|
PartI: Adams,D.J. (2004). Fungal cell wall chitinases and glucanases. Microbiology 150, 2029-2035. Allinger,U.G., Johansson,G.K., Gustafsson,J.A., and Rafter,J.J. (1989). Shift from a mixed to a lactovegetarian diet: influence on acidic lipids in fecal water--a potential risk factor for colon cancer. Am. J. Clin. Nutr. 50, 992-996. Bachmann,S.P., Patterson,T.F., and Lopez-Ribot,J.L. (2002). In vitro activity of caspofungin (MK-0991) against Candida albicans clinical isolates displaying different mechanisms of azole resistance. J. Clin. Microbiol. 40, 2228-2230. Baek,Y.U., Kim,Y.R., Yim,H.S., and Kang,S.O. (2004). Disruption of gamma-glutamylcysteine synthetase results in absolute glutathione auxotrophy and apoptosis in Candida albicans. FEBS Lett. 556, 47-52. Baladron,V., Ufano,S., Duenas,E., Martin-Cuadrado,A.B., del,R.F., and Vazquez de Aldana,C.R. (2002). Eng1p, an endo-1,3-beta-glucanase localized at the daughter side of the septum, is involved in cell separation in Saccharomyces cerevisiae. Eukaryot. Cell 1, 774-786. Balkis,M.M., Leidich,S.D., Mukherjee,P.K., and Ghannoum,M.A. (2002). Mechanisms of fungal resistance: an overview. Drugs 62, 1025-1040. Beh,C.T., Cool,L., Phillips,J., and Rine,J. (2001). Overlapping functions of the yeast oxysterol-binding protein homologues. Genetics 157, 1117-1140. Bensen,E.S., Filler,S.G., and Berman,J. (2002). A forkhead transcription factor is important for true hyphal as well as yeast morphogenesis in Candida albicans. Eukaryot. Cell 1, 787-798. Bensen,E.S., Martin,S.J., Li,M., Berman,J., and Davis,D.A. (2004). Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol. Microbiol. 54, 1335-1351. Bernstein,H., Payne,C.M., Kunke,K., Crowley-Weber,C.L., Waltmire,C.N., Dvorakova,K., Holubec,H., Bernstein,C., Vaillancourt,R.R., Raynes,D.A., Guerriero,V., and Garewal,H. (2004). A proteomic study of resistance to deoxycholate-induced apoptosis. Carcinogenesis 25, 681-692. Braun,B.R. and Johnson,A.D. (2000). TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans. Genetics 155, 57-67. Braun,B.R., van Het,H.M., d'Enfert,C., Martchenko,M., Dungan,J., Kuo,A., Inglis,D.O., Uhl,M.A., Hogues,H., Berriman,M., Lorenz,M., Levitin,A., Oberholzer,U., Bachewich,C., Harcus,D., Marcil,A., Dignard,D., Iouk,T., Zito,R., Frangeul,L., Tekaia,F., Rutherford,K., Wang,E., Munro,C.A., Bates,S., Gow,N.A., Hoyer,L.L., Kohler,G., Morschhauser,J., Newport,G., Znaidi,S., Raymond,M., Turcotte,B., Sherlock,G., Costanzo,M., Ihmels,J., Berman,J., Sanglard,D., Agabian,N., Mitchell,A.P., Johnson,A.D., Whiteway,M., and Nantel,A. (2005). A human-curated annotation of the Candida albicans genome. PLoS. Genet. 1, 36-57. Brunel,J.M., Loncle,C., Vidal,N., Dherbomez,M., and Letourneux,Y. (2005). Synthesis and antifungal activity of oxygenated cholesterol derivatives. Steroids 70, 907-912. Bruno,V.M., Kalachikov,S., Subaran,R., Nobile,C.J., Kyratsous,C., and Mitchell,A.P. (2006). Control of the C. albicans cell wall damage response by transcriptional regulator Cas5. PLoS. Pathog. 