跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 12:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王彰勳
研究生(外文):Jang-Shiun Wang
論文名稱:PartI:鑑定白色念珠菌之類1,3-b-葡聚糖酶CaIpf885p的功能PartII:闡明白色念珠菌中CaNdt80p的DNA結合區域在其藥物抗性上所扮演的功能
論文名稱(外文):PartI: Characterization of the functions of 1, 3-b-glucanase-like protein CaIpf885p in Candida albicansPartII: Elucidation of the functions of the DNA binding domain of CaNdt80p in drug resistance in Candida albicans
指導教授:羅秀容羅秀容引用關係
指導教授(外文):Hsiu-Jung Lo
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:194
中文關鍵詞:轉錄因子流出幫浦DNA 結合區域抗藥性白色念珠菌葡聚糖酶膽汁酸鹽麥角醇
外文關鍵詞:Transcription factorefflux pumpDNA binding domaindrug resistanceCaNdt80pCandida albicansGlucanaseBile acidErgosterolCaIpf885p
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1244
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
PartI:
白色念珠菌 (Candida albicans) 是一種伺機性的致病黴菌, 會導致免疫力不全病人的死亡。有抗藥性的白色念珠菌因病人的頻繁使用抗黴菌藥物而被篩選出來。黴菌感染因免疫力不全病人數日益增加而成為院內感染的問題,因此,開發出低副作用的新抗黴菌藥物是一重要的課題。黴菌的細胞壁是一個很好的藥物標靶,因為哺乳動物的細胞並沒有這項胞器。而研究具有修飾細胞壁能力的酵素便是從事這種類新藥的基礎課題。在白色念珠菌中的葡聚糖酶 (glucanase) 則具有這種潛力,目前,至少有十一個可能的葡聚糖酶基因存在白色念珠菌中。cph1/cph1 efg1/efg1 的變異株不會生長菌絲,而且也不會造成實驗用小鼠的死亡。若能了解是那個葡聚糖酶與菌絲的生長有關,這個葡聚糖酶將可以做為抑制菌絲生長的標靶。首先、我偵測到類 1, 3-b-葡聚糖酶基因CaIPF885具有與其他基因不同型式的表現,它在野生株 (wild-type) SC5314 的表現量比在 cph1/cph1 efg1/efg1 變異株高。令人訝異的是,當完全移除白色念珠菌中的這個 CaIpf885p 時,並沒有觀察到其在菌絲生長,生物膜成形,及對一氧化氮和細胞壁染劑敏感度上和野生株有所差異,而且在生長速率上也和野生株 SC5314 一般並無軒輊。而且也無法偵測到融合型的表現蛋白 maltose binding protein-CaIpf885p (MBP-CaIpf885p) 有外切式葡聚糖酶 (exo-1, 3-b-glucanase) 的活性。有趣的是, Caipf885/ Caipf885 突變株對生物性清潔劑膽汁酸鹽 (bile salt) 中的去氧膽汁酸鹽 (sodium deoxycholate) 和鵝膽汁酸鹽 (sodium chenodeoxycholate)的感受性增加,而對鍵結型的其它鹽類則與 SC5314 一般並沒有太大差異,對其它生化上常用的人工清潔劑像 NP-40, Tween-20, Triton X-100, and Sodium dedocyl sulfate (SDS) 也無明顯差別。去氧膽汁酸鹽會誘導哺乳類動物細胞的淍亡 (Apoptosis),文獻中記載了膽汁酸會抑制黴菌麥角醇 (ergosterol) 的合成,而在野生株 SC5314 上,我也觀察到了去氧膽汁酸鹽引起類似細胞淍亡的現象。CaIpf885p 在麥角醇合成及細胞淍亡間所扮演的角色需要再更進一步的探討。總而言之,我們打開了一扇連接去氧膽汁酸鹽與細胞淍亡間的窗,提供了一個發展治療感染性黴菌藥物的新思考方向。

PartII:
CaNdt80p 是白色念珠菌中與酵母菌的轉錄因子 ScNdt80p類似的蛋白質,也是白色念珠菌中與抗藥性有關的流出幫浦基因 CDR1 的正向調控者。我們構築了 CaNdt80p 和 ScNdt80p 的嵌合體藉以探究 CaNdt80p的 DNA 結合區域與抗藥性間的關聯性。CaNdt80p 的DNA 結合區域無法取代ScNdt80p 的DNA 結合區域在孢子萌發上的角色,有趣的是,ScNdt80p 的DNA 結合區域可以替代 CaNdt80p的結合區域活化 在酵母菌中的CDR1p-lacZ 之功能。具有一致性的是,在 DNA 結合區域含有單一點突變的CaNdt80p 並無法活化在酵母菌中的CDR1p-lacZ 。而且,在白色念珠菌中,一個在DNA 結合區域具有相同突變的 Candt80R432A 拷貝也無法補回因為CaNDT80 完全缺失後所造成的對藥物敏感的表現型。因此CaNdt80p 之 DNA 結合區域在白色念珠菌的抗藥性上扮演了關鍵的角色。
PartI:
Candida albicans is an opportunistic pathogen causing high mortality in immuno-compromised patient. The more and more antifungal drug resistant strains were isolated from nosocomial infections. Today, the development of new drugs with low side effects is the important issue. The cell wall is a good target for antifungal drug because the mammalian does not have such organelle. Thus, enzymes having the function to modify the components of cell wall are good target for designing new drugs. In C. albicans, I found at least 11 genes potentially encoding glucanases. The cph1/cph1 efg1/efg1 mutant is non-filamentous and avirulent in a mouse model. The glucanase involved in filament formation can be the good target for inhibiting the filamentous growth. I found that the expression of all genes tested except CaIPF885 in the wild-type strain, SC5314 cells was higher than that in the cph1/cph1 efg1/efg1 double mutant cells. Surprisingly, the CaIPF885 null mutant has neither the defect in hyphal and biofilm formation nor increasing sensitivity to cell wall binding dye and Nitric oxide (NO). The mutant cell grew as good as the wild-type strain. The exo-1, 3-b-glucanase activity was not detected in the maltose binding protein-CaIpf885p (MBP-CaIpf885p) fusion protein. Interestingly, mutations on the CaIPF885 gene dramatically increased the susceptibility to biological detergent, bile salt, such as, sodium deoxycholate (NaDOC) or sodium chenodeoxycholate but not to the conjugated form bile acids or other biochemical detergents, such as, NP-40, Tween-20, Triton X-100, and Sodium dedocyl sulfate (SDS). In vitro, the bile acids inhibit the synthesis of ergosterol in C. albicans. The NaDOC could bear the apoptosis-like response in C. albicans since it drives apoptosis in mammalian cells. The function of CaIpf885p related to synthesis of ergosterol and apoptosis need further investigation. In that, I found an exo-1, 3-b-glucanase-like gene bearing apoptosis-like response to NaDOC in C. albicans, which may open another door for the design of novel antifungal drugs.

PartII:
CaNdt80p, the Candida albicans homologue of the Saccharomyces cerevisiae transcription factor ScNdt80p, has been identified as a positive regulator of CDR1, encoding an efflux pump involved in drug resistance in C. albicans. To investigate the involvement of the putative DNA binding domain of CaNdt80p in drug resistance, we have constructed chimeras of CaNdt80p and ScNdt80p. The DNA binding domain of CaNdt80p could not complement the function of that of ScNdt80p in sporulation. Interestingly, the DNA binding domain of ScNdt80p could functionally complement that of CaNdt80p to activate CDR1p-lacZ in S. cerevisiae. Consistently, CaNdt80p containing a mutation in the DNA binding domain failed to activate the CDR1p-lacZ in S. cerevisiae. Furthermore, a copy of CaNDT80 with the same mutation also failed to complement the drug sensitive phenotype caused by a null mutation in C. albicans. Thus, the DNA binding domain of CaNdt80p is critical for its function in drug resistance in C. albicans.
