “All optimal Hankel-norm approximations of linear multivariable systems and their -error bounds”, Int. J. Contr., vol. 39, no. 6, pp. 1115-1193.
|