2, e21. Bustamante,C.I. (2005). Treatment of Candida infection: a view from the trenches! Curr. Opin. Infect. Dis. 18, 490-495. Cabib,E., Roh,D.H., Schmidt,M., Crotti,L.B., and Varma,A. (2001). The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J. Biol. Chem. 276, 19679-19682. Carulli,N., Bertolotti,M., Carubbi,F., Concari,M., Martella,P., Carulli,L., and Loria,P. (2000). Review article: effect of bile salt pool composition on hepatic and biliary functions. Aliment. Pharmacol. Ther. 14 Suppl 2, 14-18. Castillo,L., Martinez,A.I., Garcera,A., Garcia-Martinez,J., Ruiz-Herrera,J., Valentin,E., and Sentandreu,R. (2006). Genomic response programs of Candida albicans following protoplasting and regeneration. Fungal. Genet. Biol. 43, 124-134. Chaffin,W.L., Lopez-Ribot,J.L., Casanova,M., Gozalbo,D., and Martinez,J.P. (1998). Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol. Mol. Biol. Rev. 62, 130-180. Cheah,P.Y. (1990). Hypotheses for the etiology of colorectal cancer--an overview. Nutr. Cancer 14, 5-13. Chen,C.G., Yang,Y.L., Shih,H.I., Su,C.L., and Lo,H.J. (2004). CaNdt80 is involved in drug resistance in Candida albicans by regulating CDR1. Antimicrob. Agents Chemother. 48, 4505-4512. Chen,Y.C., Chang,S.C., Luh,K.T., and Hsieh,W.C. (2003). Stable susceptibility of Candida blood isolates to fluconazole despite increasing use during the past 10 years. J. Antimicrob. Chemother. 52, 71-77. Cheng,G., Yeater,K.M., and Hoyer,L.L. (2006). Cellular and molecular biology of Candida albicans estrogen response. Eukaryot. Cell 5, 180-191. Chibana,H. and Mikami,Y. (2003). Genomic analysis in Candida albicans. Nippon Ishinkin. Gakkai Zasshi 44, 81-85. Copping,V.M., Barelle,C.J., Hube,B., Gow,N.A., Brown,A.J., and Odds,F.C. (2005). Exposure of Candida albicans to antifungal agents affects expression of SAP2 and SAP9 secreted proteinase genes. J. Antimicrob. Chemother. 55, 645-654. Coste,A.T., Karababa,M., Ischer,F., Bille,J., and Sanglard,D. (2004). TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot. Cell 3, 1639-1652. Coyle,B., Kinsella,P., McCann,M., Devereux,M., O'Connor,R., Clynes,M., and Kavanagh,K. (2004). Induction of apoptosis in yeast and mammalian cells by exposure to 1,10-phenanthroline metal complexes. Toxicol. In Vitro 18, 63-70. Crowley,C.L., Payne,C.M., Bernstein,H., Bernstein,C., and Roe,D. (2000). The NAD+ precursors, nicotinic acid and nicotinamide protect cells against apoptosis induced by a multiple stress inducer, deoxycholate. Cell Death. Differ. 7, 314-326. Cutfield,S.M., Davies,G.J., Murshudov,G., Anderson,B.F., Moody,P.C., Sullivan,P.A., and Cutfield,J.F. (1999). The structure of the exo-beta-(1,3)-glucanase from Candida albicans in native and bound forms: relationship between a pocket and groove in family 5 glycosyl hydrolases. J. Mol. Biol. 294, 771-783. De Groot,P.W., Hellingwerf,K.J., and Klis,F.M. (2003). Genome-wide identification of fungal GPI proteins. Yeast 20, 781-796. De,F.E., Mitro,N., Godio,C., Gilardi,F., Caruso,D., and Crestani,M. (2004). Bile acid signaling to the nucleus: finding new connections in the transcriptional regulation of metabolic pathways. Biochimie 86, 771-778. Dismukes,W.E. (2000). Introduction to antifungal drugs. Clin. Infect. Dis. 30, 653-657. Drew,R. (2006). Potential role of aerosolized amphotericin B formulations in the prevention and adjunctive treatment of invasive fungal infections. Int. J. Antimicrob. Agents 27 Suppl 1, 36-44. Edmond,M.B., Wallace,S.E., McClish,D.K., Pfaller,M.A., Jones,R.N., and Wenzel,R.P. (1999). Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin. Infect. Dis. 29, 239-244. Ernst,J.F.a.B.h.D.P. (2001). Gene expression and genetic techniques. In Candida and candidiasis, R.Calderone, ed. (Washington: ASM press), pp. 267-278. Esteban,P.F., Rios,I., Garcia,R., Duenas,E., Pla,J., Sanchez,M., de Aldana,C.R., and Del,R.F. (2005). Characterization of the CaENG1 Gene Encoding an Endo-1,3-beta-Glucanase Involved in Cell Separation in Candida albicans. Curr. Microbiol. 51, 385-392. Fernandes,M., Xiao,H., and Lis,J.T. (1994). Fine structure analyses of the Drosophila and Saccharomyces heat shock factor--heat shock element interactions. Nucleic Acids Res. 22, 167-173. Frohlich,K.U. and Madeo,F. (2000). Apoptosis in yeast--a monocellular organism exhibits altruistic behaviour. FEBS Lett. 473, 6-9. Fu,Y.H. and Marzluf,G.A. (1990). nit-2, the major positive-acting nitrogen regulatory gene of Neurospora crassa, encodes a sequence-specific DNA-binding protein. Proc. Natl. Acad. Sci. U. S. A 87, 5331-5335. Fuchs,M. (2003). Bile acid regulation of hepatic physiology: III. Regulation of bile acid synthesis: past progress and future challenges. Am. J. Physiol Gastrointest. Liver Physiol 284, G551-G557. Garcia,R., Bermejo,C., Grau,C., Perez,R., Rodriguez-Pena,J.M., Francois,J., Nombela,C., and Arroyo,J. (2004). The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. J. Biol. Chem. 279, 15183-15195. Garcia-Sanchez,S., Mavor,A.L., Russell,C.L., Argimon,S., Dennison,P., Enjalbert,B., and Brown,A.J. (2005). Global roles of Ssn6 in Tup1- and Nrg1-dependent gene regulation in the fungal pathogen, Candida albicans. Mol. Biol. Cell 16, 2913-2925. Gardner,R.G., Shan,H., Matsuda,S.P., and Hampton,R.Y. (2001). An oxysterol-derived positive signal for 3-hydroxy- 3-methylglutaryl-CoA reductase degradation in yeast. J. Biol. Chem. 276, 8681-8694. Georgopapadakou,N.H. (1998). Antifungals: mechanism of action and resistance, established and novel drugs. Curr. Opin. Microbiol. 1, 547-557. Georgopapadakou,N.H. (2001). Update on antifungals targeted to the cell wall: focus on beta-1,3-glucan synthase inhibitors. Expert. Opin. Investig. Drugs 10, 269-280. Georgopapadakou,N.H. and Walsh,T.J. (1996). Antifungal agents: chemotherapeutic targets and immunologic strategies. Antimicrob. Agents Chemother. 40, 279-291. Georgopapadakou,N.H. and Walsh,T.J. (1994). Human mycoses: drugs and targets for emerging pathogens. Science 264, 371-373. Giaever,G., Flaherty,P., Kumm,J., Proctor,M., Nislow,C., Jaramillo,D.F., Chu,A.M., Jordan,M.I., Arkin,A.P., and Davis,R.W. (2004). Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc. Natl. Acad. Sci. U. S. A 101, 793-798. Gietz,R.D., Schiestl,R.H., Willems,A.R., and Woods,R.A. (1995). Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355-360. Gil,J.V., Manzanares,P., Genoves,S., Valles,S., and Gonzalez-Candelas,L. (2005). Over-production of the major exoglucanase of Saccharomyces cerevisiae leads to an increase in the aroma of wine. Int. J. Food Microbiol. 103, 57-68. Gillum,A.M., Tsay,E.Y., and Kirsch,D.R. (1984). Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol. Gen. Genet. 198, 179-182. Goldman,R.C., Sullivan,P.A., Zakula,D., and Capobianco,J.O. (1995). Kinetics of beta-1,3 glucan interaction at the donor and acceptor sites of the fungal glucosyltransferase encoded by the BGL2 gene. Eur. J. Biochem. 