PartI:
Table of contents (Part I)
Table of contents (Part I) I
Table of figures VI
Table of appendixes IX
中文摘要 X
Abstract XII
Introduction 1
1. Clinical significance of fungal infection. 1
2. Mechanisms of action of antifungal drugs. 2
2.1 Polyenes 3
2.2 Ergosterol biosynthesis inhibitors 3
2.3 Nucleic acid synthesis inhibitor 4
2.4 Cell wall synthesis inhibitor 5
2.5 Drugs under development 5
3. Biosynthesis of bile acids 6
4. The sodium deoxycholate (NaDOC) 7
5. Candida albicans 8
6. Cell wall structure of Candida albicans 9
7. 1, 3-b-glucanases in Candida albicans 11
7.1 Endo-1, 3-b-glucanase 12
7.1.1 CaBGL2 12
7.1.2 CaMP65 13
7.1.3 CaSCW4 14
7.1.4 CaSCW1 15
7.1.5 CaENG1 16
7.1.6 CaENG2 17
7.1.7 CaSCW10 17
7.2 Exo-1, 3-b-glucanase 18
7.2.1 CaEXG1 18
7.2.2 CaEXG2 19
7.2.3 CaSPR1 20
7.2.4 CaIPF885 21
8. Specific aims of the study 22
Material and Methods 23
1. Strains and media 23
2. Endo-1, 3-b-glucanase motif 23
3. Exo-1, 3-b-glucanase motif 24
4. DNA methods 24
5. Construction of the homozygous mutant strains of CaIPF885 25
6. Complementation of the Caipf885/Caipf885 deletion. 29
7. Construction of the homozygous mutant strains of CaEXG1. 29
8. Complementation of the Caexg1/Caexg1 deletion. 31
9. Construction of the of Caipf885/Caipf885 Caexg1/Caexg1 strain. 31
10. Complementation of either the CaIPF885 or the CaEXG1 gene in Caipf885/Caipf885 Caexg1/Caexg1 double knockout mutant. 34
11. Transformation of Candida albicans (lithium acetate method). 34
12. Escherichia coli transformation with electroporation. 36
13. Genomic DNA extraction. 36
14. Antifungal susceptibility tests. 38
15. Germ tube analysis. 39
16. Quantitative analysis of the mRNA level by real-time PCR. 40
16.1 The 10% horse serum treated SC5314 and cph1/cph1 efg1/efg1. 40
16.2 The 0.05% Sodium deoxycholate (NaDOC) treated the wild-type SC5314 strain. 41
17. Growth curve, survival curve and survival rate. 43
18. Chemical susceptibility test. 43
19. Growth inhibition assays. 44
20. Biofilm growth and CSLM images. 45
21. Small-scale protein induction. 46
22. Glucanase activity assay. 47
Results 48
1. 1, 3-b-glucanases in Candida albicans. 48
2. The expression pattern of 1, 3-b-glucanases in Candida albicans. 49
3. Construction of the Caipf885/Caipf885 mutant. 49
4. The phenotype of Caipf885/Caipf885 mutant. 50
5. The effect of NaDOC on wild type Candida albicans. 53
6. Construction of the Caexg1/Caexg1 and the Caipf885/Caipf885 Caexg1/Caexg1 mutants. 55
7. The Caipf885/Caipf885 Caexg1/Caexg1 double knockout strain had the similar phenotype as Caipf885/Caipf885. 56
9. The Caipf885/Caipf885 mutant was sensitive to specific bile salts but not very specific biochemical detergent. 58
10. The fusion protein MBP-CaIpf885p did not exhibit exo-1, 3-b-glucanase activity. 60
Discussion 61
1. Comparison of the phenotype of 1, 3-b-glucanase between Candida albicans and Saccharomyces cerevisiae. 61
1.1 Endo-1, 3-b-glucanase in Saccharomyces cerevisiae. 61
1.2 Exo-1, 3-b-glucanase in Saccharomyces cerevisiae. 62
2. The putative cis-element in CaIPF885. 65
3. The linkage of NaDOC and apoptosis in Candida albicans. 66
4. The possible roles of CaIpf885p in Candida albicans. 69
4.1 In the function for change the cell membrane or cell wall. 70
4.2 There may be exhibit the possible that CaIpf885p accelerate the efflux pump for export the NaDOC. 71
4.3 The real pathway for NaDOC bear the apoptosis-like response in Candida albicans is unclear. 71
5. The expression of CaMCA1 is not increased after treated with NaDOC. 73
6. The biochemical function of CaIpf885p. 74
Future works 76
1. To confirm the apoptosis response after treated with NaDOC. 76
2. To analysis the cell wall components and morphology under the electron microscopy. 76
3. To determine the biological functions of CaIpf885p 76
4. The concentration NaDOC and ergosterol in C. albicans after treatment. 77
5. To monitor the transcript expression of other glucanase and ergosterol synthesis related genes. 77
References 78

Table of tables
Table 1. Bacteria (Escherichia coli) and Candida albicans used in this study. 93
Table 2. Plasmids used in this study. 96
Table 3. Primers used in this study. 97
Table 4. The 1, 3-b-glucanase genes in Candida albicans. 101
Table 5. The transcription profiles of 1, 3-b-glucanase genes in Candida albicans. 102
Table 6. D.T. (Doubling time) 103
Table 7. Transcription profiles in the absence or presence of 0.05% NaDOC in SC5314. 104
Table 8. Putative cis-acting sites in the CaIPF885 promoter. 105


Table of figures
Fig. 1. There are five proteins having the motif of endo-1, 3-b-glucanase. 106
Fig. 2. CaIpf885p has the incomplete motif of exo-1, 3-b-glucanase. 107
Fig. 3. Construction of the Caipf885/Caipf885 mutant. 108
Fig. 4. Complementation of the Caipf885/Caipf885 deletion. 109
Fig. 5. Construction of the Caexg1/Caexg1 mutant. 110
Fig. 6. Complementation of the Caexg1/Caexg1 deletion. 111
Fig. 7. Lost the URA3 marker from Caipf885/Caipf885 mutant. 112
Fig. 8. Construction of the CaEXG1/Caexg1 Caipf885/Caipf885 mutant. 113
Fig. 9. Lost the URA3 marker from Caipf885/Caipf885 CaEXG1/Caexg1 mutant. 114
Fig. 10. Construction of the Caexg1/Caexg1 Caipf885/Caipf885 double knockout mutant. 115
Fig. 11. Complementation of the Caexg1/Caexg1 or Caipf885/Caipf885 deletion in double knockout strains. 116
Fig. 12. The transcripts of CaIPF885 are detected in wild type and rescued strains but not in knockout strains. 117
Fig. 13. The germ tube formation and filamentous grown is normal on the Caipf885/Caipf885 mutant. 118
Fig. 14. CSLM images of biofilms stained with calcofluor white. 119
Fig. 15. Deletion of CaIPF885 does not increase the sensitivity to sodium nitrite (NaNO2). 120
Fig. 16. Deletion on CaIPF885 does not increase sensitivity to zymolyase. 121
Fig. 17. Deletion on CaIPF885 does not increase sensitivity to the chemical of cell wall integrity test in the agar assay. 122
Fig. 18. Susceptibility to drug determining by Etest assay. 123
Fig. 19. Effect of sodium deoxycholate (NaDOC) on the growth of Caipf885/Caipf885 mutant. 124
Fig. 20. Deletion of CaIPF885 increased the sensitivity to sodium deoxycholate (NaDOC). 125
Fig. 21. Micrographs of the cells grow in the presence of 0.1% NaDOC. 126
Fig. 22. The different concentrations of NaDOC on the growth of wild-type SC5314 cells. 127
Fig. 23. Micrographs of the wild-type SC5314 cells grow in the presence of 0.05% NaDOC. 128
Fig. 24. DNA smearing pattern of Candida albicans cells treated with H2O or 0.1% NaDOC at different time points. 129
Fig. 25. The transcripts of CaEXg1 and CaIPF885 could not be detected in knockout strains. 130
Fig. 26. Susceptibility to drug determining by Etest assay. 131
Fig. 27. The survival curve after treated by sodium deoxycholate (NaDOC) of C. albicans. 132
Fig. 28. The survival rate of Candida albicans grown in treated with 0.05% sodium deoxycholate (NaDOC) at different time points. 133
Fig. 29. Deletion on CaIPF885 does not increase susceptibility to other detergents in the agar assay. 134
Fig. 30. Mutations on CaIPF885 increase susceptibility to NaDOC and chenodeoxycholate but not other bile acids in the agar assay. 135
Fig. 31. Mutations on CaIPF885 increase susceptibility to NaDOC and chenodeoxycholate but not other bile acids in the agar assay. 136
Fig. 32. CaIpf885p is inducing by 1 mM IPTG in E. coli strains. 137
Fig. 33. The exo-1, 3-b-glucanase-activity test of CaIpf885p by agar disc assay. 138
Fig. 34. The location of catalytic residue (glutamate, E) of CaExg1p and CaIpf885p. 139


Table of appendixes
Appendix 1. Primary and secondary bile acids included ionic and conjugated forms. 140
Appendix 2. A model of architecture of the yeast cell wall. 141
Appendix 3. Critical micelle concentration (CMC) of bile salts. 142
Appendix 4. Possible molecular mechanisms of antifungal agent resistance. 143
Appendix 5. The alternate pathway. 144

PartII:
Table of contents (Part II)
Table of contents (Part II) XIV
Table of tables XVII
Table of figures XVIII
中文摘要 XIX
Abstracts XX
Introduction 145
1. Molecular mechanisms of azoles resistance. 145
2. Overexpression of genes encoding efflux pumps to decrease accumulation of drug. 146
3. Regulation of the CDR1 gene. 147
3.1 Cis-element 147
3.2 Trans-activator 148
4. Function of CaNdt80p in drug resistant in Candida albicans. 148
5. Function of ScNdt80p in meiosis in Saccharomyces cerevisiae. 149
6. The purpose of the study. 150
Materials and Methods 151
1. Strains and media. 151
2. Domain swapping (construction of plasmid and strains). 151
2.1 LOB114 (pRS426-CaNDT80pro-CaNDT80-AD-ScNDT80-BD) 151
2.2 LOB115 (pRS426-CaNDT80pro-CaNDT80-AD) 152
2.3 LOB116 (pRS426-CaNDT80pro-ScNDT80-BD-ScNDT80-AD) 153
2.4 LOB117 (pRS426-CaNDT80pro-CaNDT80-AD-ScNDT80-BD-ScNDT80-AD) 153
2.5 BS88 (pRS426-ScNDT80pro-CaNDT80-BD- ScNDT80-AD) 154
2.6 LOB46 (pRS426-ScNDT80 was constructed by Ming-Yang Tsao) 155
3. In vitro assay of b-galactosidase activity. 156
4. Reverse transcription-polymerase chain reaction. 157
5. Quantitative analysis of the mRNA level by Real-Time PCR. 158
6. Site-directed mutagenesis. 159
7. Transformation of Saccharomyces cerevisiae (lithium acetate method) 160
8. Drug susceptibility tests. 161
9. Sporulation assay 162
Results 163
1. ScNdt80p failed to activate CDR1p-lacZ in Saccharomyces cerevisiae. 163
2. The DNA binding domain of ScNdt80p can functionally complement that of CaNdt80p in Saccharomyces cerevisiae. 164
3. CaNdt80p with a mutation on the DNA binding domain failed to activate CDR1p-lacZ in Saccharomyces cerevisiae. 165
4. Construction of the Candt80/Candt80::Candt80 R432A Candida albicans strain. 165
5. The Candt80R432A allele with a mutation on the DNA binding domain failed to complement the Candt80/Candt80 mutant cells. 166
6. The CaNDT80-BD failed to complement the ScNDT80-BD in spore formation. 168
Discussion 170
1. ScNdt80p failed to activate CDR1p-lacZ in Saccharomyces cerevisiae. 170
2. The DNA binding domain of ScNdt80p can functionally complement that of CaNdt80p in Saccharomyces cerevisiae. 170
3. The Candt80R432A allele with a mutation on the DNA binding domain failed to complement the Candt80/Candt80 mutant cells. 171
4. The C-terminal putative DNA binding domain of CaNdt80p failed to complement the DNA binding domain of ScNdt80p in spore formation. 171
Conclusion 173
Future works 174
References 175

Table of tables
Table 1. Saccharomyces cerevisiae used in this study. 179
Table 2. Candida albicans used in this study. 180
Table 3. Plasmids used in this study. 181
Table 4. Primers used in this study. 182


Table of figures
Fig. 1. Comparison of CaNdt80p in C. albicans and ScNdt80p in S. cerevisiae. 184
Fig. 2. Different chimeras having different effects on the expression of the CDR1p–lacZ reporter in S. cerevisiae. 185
Fig. 3. Expression of different chimeras in S. cerevisiae and both CaNDT80 and Candt80R432A alleles in C. albicans. 186
Fig. 4. Susceptibility to drug amphotericin B was determined by Etest assay. 187
Fig. 5. Susceptibility to azole drug ketoconazole was determined by Etest assay. 188
Fig. 6. Susceptibility to azole drug itroconazole was determined by Etest assay. 189
Fig. 7. Susceptibility to azole drug voriconazole was determined by Etest assay. 190
Fig. 8. Susceptibility to azole drug fluconazole was determined by Etest assay. 191
Fig. 9. The Candt80R432A allele failed to complement Candt80/Candt80 mutant cells. 192
Fig. 10. The CaNDT80-BD (DNA binding domain) failed to complement the ScNDT80-BD in sporulation assay. 193
Fig. 11. Comparison of ScNdt80p and chimera protein in S. cerevisiae. 194
PartI:
Adams,D.J. (2004). Fungal cell wall chitinases and glucanases. Microbiology 150, 2029-2035.
Allinger,U.G., Johansson,G.K., Gustafsson,J.A., and Rafter,J.J. (1989). Shift from a mixed to a lactovegetarian diet: influence on acidic lipids in fecal water--a potential risk factor for colon cancer. Am. J. Clin. Nutr. 50, 992-996.
Bachmann,S.P., Patterson,T.F., and Lopez-Ribot,J.L. (2002). In vitro activity of caspofungin (MK-0991) against Candida albicans clinical isolates displaying different mechanisms of azole resistance. J. Clin. Microbiol. 40, 2228-2230.
Baek,Y.U., Kim,Y.R., Yim,H.S., and Kang,S.O. (2004). Disruption of gamma-glutamylcysteine synthetase results in absolute glutathione auxotrophy and apoptosis in Candida albicans. FEBS Lett. 556, 47-52.
Baladron,V., Ufano,S., Duenas,E., Martin-Cuadrado,A.B., del,R.F., and Vazquez de Aldana,C.R. (2002). Eng1p, an endo-1,3-beta-glucanase localized at the daughter side of the septum, is involved in cell separation in Saccharomyces cerevisiae. Eukaryot. Cell 1, 774-786.
Balkis,M.M., Leidich,S.D., Mukherjee,P.K., and Ghannoum,M.A. (2002). Mechanisms of fungal resistance: an overview. Drugs 62, 1025-1040.
Beh,C.T., Cool,L., Phillips,J., and Rine,J. (2001). Overlapping functions of the yeast oxysterol-binding protein homologues. Genetics 157, 1117-1140.
Bensen,E.S., Filler,S.G., and Berman,J. (2002). A forkhead transcription factor is important for true hyphal as well as yeast morphogenesis in Candida albicans. Eukaryot. Cell 1, 787-798.
Bensen,E.S., Martin,S.J., Li,M., Berman,J., and Davis,D.A. (2004). Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol. Microbiol. 54, 1335-1351.
Bernstein,H., Payne,C.M., Kunke,K., Crowley-Weber,C.L., Waltmire,C.N., Dvorakova,K., Holubec,H., Bernstein,C., Vaillancourt,R.R., Raynes,D.A., Guerriero,V., and Garewal,H. (2004). A proteomic study of resistance to deoxycholate-induced apoptosis. Carcinogenesis 25, 681-692.
Braun,B.R. and Johnson,A.D. (2000). TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans. Genetics 155, 57-67.
Braun,B.R., van Het,H.M., d'Enfert,C., Martchenko,M., Dungan,J., Kuo,A., Inglis,D.O., Uhl,M.A., Hogues,H., Berriman,M., Lorenz,M., Levitin,A., Oberholzer,U., Bachewich,C., Harcus,D., Marcil,A., Dignard,D., Iouk,T., Zito,R., Frangeul,L., Tekaia,F., Rutherford,K., Wang,E., Munro,C.A., Bates,S., Gow,N.A., Hoyer,L.L., Kohler,G., Morschhauser,J., Newport,G., Znaidi,S., Raymond,M., Turcotte,B., Sherlock,G., Costanzo,M., Ihmels,J., Berman,J., Sanglard,D., Agabian,N., Mitchell,A.P., Johnson,A.D., Whiteway,M., and Nantel,A. (2005). A human-curated annotation of the Candida albicans genome. PLoS. Genet. 1, 36-57.