227, 372-378. Gomez,M.J., Maras,B., Barca,A., La,V.R., Barra,D., and Cassone,A. (2000). Biochemical and immunological characterization of MP65, a major mannoprotein antigen of the opportunistic human pathogen Candida albicans. Infect. Immun. 68, 694-701. Gonzalez,M.M., ez-Orejas,R., Molero,G., Alvarez,A.M., Pla,J., Nombela,C., and Sanchez-Perez,M. (1997). Phenotypic characterization of a Candida albicans strain deficient in its major exoglucanase. Microbiology 143 ( Pt 9), 3023-3032. Harcus,D., Nantel,A., Marcil,A., Rigby,T., and Whiteway,M. (2004). Transcription profiling of cyclic AMP signaling in Candida albicans. Mol. Biol. Cell 15, 4490-4499. Hatanaka,H., Kawaguchi,A., Hayakawa,S., and Katsuki,H. (1972). Structural specificity of bile acid for inhibition of sterol synthesis in cell-free extracts of yeast. Biochim. Biophys. Acta 270, 397-406. Hatanaka,H., Kawaguchi,A., and Katsuki,H. (1970). Inhibition of ergosterol synthesis in cell-free extracts of yeast by bile acid. Biochem. Biophys. Res. Commun. 40, 786-792. Herrero,E., de la Torre,M.A., and Valentin,E. (2003). Comparative genomics of yeast species: new insights into their biology. Int. Microbiol. 6, 183-190. Hitchcock,C.A. (1991). Cytochrome P-450-dependent 14 alpha-sterol demethylase of Candida albicans and its interaction with azole antifungals. Biochem. Soc. Trans. 19, 782-787. Hromatka,B.S., Noble,S.M., and Johnson,A.D. (2005). Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol. Biol. Cell 16, 4814-4826. Huh,G.H., Damsz,B., Matsumoto,T.K., Reddy,M.P., Rus,A.M., Ibeas,J.I., Narasimhan,M.L., Bressan,R.A., and Hasegawa,P.M. (2002). Salt causes ion disequilibrium-induced programmed cell death in yeast and plants. Plant J. 29, 649-659. Huh,W.K., Falvo,J.V., Gerke,L.C., Carroll,A.S., Howson,R.W., Weissman,J.S., and O'Shea,E.K. (2003). Global analysis of protein localization in budding yeast. Nature 425, 686-691. Hwang,C.S., Oh,J.H., Huh,W.K., Yim,H.S., and Kang,S.O. (2003). Ssn6, an important factor of morphological conversion and virulence in Candida albicans. Mol. Microbiol. 47, 1029-1043. Jamin,N., Neumann,J.M., Ostuni,M.A., Vu,T.K., Yao,Z.X., Murail,S., Robert,J.C., Giatzakis,C., Papadopoulos,V., and Lacapere,J.J. (2005). Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor. Mol. Endocrinol. 19, 588-594. Jarvis,W.R. (1995). Epidemiology of nosocomial fungal infections, with emphasis on Candida species. Clin. Infect. Dis. 20, 1526-1530. Jeon,B.W., Kim,K.T., Chang,S.I., and Kim,H.Y. (2002). Phosphoinositide 3-OH kinase/protein kinase B inhibits apoptotic cell death induced by reactive oxygen species in Saccharomyces cerevisiae. J. Biochem. (Tokyo) 131, 693-699. Jiang,B., Ram,A.F., Sheraton,J., Klis,F.M., and Bussey,H. (1995). Regulation of cell wall beta-glucan assembly: PTC1 negatively affects PBS2 action in a pathway that includes modulation of EXG1 transcription. Mol. Gen. Genet. 