Brunel,J.M., Loncle,C., Vidal,N., Dherbomez,M., and Letourneux,Y. (2005). Synthesis and antifungal activity of oxygenated cholesterol derivatives. Steroids 70, 907-912.
Bruno,V.M., Kalachikov,S., Subaran,R., Nobile,C.J., Kyratsous,C., and Mitchell,A.P. (2006). Control of the C. albicans cell wall damage response by transcriptional regulator Cas5. PLoS. Pathog. 2, e21.
Bustamante,C.I. (2005). Treatment of Candida infection: a view from the trenches! Curr. Opin. Infect. Dis. 18, 490-495.
Cabib,E., Roh,D.H., Schmidt,M., Crotti,L.B., and Varma,A. (2001). The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J. Biol. Chem. 276, 19679-19682.
Carulli,N., Bertolotti,M., Carubbi,F., Concari,M., Martella,P., Carulli,L., and Loria,P. (2000). Review article: effect of bile salt pool composition on hepatic and biliary functions. Aliment. Pharmacol. Ther. 14 Suppl 2, 14-18.
Castillo,L., Martinez,A.I., Garcera,A., Garcia-Martinez,J., Ruiz-Herrera,J., Valentin,E., and Sentandreu,R. (2006). Genomic response programs of Candida albicans following protoplasting and regeneration. Fungal. Genet. Biol. 43, 124-134.
Chaffin,W.L., Lopez-Ribot,J.L., Casanova,M., Gozalbo,D., and Martinez,J.P. (1998). Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol. Mol. Biol. Rev. 62, 130-180.
Cheah,P.Y. (1990). Hypotheses for the etiology of colorectal cancer--an overview. Nutr. Cancer 14, 5-13.
Chen,C.G., Yang,Y.L., Shih,H.I., Su,C.L., and Lo,H.J. (2004). CaNdt80 is involved in drug resistance in Candida albicans by regulating CDR1. Antimicrob. Agents Chemother. 48, 4505-4512.
Chen,Y.C., Chang,S.C., Luh,K.T., and Hsieh,W.C. (2003). Stable susceptibility of Candida blood isolates to fluconazole despite increasing use during the past 10 years. J. Antimicrob. Chemother. 52, 71-77.
Cheng,G., Yeater,K.M., and Hoyer,L.L. (2006). Cellular and molecular biology of Candida albicans estrogen response. Eukaryot. Cell 5, 180-191.
Chibana,H. and Mikami,Y. (2003). Genomic analysis in Candida albicans. Nippon Ishinkin. Gakkai Zasshi 44, 81-85.
Copping,V.M., Barelle,C.J., Hube,B., Gow,N.A., Brown,A.J., and Odds,F.C. (2005). Exposure of Candida albicans to antifungal agents affects expression of SAP2 and SAP9 secreted proteinase genes. J. Antimicrob. Chemother. 55, 645-654.
Coste,A.T., Karababa,M., Ischer,F., Bille,J., and Sanglard,D. (2004). TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot. Cell 3, 1639-1652.
Coyle,B., Kinsella,P., McCann,M., Devereux,M., O'Connor,R., Clynes,M., and Kavanagh,K. (2004). Induction of apoptosis in yeast and mammalian cells by exposure to 1,10-phenanthroline metal complexes. Toxicol. In Vitro 18, 63-70.
Crowley,C.L., Payne,C.M., Bernstein,H., Bernstein,C., and Roe,D. (2000). The NAD+ precursors, nicotinic acid and nicotinamide protect cells against apoptosis induced by a multiple stress inducer, deoxycholate. Cell Death. Differ. 7, 314-326.
Cutfield,S.M., Davies,G.J., Murshudov,G., Anderson,B.F., Moody,P.C., Sullivan,P.A., and Cutfield,J.F. (1999). The structure of the exo-beta-(1,3)-glucanase from Candida albicans in native and bound forms: relationship between a pocket and groove in family 5 glycosyl hydrolases. J. Mol. Biol. 294, 771-783.
De Groot,P.W., Hellingwerf,K.J., and Klis,F.M. (2003). Genome-wide identification of fungal GPI proteins. Yeast 20, 781-796.
De,F.E., Mitro,N., Godio,C., Gilardi,F., Caruso,D., and Crestani,M. (2004). Bile acid signaling to the nucleus: finding new connections in the transcriptional regulation of metabolic pathways. Biochimie 86, 771-778.
Dismukes,W.E. (2000). Introduction to antifungal drugs. Clin. Infect. Dis. 30, 653-657.
Drew,R. (2006). Potential role of aerosolized amphotericin B formulations in the prevention and adjunctive treatment of invasive fungal infections. Int. J. Antimicrob. Agents 27 Suppl 1, 36-44.
Edmond,M.B., Wallace,S.E., McClish,D.K., Pfaller,M.A., Jones,R.N., and Wenzel,R.P. (1999). Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin. Infect. Dis. 29, 239-244.
Ernst,J.F.a.B.h.D.P. (2001). Gene expression and genetic techniques. In Candida and candidiasis, R.Calderone, ed. (Washington: ASM press), pp. 267-278.
Esteban,P.F., Rios,I., Garcia,R., Duenas,E., Pla,J., Sanchez,M., de Aldana,C.R., and Del,R.F. (2005). Characterization of the CaENG1 Gene Encoding an Endo-1,3-beta-Glucanase Involved in Cell Separation in Candida albicans. Curr. Microbiol. 51, 385-392.
Fernandes,M., Xiao,H., and Lis,J.T. (1994). Fine structure analyses of the Drosophila and Saccharomyces heat shock factor--heat shock element interactions. Nucleic Acids Res. 22, 167-173.
Frohlich,K.U. and Madeo,F. (2000). Apoptosis in yeast--a monocellular organism exhibits altruistic behaviour. FEBS Lett. 473, 6-9.
Fu,Y.H. and Marzluf,G.A. (1990). nit-2, the major positive-acting nitrogen regulatory gene of Neurospora crassa, encodes a sequence-specific DNA-binding protein. Proc. Natl. Acad. Sci. U. S. A 87, 5331-5335.
Fuchs,M. (2003). Bile acid regulation of hepatic physiology: III. Regulation of bile acid synthesis: past progress and future challenges. Am. J. Physiol Gastrointest. Liver Physiol 284, G551-G557.
Garcia,R., Bermejo,C., Grau,C., Perez,R., Rodriguez-Pena,J.M., Francois,J., Nombela,C., and Arroyo,J. (2004). The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. J. Biol. Chem. 279, 15183-15195.
Garcia-Sanchez,S., Mavor,A.L., Russell,C.L., Argimon,S., Dennison,P., Enjalbert,B., and Brown,A.J. (2005). Global roles of Ssn6 in Tup1- and Nrg1-dependent gene regulation in the fungal pathogen, Candida albicans. Mol. Biol. Cell 16, 2913-2925.
Gardner,R.G., Shan,H., Matsuda,S.P., and Hampton,R.Y. (2001). An oxysterol-derived positive signal for 3-hydroxy- 3-methylglutaryl-CoA reductase degradation in yeast. J. Biol. Chem. 276, 8681-8694.
Georgopapadakou,N.H. (1998). Antifungals: mechanism of action and resistance, established and novel drugs. Curr. Opin. Microbiol. 1, 547-557.
Georgopapadakou,N.H. (2001). Update on antifungals targeted to the cell wall: focus on beta-1,3-glucan synthase inhibitors. Expert. Opin. Investig. Drugs 10, 269-280.
Georgopapadakou,N.H. and Walsh,T.J. (1996). Antifungal agents: chemotherapeutic targets and immunologic strategies. Antimicrob. Agents Chemother. 40, 279-291.
Georgopapadakou,N.H. and Walsh,T.J. (1994). Human mycoses: drugs and targets for emerging pathogens. Science 264, 371-373.
Giaever,G., Flaherty,P., Kumm,J., Proctor,M., Nislow,C., Jaramillo,D.F., Chu,A.M., Jordan,M.I., Arkin,A.P., and Davis,R.W. (2004). Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc. Natl. Acad. Sci. U. S. A 101, 793-798.
Gietz,R.D., Schiestl,R.H., Willems,A.R., and Woods,R.A. (1995). Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355-360.
Gil,J.V., Manzanares,P., Genoves,S., Valles,S., and Gonzalez-Candelas,L. (2005). Over-production of the major exoglucanase of Saccharomyces cerevisiae leads to an increase in the aroma of wine. Int. J. Food Microbiol. 103, 57-68.
Gillum,A.M., Tsay,E.Y., and Kirsch,D.R. (1984). Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol. Gen. Genet. 198, 179-182.
Goldman,R.C., Sullivan,P.A., Zakula,D., and Capobianco,J.O. (1995). Kinetics of beta-1,3 glucan interaction at the donor and acceptor sites of the fungal glucosyltransferase encoded by the BGL2 gene. Eur. J. Biochem. 227, 372-378.
Gomez,M.J., Maras,B., Barca,A., La,V.R., Barra,D., and Cassone,A. (2000). Biochemical and immunological characterization of MP65, a major mannoprotein antigen of the opportunistic human pathogen Candida albicans. Infect. Immun. 68, 694-701.
Gonzalez,M.M., ez-Orejas,R., Molero,G., Alvarez,A.M., Pla,J., Nombela,C., and Sanchez-Perez,M. (1997). Phenotypic characterization of a Candida albicans strain deficient in its major exoglucanase. Microbiology 143 ( Pt 9), 3023-3032.
Harcus,D., Nantel,A., Marcil,A., Rigby,T., and Whiteway,M. (2004). Transcription profiling of cyclic AMP signaling in Candida albicans. Mol. Biol. Cell 15, 4490-4499.
Hatanaka,H., Kawaguchi,A., Hayakawa,S., and Katsuki,H. (1972). Structural specificity of bile acid for inhibition of sterol synthesis in cell-free extracts of yeast. Biochim. Biophys. Acta 270, 397-406.
Hatanaka,H., Kawaguchi,A., and Katsuki,H. (1970). Inhibition of ergosterol synthesis in cell-free extracts of yeast by bile acid. Biochem. Biophys. Res. Commun. 40, 786-792.
Herrero,E., de la Torre,M.A., and Valentin,E. (2003). Comparative genomics of yeast species: new insights into their biology. Int. Microbiol. 6, 183-190.
Hitchcock,C.A. (1991). Cytochrome P-450-dependent 14 alpha-sterol demethylase of Candida albicans and its interaction with azole antifungals. Biochem. Soc. Trans. 19, 782-787.
Hromatka,B.S., Noble,S.M., and Johnson,A.D. (2005). Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol. Biol. Cell 16, 4814-4826.
Huh,G.H., Damsz,B., Matsumoto,T.K., Reddy,M.P., Rus,A.M., Ibeas,J.I., Narasimhan,M.L., Bressan,R.A., and Hasegawa,P.M. (2002). Salt causes ion disequilibrium-induced programmed cell death in yeast and plants. Plant J. 29, 649-659.
Huh,W.K., Falvo,J.V., Gerke,L.C., Carroll,A.S., Howson,R.W., Weissman,J.S., and O'Shea,E.K. (2003). Global analysis of protein localization in budding yeast. Nature 425, 686-691.
Hwang,C.S., Oh,J.H., Huh,W.K., Yim,H.S., and Kang,S.O. (2003). Ssn6, an important factor of morphological conversion and virulence in Candida albicans. Mol. Microbiol. 47, 1029-1043.
Jamin,N., Neumann,J.M., Ostuni,M.A., Vu,T.K., Yao,Z.X., Murail,S., Robert,J.C., Giatzakis,C., Papadopoulos,V., and Lacapere,J.J. (2005). Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor. Mol. Endocrinol. 19, 588-594.
Jarvis,W.R. (1995). Epidemiology of nosocomial fungal infections, with emphasis on Candida species. Clin. Infect. Dis. 20, 1526-1530.
Jeon,B.W., Kim,K.T., Chang,S.I., and Kim,H.Y. (2002). Phosphoinositide 3-OH kinase/protein kinase B inhibits apoptotic cell death induced by reactive oxygen species in Saccharomyces cerevisiae. J. Biochem. (Tokyo) 131, 693-699.
Jiang,B., Ram,A.F., Sheraton,J., Klis,F.M., and Bussey,H. (1995). Regulation of cell wall beta-glucan assembly: PTC1 negatively affects PBS2 action in a pathway that includes modulation of EXG1 transcription. Mol. Gen. Genet. 248, 260-269.
Jones,T., Federspiel,N.A., Chibana,H., Dungan,J., Kalman,S., Magee,B.B., Newport,G., Thorstenson,Y.R., Agabian,N., Magee,P.T., Davis,R.W., and Scherer,S. (2004). The diploid genome sequence of Candida albicans. Proc. Natl. Acad. Sci. U. S. A 101, 7329-7334.
Joseph Sambrook and David W.Russell (1989). Molecular Cloning: A Laboratory Manual. (New York: Cold Spring Harbor Laboratory Press).
Joseph-Horne,T. and Hollomon,D.W. (1997). Molecular mechanisms of azole resistance in fungi. FEMS Microbiol. Lett. 149, 141-149.
Kao,A.S., Brandt,M.E., Pruitt,W.R., Conn,L.A., Perkins,B.A., Stephens,D.S., Baughman,W.S., Reingold,A.L., Rothrock,G.A., Pfaller,M.A., Pinner,R.W., and Hajjeh,R.A. (1999). The epidemiology of candidemia in two United States cities: results of a population-based active surveillance. Clin. Infect. Dis. 29, 1164-1170.
Kelly,M.T., MacCallum,D.M., Clancy,S.D., Odds,F.C., Brown,A.J., and Butler,G. (2004). The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence. Mol. Microbiol. 53, 969-983.
Kelly,S.L., Lamb,D.C., Kelly,D.E., Manning,N.J., Loeffler,J., Hebart,H., Schumacher,U., and Einsele,H. (1997). Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol delta5,6-desaturation. FEBS Lett. 400, 80-82.
Khan,M.A., Chock,P.B., and Stadtman,E.R. (2005). Knockout of caspase-like gene, YCA1, abrogates apoptosis and elevates oxidized proteins in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A 102, 17326-17331.
Kjaerulff,S., Dooijes,D., Clevers,H., and Nielsen,O. (1997). Cell differentiation by interaction of two HMG-box proteins: Mat1-Mc activates M cell-specific genes in S.pombe by recruiting the ubiquitous transcription factor Ste11 to weak binding sites. EMBO J. 16, 4021-4033.
Klis,F.M., Mol,P., Hellingwerf,K., and Brul,S. (2002). Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 26, 239-256.
Kofron,M., Demel,T., Xanthos,J., Lohr,J., Sun,B., Sive,H., Osada,S., Wright,C., Wylie,C., and Heasman,J. (1999). Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFbeta growth factors. Development 126, 5759-5770.
Krejcirova,L., Lauschova,I., Horky,D., Doubek,M., Mayer,J., and Doubek,J. (2004). Influence of amphotericin B deoxycholate or amphotericin B colloidal dispersion on renal tubule epithelium in rat. Biomed. Pap. Med. Fac. Univ Palacky. Olomouc. Czech. Repub. 148, 221-223.
Kuwayama,H., Obara,S., Morio,T., Katoh,M., Urushihara,H., and Tanaka,Y. (2002). PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors. Nucleic Acids Res. 30, E2.
Lagorce,A., Hauser,N.C., Labourdette,D., Rodriguez,C., Martin-Yken,H., Arroyo,J., Hoheisel,J.D., and Francois,J. (2003). Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 278, 20345-20357.
Lan,C.Y., Newport,G., Murillo,L.A., Jones,T., Scherer,S., Davis,R.W., and Agabian,N. (2002). Metabolic specialization associated with phenotypic switching in Candida albicans. Proc. Natl. Acad. Sci. U. S. A 99, 14907-14912.
Lan,C.Y., Rodarte,G., Murillo,L.A., Jones,T., Davis,R.W., Dungan,J., Newport,G., and Agabian,N. (2004). Regulatory networks affected by iron availability in Candida albicans. Mol. Microbiol. 53, 1451-1469.
Larriba,G., Andaluz,E., Cueva,R., and Basco,R.D. (1995). Molecular biology of yeast exoglucanases. FEMS Microbiol. Lett. 125, 121-126.
Larriba,G., Basco,R.D., Andaluz,E., and Luna-Arias,J.P. (1993). Yeast exoglucanases. Where redundancy implies necessity. Arch. Med. Res. 24, 293-299.
Lee,C.M., Nantel,A., Jiang,L., Whiteway,M., and Shen,S.H. (2004). The serine/threonine protein phosphatase SIT4 modulates yeast-to-hypha morphogenesis and virulence in Candida albicans. Mol. Microbiol. 51, 691-709.