248, 260-269. Jones,T., Federspiel,N.A., Chibana,H., Dungan,J., Kalman,S., Magee,B.B., Newport,G., Thorstenson,Y.R., Agabian,N., Magee,P.T., Davis,R.W., and Scherer,S. (2004). The diploid genome sequence of Candida albicans. Proc. Natl. Acad. Sci. U. S. A 101, 7329-7334. Joseph Sambrook and David W.Russell (1989). Molecular Cloning: A Laboratory Manual. (New York: Cold Spring Harbor Laboratory Press). Joseph-Horne,T. and Hollomon,D.W. (1997). Molecular mechanisms of azole resistance in fungi. FEMS Microbiol. Lett. 149, 141-149. Kao,A.S., Brandt,M.E., Pruitt,W.R., Conn,L.A., Perkins,B.A., Stephens,D.S., Baughman,W.S., Reingold,A.L., Rothrock,G.A., Pfaller,M.A., Pinner,R.W., and Hajjeh,R.A. (1999). The epidemiology of candidemia in two United States cities: results of a population-based active surveillance. Clin. Infect. Dis. 29, 1164-1170. Kelly,M.T., MacCallum,D.M., Clancy,S.D., Odds,F.C., Brown,A.J., and Butler,G. (2004). The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence. Mol. Microbiol. 53, 969-983. Kelly,S.L., Lamb,D.C., Kelly,D.E., Manning,N.J., Loeffler,J., Hebart,H., Schumacher,U., and Einsele,H. (1997). Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol delta5,6-desaturation. FEBS Lett. 400, 80-82. Khan,M.A., Chock,P.B., and Stadtman,E.R. (2005). Knockout of caspase-like gene, YCA1, abrogates apoptosis and elevates oxidized proteins in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A 102, 17326-17331. Kjaerulff,S., Dooijes,D., Clevers,H., and Nielsen,O. (1997). Cell differentiation by interaction of two HMG-box proteins: Mat1-Mc activates M cell-specific genes in S.pombe by recruiting the ubiquitous transcription factor Ste11 to weak binding sites. EMBO J. 16, 4021-4033. Klis,F.M., Mol,P., Hellingwerf,K., and Brul,S. (2002). Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 26, 239-256. Kofron,M., Demel,T., Xanthos,J., Lohr,J., Sun,B., Sive,H., Osada,S., Wright,C., Wylie,C., and Heasman,J. (1999). Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFbeta growth factors. Development 126, 5759-5770. Krejcirova,L., Lauschova,I., Horky,D., Doubek,M., Mayer,J., and Doubek,J. (2004). Influence of amphotericin B deoxycholate or amphotericin B colloidal dispersion on renal tubule epithelium in rat. Biomed. Pap. Med. Fac. Univ Palacky. Olomouc. Czech. Repub. 148, 221-223. Kuwayama,H., Obara,S., Morio,T., Katoh,M., Urushihara,H., and Tanaka,Y. (2002). PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors. Nucleic Acids Res. 30, E2. Lagorce,A., Hauser,N.C., Labourdette,D., Rodriguez,C., Martin-Yken,H., Arroyo,J., Hoheisel,J.D., and Francois,J. (2003). Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 278, 20345-20357. Lan,C.Y., Newport,G., Murillo,L.A., Jones,T., Scherer,S., Davis,R.W., and Agabian,N. (2002). Metabolic specialization associated with phenotypic switching in Candida albicans. Proc. Natl. Acad. Sci. U. S. A 99, 14907-14912. Lan,C.Y., Rodarte,G., Murillo,L.A., Jones,T., Davis,R.W., Dungan,J., Newport,G., and Agabian,N. (2004). Regulatory networks affected by iron availability in Candida albicans. Mol. Microbiol. 53, 1451-1469. Larriba,G., Andaluz,E., Cueva,R., and Basco,R.D. (1995). Molecular biology of yeast exoglucanases. FEMS Microbiol. Lett. 125, 121-126. Larriba,G., Basco,R.D., Andaluz,E., and Luna-Arias,J.P. (1993). Yeast exoglucanases. Where redundancy implies necessity. Arch. Med. Res. 24, 293-299. Lee,C.M., Nantel,A., Jiang,L., Whiteway,M., and Shen,S.H. (2004). The serine/threonine protein phosphatase SIT4 modulates yeast-to-hypha morphogenesis and virulence in Candida albicans. Mol. Microbiol. 