Lee,M.G. and Van der Ploeg,L.H. (1997). Transcription of protein-coding genes in trypanosomes by RNA polymerase I. Annu. Rev. Microbiol. 51, 463-489.
Lee,S.A., Wormsley,S., Kamoun,S., Lee,A.F., Joiner,K., and Wong,B. (2003). An analysis of the Candida albicans genome database for soluble secreted proteins using computer-based prediction algorithms. Yeast 20, 595-610.
Leelaporn,A., Firth,N., Byrne,M.E., Roper,E., and Skurray,R.A. (1994). Possible role of insertion sequence IS257 in dissemination and expression of high- and low-level trimethoprim resistance in staphylococci. Antimicrob. Agents Chemother. 38, 2238-2244.
Leng,P., Lee,P.R., Wu,H., and Brown,A.J. (2001). Efg1, a morphogenetic regulator in Candida albicans, is a sequence-specific DNA binding protein. J. Bacteriol. 183, 4090-4093.
Lengeler,K.B., Davidson,R.C., D'souza,C., Harashima,T., Shen,W.C., Wang,P., Pan,X., Waugh,M., and Heitman,J. (2000). Signal transduction cascades regulating fungal development and virulence. Microbiol Mol. Biol. Rev. 64, 746-785.
Letscher-Bru,V. and Herbrecht,R. (2003). Caspofungin: the first representative of a new antifungal class. J. Antimicrob. Chemother. 51, 513-521.
Liu,T.T., Lee,R.E., Barker,K.S., Lee,R.E., Wei,L., Homayouni,R., and Rogers,P.D. (2005). Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob. Agents Chemother. 49, 2226-2236.
Lo,H.J., Kohler,J.R., DiDomenico,B., Loebenberg,D., Cacciapuoti,A., and Fink,G.R. (1997). Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939-949.
Lotz,H., Sohn,K., Brunner,H., Muhlschlegel,F.A., and Rupp,S. (2004). RBR1, a novel pH-regulated cell wall gene of Candida albicans, is repressed by RIM101 and activated by NRG1. Eukaryot. Cell 3, 776-784.
Ludovico,P., Sousa,M.J., Silva,M.T., Leao,C., and Corte-Real,M. (2001). Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147, 2409-2415.
Macreadie,I.G., Johnson,G., Schlosser,T., and Macreadie,P.I. (2006). Growth inhibition of Candida species and Aspergillus fumigatus by statins. FEMS Microbiol. Lett. 262, 9-13.
Madeo,F., Frohlich,E., Ligr,M., Grey,M., Sigrist,S.J., Wolf,D.H., and Frohlich,K.U. (1999). Oxygen stress: a regulator of apoptosis in yeast. J. Cell Biol. 145, 757-767.
Madeo,F., Herker,E., Maldener,C., Wissing,S., Lachelt,S., Herlan,M., Fehr,M., Lauber,K., Sigrist,S.J., Wesselborg,S., and Frohlich,K.U. (2002). A caspase-related protease regulates apoptosis in yeast. Mol. Cell 9, 911-917.
Marshall,S.E., Marples,B.A., Salt,W.G., and Stretton,R.J. (1987). Aspects of the effect of bile salts on Candida albicans. J. Med. Vet. Mycol. 25, 307-318.
Martin-Cuadrado,A.B., Duenas,E., Sipiczki,M., Vazquez de Aldana,C.R., and del,R.F. (2003). The endo-beta-1,3-glucanase eng1p is required for dissolution of the primary septum during cell separation in Schizosaccharomyces pombe. J. Cell Sci. 116, 1689-1698.
Masuoka,J. (2004). Surface glycans of Candida albicans and other pathogenic fungi: physiological roles, clinical uses, and experimental challenges. Clin. Microbiol. Rev. 17, 281-310.
McNeil,M.M., Nash,S.L., Hajjeh,R.A., Phelan,M.A., Conn,L.A., Plikaytis,B.D., and Warnock,D.W. (2001). Trends in mortality due to invasive mycotic diseases in the United States, 1980-1997. Clin. Infect. Dis. 33, 641-647.
Miller,L.G., Hajjeh,R.A., and Edwards,J.E., Jr. (2001). Estimating the cost of nosocomial candidemia in the united states. Clin. Infect. Dis. 32, 1110.
Milovic,V., Teller,I.C., Faust,D., Caspary,W.F., and Stein,J. (2002). Effects of deoxycholate on human colon cancer cells: apoptosis or proliferation. Eur. J. Clin. Invest 32, 29-34.
Monteoliva,L., Matas,M.L., Gil,C., Nombela,C., and Pla,J. (2002). Large-scale identification of putative exported proteins in Candida albicans by genetic selection. Eukaryot. Cell 1, 514-525.
Mouyna,I., Hartland,R.P., Fontaine,T., Diaquin,M., Simenel,C., Delepierre,M., Henrissat,B., and Latge,J.P. (1998). A 1,3-beta-glucanosyltransferase isolated from the cell wall of Aspergillus fumigatus is a homologue of the yeast Bgl2p. Microbiology 144 ( Pt 11), 3171-3180.
Murad,A.M., d'Enfert,C., Gaillardin,C., Tournu,H., Tekaia,F., Talibi,D., Marechal,D., Marchais,V., Cottin,J., and Brown,A.J. (2001a). Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1. Mol. Microbiol. 42, 981-993.
Murad,A.M., Leng,P., Straffon,M., Wishart,J., Macaskill,S., MacCallum,D., Schnell,N., Talibi,D., Marechal,D., Tekaia,F., d'Enfert,C., Gaillardin,C., Odds,F.C., and Brown,A.J. (2001b). NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J. 20, 4742-4752.
Murillo,L.A., Newport,G., Lan,C.Y., Habelitz,S., Dungan,J., and Agabian,N.M. (2005). Genome-wide transcription profiling of the early phase of biofilm formation by Candida albicans. Eukaryot. Cell 4, 1562-1573.
Newport,G., Kuo,A., Flattery,A., Gill,C., Blake,J.J., Kurtz,M.B., Abruzzo,G.K., and Agabian,N. (2003). Inactivation of Kex2p diminishes the virulence of Candida albicans. J. Biol. Chem. 278, 1713-1720.
Nisini,R., Romagnoli,G., Gomez,M.J., La,V.R., Torosantucci,A., Mariotti,S., Teloni,R., and Cassone,A. (2001). Antigenic properties and processing requirements of 65-kilodalton mannoprotein, a major antigen target of anti-Candida human T-cell response, as disclosed by specific human T-cell clones. Infect. Immun. 69, 3728-3736.
Nobile,C.J., Bruno,V.M., Richard,M.L., Davis,D.A., and Mitchell,A.P. (2003). Genetic control of chlamydospore formation in Candida albicans. Microbiology 149, 3629-3637.
Oberholzer,U., Nantel,A., Berman,J., and Whiteway,M. (2006). Transcript profiles of Candida albicans cortical actin patch mutants reflect their cellular defects: contribution of the Hog1p and Mkc1p signaling pathways. Eukaryot. Cell 5, 1252-1265.
Odds,F.C., Brown,A.J., and Gow,N.A. (2003). Antifungal agents: mechanisms of action. Trends Microbiol. 11, 272-279.
Odds,F.C., Gow,N.A., and Brown,A.J. (2001). Fungal virulence studies come of age. Genome Biol. 2, REVIEWS1009.
Ortiz,D.F., St Pierre,M.V., Abdulmessih,A., and Arias,I.M. (1997). A yeast ATP-binding cassette-type protein mediating ATP-dependent bile acid transport. J. Biol. Chem. 272, 15358-15365.
Pappas,P.G., Rex,J.H., Sobel,J.D., Filler,S.G., Dismukes,W.E., Walsh,T.J., and Edwards,J.E. (2004). Guidelines for treatment of candidiasis. Clin. Infect. Dis. 38, 161-189.
Pfaller,M.A., Diekema,D.J., Messer,S.A., Boyken,L., and Hollis,R.J. (2003). Activities of fluconazole and voriconazole against 1,586 recent clinical isolates of Candida species determined by Broth microdilution, disk diffusion, and Etest methods: report from the ARTEMIS Global Antifungal Susceptibility Program, 2001. J. Clin. Microbiol. 41, 1440-1446.
Phillips,A.J., Sudbery,I., and Ramsdale,M. (2003). Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc. Natl. Acad. Sci. U. S. A 100, 14327-14332.