51, 691-709. Lee,M.G. and Van der Ploeg,L.H. (1997). Transcription of protein-coding genes in trypanosomes by RNA polymerase I. Annu. Rev. Microbiol. 51, 463-489. Lee,S.A., Wormsley,S., Kamoun,S., Lee,A.F., Joiner,K., and Wong,B. (2003). An analysis of the Candida albicans genome database for soluble secreted proteins using computer-based prediction algorithms. Yeast 20, 595-610. Leelaporn,A., Firth,N., Byrne,M.E., Roper,E., and Skurray,R.A. (1994). Possible role of insertion sequence IS257 in dissemination and expression of high- and low-level trimethoprim resistance in staphylococci. Antimicrob. Agents Chemother. 38, 2238-2244. Leng,P., Lee,P.R., Wu,H., and Brown,A.J. (2001). Efg1, a morphogenetic regulator in Candida albicans, is a sequence-specific DNA binding protein. J. Bacteriol. 183, 4090-4093. Lengeler,K.B., Davidson,R.C., D'souza,C., Harashima,T., Shen,W.C., Wang,P., Pan,X., Waugh,M., and Heitman,J. (2000). Signal transduction cascades regulating fungal development and virulence. Microbiol Mol. Biol. Rev. 64, 746-785. Letscher-Bru,V. and Herbrecht,R. (2003). Caspofungin: the first representative of a new antifungal class. J. Antimicrob. Chemother. 51, 513-521. Liu,T.T., Lee,R.E., Barker,K.S., Lee,R.E., Wei,L., Homayouni,R., and Rogers,P.D. (2005). Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob. Agents Chemother. 49, 2226-2236. Lo,H.J., Kohler,J.R., DiDomenico,B., Loebenberg,D., Cacciapuoti,A., and Fink,G.R. (1997). Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939-949. Lotz,H., Sohn,K., Brunner,H., Muhlschlegel,F.A., and Rupp,S. (2004). RBR1, a novel pH-regulated cell wall gene of Candida albicans, is repressed by RIM101 and activated by NRG1. Eukaryot. Cell 3, 776-784. Ludovico,P., Sousa,M.J., Silva,M.T., Leao,C., and Corte-Real,M. (2001). Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147, 2409-2415. Macreadie,I.G., Johnson,G., Schlosser,T., and Macreadie,P.I. (2006). Growth inhibition of Candida species and Aspergillus fumigatus by statins. FEMS Microbiol. Lett. 262, 9-13. Madeo,F., Frohlich,E., Ligr,M., Grey,M., Sigrist,S.J., Wolf,D.H., and Frohlich,K.U. (1999). Oxygen stress: a regulator of apoptosis in yeast. J. Cell Biol. 145, 757-767. Madeo,F., Herker,E., Maldener,C., Wissing,S., Lachelt,S., Herlan,M., Fehr,M., Lauber,K., Sigrist,S.J., Wesselborg,S., and Frohlich,K.U. (2002). A caspase-related protease regulates apoptosis in yeast. Mol. Cell 9, 911-917. Marshall,S.E., Marples,B.A., Salt,W.G., and Stretton,R.J. (1987). Aspects of the effect of bile salts on Candida albicans. J. Med. Vet. Mycol. 25, 307-318. Martin-Cuadrado,A.B., Duenas,E., Sipiczki,M., Vazquez de Aldana,C.R., and del,R.F. (2003). The endo-beta-1,3-glucanase eng1p is required for dissolution of the primary septum during cell separation in Schizosaccharomyces pombe. J. Cell Sci. 116, 1689-1698. Masuoka,J. (2004). Surface glycans of Candida albicans and other pathogenic fungi: physiological roles, clinical uses, and experimental challenges. Clin. Microbiol. Rev. 17, 281-310. McNeil,M.M., Nash,S.L., Hajjeh,R.A., Phelan,M.A., Conn,L.A., Plikaytis,B.D., and Warnock,D.W. (2001). Trends in mortality due to invasive mycotic diseases in the United States, 1980-1997. Clin. Infect. Dis. 33, 641-647. Miller,L.G., Hajjeh,R.A., and Edwards,J.E., Jr. (2001). Estimating the cost of nosocomial candidemia in the united