Pietrella,D., Bistoni,G., Corbucci,C., Perito,S., and Vecchiarelli,A. (2006). Candida albicans mannoprotein influences the biological function of dendritic cells. Cell Microbiol. 8, 602-612.
Pitarch,A., Jimenez,A., Nombela,C., and Gil,C. (2006). Decoding serological response to Candida cell wall immunome into novel diagnostic, prognostic, and therapeutic candidates for systemic candidiasis by proteomic and bioinformatic analyses. Mol. Cell Proteomics. 5, 79-96.
Powolny,A., Xu,J., and Loo,G. (2001). Deoxycholate induces DNA damage and apoptosis in human colon epithelial cells expressing either mutant or wild-type p53. Int. J. Biochem. Cell Biol. 33, 193-203.
Prasad,R., Gaur,N.A., Gaur,M., and Komath,S.S. (2006). Efflux pumps in drug resistance of Candida. Infect. Disord. Drug Targets. 6, 69-83.
Radding,J.A., Heidler,S.A., and Turner,W.W. (1998). Photoaffinity analog of the semisynthetic echinocandin LY303366: identification of echinocandin targets in Candida albicans. Antimicrob. Agents Chemother. 42, 1187-1194.
Raphael,B.H., Pereira,S., Flom,G.A., Zhang,Q., Ketley,J.M., and Konkel,M.E. (2005). The Campylobacter jejuni response regulator, CbrR, modulates sodium deoxycholate resistance and chicken colonization. J. Bacteriol. 187, 3662-3670.
Richard,M.L., Nobile,C.J., Bruno,V.M., and Mitchell,A.P. (2005). Candida albicans biofilm-defective mutants. Eukaryot. Cell 4, 1493-1502.
Ruiz-Herrera,J., Elorza,M.V., Valentin,E., and Sentandreu,R. (2006). Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS Yeast Res. 6, 14-29.
Russell,D.W. (2003). The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72, 137-174.
Ryder,N.S. (1992). Terbinafine: mode of action and properties of the squalene epoxidase inhibition. Br. J. Dermatol. 126 Suppl 39:2-7, 2-7.
Santos,M.A. and Tuite,M.F. (1995). The CUG codon is decoded in vivo as serine and not leucine in Candida albicans. Nucleic Acids Res. 23, 1481-1486.
Sarthy,A.V., McGonigal,T., Coen,M., Frost,D.J., Meulbroek,J.A., and Goldman,R.C. (1997). Phenotype in Candida albicans of a disruption of the BGL2 gene encoding a 1,3-beta-glucosyltransferase. Microbiology 143 ( Pt 2), 367-376.
Schaller,M., Bein,M., Korting,H.C., Baur,S., Hamm,G., Monod,M., Beinhauer,S., and Hube,B. (2003). The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect. Immun. 71, 3227-3234.
Sestak,S., Hagen,I., Tanner,W., and Strahl,S. (2004). Scw10p, a cell-wall glucanase/transglucosidase important for cell-wall stability in Saccharomyces cerevisiae. Microbiology 150, 3197-3208.
Shea,J.M. and Del,P.M. (2006). Lipid signaling in pathogenic fungi. Curr. Opin. Microbiol. 9, 352-358.
Sherman,F. (2002). Getting started with yeast. Methods Enzymol. 350, 3-41.
Shih,Y.P., Kung,W.M., Chen,J.C., Yeh,C.H., Wang,A.H., and Wang,T.F. (2002). High-throughput screening of soluble recombinant proteins. Protein Sci. 11, 1714-1719.
Slavin,M., Fastenau,J., Sukarom,I., Mavros,P., Crowley,S., and Gerth,W.C. (2004). Burden of hospitalization of patients with Candida and Aspergillus infections in Australia. Int. J. Infect. Dis. 8, 111-120.
Smits,G.J., Kapteyn,J.C., van den,E.H., and Klis,F.M. (1999). Cell wall dynamics in yeast. Curr. Opin. Microbiol. 2, 348-352.
Smits,G.J., van den,E.H., and Klis,F.M. (2001). Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiology 147, 781-794.
Sohn,K., Urban,C., Brunner,H., and Rupp,S. (2003). EFG1 is a major regulator of cell wall dynamics in Candida albicans as revealed by DNA microarrays. Mol. Microbiol. 47, 89-102.
Spencer,V.A., Sun,J.M., Li,L., and Davie,J.R. (2003). Chromatin immunoprecipitation: a tool for studying histone acetylation and transcription factor binding. Methods 31, 67-75.
Spreghini,E., Davis,D.A., Subaran,R., Kim,M., and Mitchell,A.P. (2003). Roles of Candida albicans Dfg5p and Dcw1p cell surface proteins in growth and hypha formation. Eukaryot. Cell 2, 746-755.
Strupp,W., Weidinger,G., Scheller,C., Ehret,R., Ohnimus,H., Girschick,H., Tas,P., Flory,E., Heinkelein,M., and Jassoy,C. (2000). Treatment of cells with detergent activates caspases and induces apoptotic cell death. J. Membr. Biol. 175, 181-189.
Stubbs,H.J., Brasch,D.J., Emerson,G.W., and Sullivan,P.A. (1999). Hydrolase and transferase activities of the beta-1,3-exoglucanase of Candida albicans. Eur. J. Biochem. 263, 889-895.
Sundriyal,S., Sharma,R.K., and Jain,R. (2006). Current advances in antifungal targets and drug development. Curr. Med. Chem. 13, 1321-1335.
Tapia,C., Leon,E., and Palavecino,E. (2003). [Antifungal susceptibility of yeasts by Etest. Comparison of 3 media]. Rev. Med. Chil. 131, 299-302.
Teparic,R., Stuparevic,I., and Mrsa,V. (2004). Increased mortality of Saccharomyces cerevisiae cell wall protein mutants. Microbiology 150, 3145-3150.
Tkacz,J.S. and DiDomenico,B. (2001). Antifungals: what's in the pipeline. Curr. Opin. Microbiol. 4, 540-545.
Todd,A.E., Orengo,C.A., and Thornton,J.M. (2001). Evolution of function in protein superfamilies, from a structural perspective. J. Mol. Biol. 307, 1113-1143.
Torosantucci,A., Bromuro,C., Gomez,M.J., Ausiello,C.M., Urbani,F., and Cassone,A. (1993). Identification of a 65-kDa mannoprotein as a main target of human cell-mediated immune response to Candida albicans. J. Infect. Dis. 168, 427-435.
Tzung,K.W., Williams,R.M., Scherer,S., Federspiel,N., Jones,T., Hansen,N., Bivolarevic,V., Huizar,L., Komp,C., Surzycki,R., Tamse,R., Davis,R.W., and Agabian,N. (2001). Genomic evidence for a complete sexual cycle in Candida albicans. Proc. Natl. Acad. Sci. U. S. A 98, 3249-3253.
Ullmann,B.D., Myers,H., Chiranand,W., Lazzell,A.L., Zhao,Q., Vega,L.A., Lopez-Ribot,J.L., Gardner,P.R., and Gustin,M.C. (2004). Inducible defense mechanism against nitric oxide in Candida albicans. Eukaryot. Cell 3, 715-723.
Vanden Bossche,H., Marichal,P., and Odds,F.C. (1994). Molecular mechanisms of drug resistance in fungi. Trends Microbiol. 2, 393-400.
Vermes,A., Guchelaar,H.J., and Dankert,J. (2000). Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J. Antimicrob. Chemother. 46, 171-179.
Wach,A. (1996). PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12, 259-265.
Walther,A. and Wendland,J. (2003). An improved transformation protocol for the human fungal pathogen Candida albicans. Curr. Genet. 42, 339-343.
White,T.C., Marr,K.A., and Bowden,R.A. (1998). Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin. Microbiol. Rev. 11, 382-402.
Wilson,R.B., Davis,D., Enloe,B.M., and Mitchell,A.P. (2000). A recyclable Candida albicans URA3 cassette for PCR product-directed gene disruptions. Yeast 16, 65-70.
Wilson,R.B., Davis,D., and Mitchell,A.P. (1999). Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J. Bacteriol. 181, 1868-1874.
Wissing,S., Ludovico,P., Herker,E., Buttner,S., Engelhardt,S.M., Decker,T., Link,A., Proksch,A., Rodrigues,F., Corte-Real,M., Frohlich,K.U., Manns,J., Cande,C., Sigrist,S.J., Kroemer,G., and Madeo,F. (2004). An AIF orthologue regulates apoptosis in yeast. J. Cell Biol. 166, 969-974.
Yang,Y.L. and Lo,H.J. (2001). Mechanisms of antifungal agent resistance. J. Microbiol. Immunol. Infect. 34, 79-86.
Zeng,G. (1998). Sticky-end PCR: new method for subcloning. Biotechniques 25, 206-208.

PartII:
bi-Said,D., Anaissie,E., Uzun,O., Raad,I., Pinzcowski,H., and Vartivarian,S. (1997). The epidemiology of hematogenous candidiasis caused by different Candida species. Clin. Infect. Dis. 24, 1122-1128.
Chen,C.G., Yang,Y.L., Shih,H.I., Su,C.L., and Lo,H.J. (2004). CaNdt80 is involved in drug resistance in Candida albicans by regulating CDR1. Antimicrob. Agents Chemother. 48, 4505-4512.
Christianson,T.W., Sikorski,R.S., Dante,M., Shero,J.H., and Hieter,P. (1992). Multifunctional yeast high-copy-number shuttle vectors. Gene 110, 119-122.
Chu,S., DeRisi,J., Eisen,M., Mulholland,J., Botstein,D., Brown,P.O., and Herskowitz,I. (1998). The transcriptional program of sporulation in budding yeast. Science 282, 699-705.
Chu,S. and Herskowitz,I. (1998). Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Mol. Cell 1, 685-696.
Coste,A.T., Karababa,M., Ischer,F., Bille,J., and Sanglard,D. (2004). TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot. Cell 3, 1639-1652.
de,M.M., Bille,J., Schueller,C., and Sanglard,D. (2002). A common drug-responsive element mediates the upregulation of the Candida albicans ABC transporters CDR1 and CDR2, two genes involved in antifungal drug resistance. Mol. Microbiol. 43, 1197-1214.
Fingerman,I.M., Sutphen,K., Montano,S.P., Georgiadis,M.M., and Vershon,A.K. (2004). Characterization of critical interactions between Ndt80 and MSE DNA defining a novel family of Ig-fold transcription factors. Nucleic Acids Res. 32, 2947-2956.
Karababa,M., Coste,A.T., Rognon,B., Bille,J., and Sanglard,D. (2004). Comparison of gene expression profiles of Candida albicans azole-resistant clinical isolates and laboratory strains exposed to drugs inducing multidrug transporters. Antimicrob. Agents Chemother. 48, 3064-3079.
Kofron,M., Demel,T., Xanthos,J., Lohr,J., Sun,B., Sive,H., Osada,S., Wright,C., Wylie,C., and Heasman,J. (1999). Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFbeta growth factors. Development 126, 5759-5770.
Kohler,J.R. and Fink,G.R. (1996). Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development. Proc. Natl. Acad. Sci. U. S. A 93, 13223-13228.
Krishnamurthy,S., Gupta,V., Prasad,R., Panwar,S.L., and Prasad,R. (1998). Expression of CDR1, a multidrug resistance gene of Candida albicans: transcriptional activation by heat shock, drugs and human steroid hormones. FEMS Microbiol. Lett. 160, 191-197.
Lamoureux,J.S. and Glover,J.N. (2006). Principles of protein-DNA recognition revealed in the structural analysis of Ndt80-MSE DNA complexes. Structure. 14, 555-565.
Lamoureux,J.S., Stuart,D., Tsang,R., Wu,C., and Glover,J.N. (2002). Structure of the sporulation-specific transcription factor Ndt80 bound to DNA. EMBO J. 21, 5721-5732.
Lopez-Ribot,J.L., McAtee,R.K., Lee,L.N., Kirkpatrick,W.R., White,T.C., Sanglard,D., and Patterson,T.F. (1998). Distinct patterns of gene expression associated with development of fluconazole resistance in serial Candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob. Agents Chemother. 42, 2932-2937.
Lyons,C.N. and White,T.C. (2000). Transcriptional analyses of antifungal drug resistance in Candida albicans. Antimicrob. Agents Chemother. 44, 2296-2303.
Marger,M.D. and Saier,M.H., Jr. (1993). A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem. Sci. 18, 13-20.
Michaelis,S. and Berkower,C. (1995). Sequence comparison of yeast ATP-binding cassette proteins. Cold Spring Harb. Symp. Quant. Biol. 60, 291-307.
Montano,S.P., Cote,M.L., Fingerman,I., Pierce,M., Vershon,A.K., and Georgiadis,M.M. (2002). Crystal structure of the DNA-binding domain from Ndt80, a transcriptional activator required for meiosis in yeast. Proc. Natl. Acad. Sci. U. S. A 99, 14041-14046.
Pak,J. and Segall,J. (2002). Regulation of the premiddle and middle phases of expression of the NDT80 gene during sporulation of Saccharomyces cerevisiae. Mol. Cell Biol. 22, 6417-6429.
Pfaller,M.A., Diekema,D.J., Messer,S.A., Boyken,L., and Hollis,R.J. (2003). Activities of fluconazole and voriconazole against 1,586 recent clinical isolates of Candida species determined by Broth microdilution, disk diffusion, and Etest methods: report from the ARTEMIS Global Antifungal Susceptibility Program, 2001. J. Clin. Microbiol. 41, 1440-1446.
Prasad,R., De,W.P., Goffeau,A., and Balzi,E. (1995). Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr. Genet. 27, 320-329.
Puri,N., Krishnamurthy,S., Habib,S., Hasnain,S.E., Goswami,S.K., and Prasad,R. (1999). CDR1, a multidrug resistance gene from Candida albicans, contains multiple regulatory domains in its promoter and the distal AP-1 element mediates its induction by miconazole. FEMS Microbiol. Lett. 180, 213-219.
Sanglard,D., Ischer,F., Monod,M., and Bille,J. (1997). Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology 143 ( Pt 2), 405-416.
Sanglard,D., Ischer,F., Monod,M., and Bille,J. (1996). Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob. Agents Chemother. 40, 2300-2305.
Sanglard,D., Kuchler,K., Ischer,F., Pagani,J.L., Monod,M., and Bille,J. (1995). Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob. Agents Chemother. 39, 2378-2386.
Schaller,M., Bein,M., Korting,H.C., Baur,S., Hamm,G., Monod,M., Beinhauer,S., and Hube,B. (2003). The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect. Immun. 71, 3227-3234.
Schmitt,M.E., Brown,T.A., and Trumpower,B.L. (1990). A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 18, 3091-3092.
Sherman,F. (2002). Getting started with yeast. Methods Enzymol. 350, 3-41.
Sopko,R., Raithatha,S., and Stuart,D. (2002). Phosphorylation and maximal activity of Saccharomyces cerevisiae meiosis-specific transcription factor Ndt80 is dependent on Ime2. Mol. Cell Biol. 22, 7024-7040.
Tapia,C., Leon,E., and Palavecino,E. (2003). [Antifungal susceptibility of yeasts by Etest. Comparison of 3 media]. Rev. Med. Chil. 131, 299-302.
Vanden,B.H., Marichal,P., and Odds,F.C. (1994). Molecular mechanisms of drug resistance in fungi. Trends Microbiol. 2, 393-400.
White,T.C., Holleman,S., Dy,F., Mirels,L.F., and Stevens,D.A. (2002). Resistance mechanisms in clinical isolates of Candida albicans. Antimicrob. Agents Chemother. 46, 1704-1713.
Wirsching,S., Michel,S., Kohler,G., and Morschhauser,J. (2000). Activation of the multiple drug resistance gene MDR1 in fluconazole-resistant, clinical Candida albicans strains is caused by mutations in a trans-regulatory factor. J. Bacteriol. 182, 400-404.
Xu,L., Ajimura,M., Padmore,R., Klein,C., and Kleckner,N. (1995). NDT80, a meiosis-specific gene required for exit from pachytene in Saccharomyces cerevisiae. Mol. Cell Biol. 15, 6572-6581.
Yang,Y.L. and Lo,H.J. (2001). Mechanisms of antifungal agent resistance. J. Microbiol. Immunol. Infect. 34, 79-86.
石欣怡 (Shih Hsin-I) 分離鑑定白色念珠菌CDR1 基因之調控因子 Identification of the Trans-Regulatory Factors and Cis-Elements of CDR1 in Candida albicans. 2001. Master thesis, Institute of Biological Science and Technology, National Chiao Tung University.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top