states. Clin. Infect. Dis. 32, 1110. Milovic,V., Teller,I.C., Faust,D., Caspary,W.F., and Stein,J. (2002). Effects of deoxycholate on human colon cancer cells: apoptosis or proliferation. Eur. J. Clin. Invest 32, 29-34. Monteoliva,L., Matas,M.L., Gil,C., Nombela,C., and Pla,J. (2002). Large-scale identification of putative exported proteins in Candida albicans by genetic selection. Eukaryot. Cell 1, 514-525. Mouyna,I., Hartland,R.P., Fontaine,T., Diaquin,M., Simenel,C., Delepierre,M., Henrissat,B., and Latge,J.P. (1998). A 1,3-beta-glucanosyltransferase isolated from the cell wall of Aspergillus fumigatus is a homologue of the yeast Bgl2p. Microbiology 144 ( Pt 11), 3171-3180. Murad,A.M., d'Enfert,C., Gaillardin,C., Tournu,H., Tekaia,F., Talibi,D., Marechal,D., Marchais,V., Cottin,J., and Brown,A.J. (2001a). Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1. Mol. Microbiol. 42, 981-993. Murad,A.M., Leng,P., Straffon,M., Wishart,J., Macaskill,S., MacCallum,D., Schnell,N., Talibi,D., Marechal,D., Tekaia,F., d'Enfert,C., Gaillardin,C., Odds,F.C., and Brown,A.J. (2001b). NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J. 20, 4742-4752. Murillo,L.A., Newport,G., Lan,C.Y., Habelitz,S., Dungan,J., and Agabian,N.M. (2005). Genome-wide transcription profiling of the early phase of biofilm formation by Candida albicans. Eukaryot. Cell 4, 1562-1573. Newport,G., Kuo,A., Flattery,A., Gill,C., Blake,J.J., Kurtz,M.B., Abruzzo,G.K., and Agabian,N. (2003). Inactivation of Kex2p diminishes the virulence of Candida albicans. J. Biol. Chem. 278, 1713-1720. Nisini,R., Romagnoli,G., Gomez,M.J., La,V.R., Torosantucci,A., Mariotti,S., Teloni,R., and Cassone,A. (2001). Antigenic properties and processing requirements of 65-kilodalton mannoprotein, a major antigen target of anti-Candida human T-cell response, as disclosed by specific human T-cell clones. Infect. Immun. 69, 3728-3736. Nobile,C.J., Bruno,V.M., Richard,M.L., Davis,D.A., and Mitchell,A.P. (2003). Genetic control of chlamydospore formation in Candida albicans. Microbiology 149, 3629-3637. Oberholzer,U., Nantel,A., Berman,J., and Whiteway,M. (2006). Transcript profiles of Candida albicans cortical actin patch mutants reflect their cellular defects: contribution of the Hog1p and Mkc1p signaling pathways. Eukaryot. Cell 5, 1252-1265. Odds,F.C., Brown,A.J., and Gow,N.A. (2003). Antifungal agents: mechanisms of action. Trends Microbiol. 11, 272-279. Odds,F.C., Gow,N.A., and Brown,A.J. (2001). Fungal virulence studies come of age. Genome Biol. 2, REVIEWS1009. Ortiz,D.F., St Pierre,M.V., Abdulmessih,A., and Arias,I.M. (1997). A yeast ATP-binding cassette-type protein mediating ATP-dependent bile acid transport. J. Biol. Chem. 272, 15358-15365. Pappas,P.G., Rex,J.H., Sobel,J.D., Filler,S.G., Dismukes,W.E., Walsh,T.J., and Edwards,J.E. (2004). Guidelines for treatment of candidiasis. Clin. Infect. Dis. 38, 161-189. Pfaller,M.A., Diekema,D.J., Messer,S.A., Boyken,L., and Hollis,R.J. (2003). Activities of fluconazole and voriconazole against 1,586 recent clinical isolates of Candida species determined by Broth microdilution, disk diffusion, and Etest methods: report from the ARTEMIS Global Antifungal Susceptibility Program, 2001. J. Clin. Microbiol. 41, 1440-1446. Phillips,A.J., Sudbery,I., and Ramsdale,M. (2003). Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc. Natl. Acad. Sci. U. S. A 100, 14327-14332. Pietrella,D., Bistoni,G., Corbucci,C., Perito,S., and Vecchiarelli,A. (2006). Candida albicans mannoprotein influences the biological function of dendritic cells. Cell Microbiol. 8, 602-612. Pitarch,A., Jimenez,A., Nombela,C., and Gil,C. (2006). Decoding serological response to Candida cell wall immunome into novel diagnostic, prognostic, and therapeutic candidates for systemic candidiasis by proteomic and bioinformatic analyses. Mol. Cell Proteomics. 5, 79-96. Powolny,A., Xu,J., and Loo,G. (2001). Deoxycholate induces DNA damage and apoptosis in human colon epithelial cells expressing either mutant or wild-type p53. Int. J. Biochem. Cell Biol. 33, 193-203. Prasad,R., Gaur,N.A., Gaur,M., and Komath,S.S. (2006). Efflux pumps in drug resistance of Candida. Infect. Disord. Drug Targets. 6, 69-83. Radding,J.A., Heidler,S.A., and Turner,W.W. (1998). Photoaffinity analog of the semisynthetic echinocandin LY303366: identification of echinocandin targets in Candida albicans. Antimicrob. Agents Chemother. 42, 1187-1194. Raphael,B.H., Pereira,S., Flom,G.A., Zhang,Q., Ketley,J.M., and Konkel,M.E. (2005). The Campylobacter jejuni response regulator, CbrR, modulates sodium deoxycholate resistance and chicken colonization. J. Bacteriol. 187, 3662-3670. Richard,M.L., Nobile,C.J., Bruno,V.M., and Mitchell,A.P. (2005). Candida albicans biofilm-defective mutants. Eukaryot. Cell 4, 1493-1502. Ruiz-Herrera,J., Elorza,M.V., Valentin,E., and Sentandreu,R. (2006). Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS Yeast Res. 6, 14-29. Russell,D.W. (2003). The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72, 137-174. Ryder,N.S. (1992). Terbinafine: mode of action and properties of the squalene epoxidase inhibition. Br. J. Dermatol. 126 Suppl 39:2-7, 2-7. Santos,M.A. and Tuite,M.F. (1995). The CUG codon is decoded in vivo as serine and not leucine in Candida albicans. Nucleic Acids Res. 23, 1481-1486. Sarthy,A.V., McGonigal,T., Coen,M., Frost,D.J., Meulbroek,J.A., and Goldman,R.C. (1997). Phenotype in Candida albicans of a disruption of the BGL2 gene encoding a 1,3-beta-glucosyltransferase. Microbiology 143 ( Pt 2), 367-376. Schaller,M., Bein,M., Korting,H.C., Baur,S., Hamm,G., Monod,M., Beinhauer,S., and Hube,B. (2003). The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect. Immun. 71, 3227-3234. Sestak,S., Hagen,I., Tanner,W., and Strahl,S. (2004). Scw10p, a cell-wall glucanase/transglucosidase important for cell-wall stability in Saccharomyces cerevisiae. Microbiology 150, 3197-3208. Shea,J.M. and Del,P.M. (2006). Lipid signaling in pathogenic fungi. Curr. Opin. Microbiol. 9, 352-358. Sherman,F. (2002). Getting started with yeast. Methods Enzymol. 350, 3-41. Shih,Y.P., Kung,W.M., Chen,J.C., Yeh,C.H., Wang,A.H., and Wang,T.F. (2002). High-throughput screening of soluble recombinant proteins. Protein Sci. 11, 1714-1719. Slavin,M., Fastenau,J., Sukarom,I., Mavros,P., Crowley,S., and Gerth,W.C. (2004). Burden of hospitalization of patients with Candida and Aspergillus infections in Australia. Int. J. Infect. Dis. 8, 111-120. Smits,G.J., Kapteyn,J.C., van den,E.H., and Klis,F.M. (1999). Cell wall dynamics in yeast. Curr. Opin. Microbiol. 2, 348-352. Smits,G.J., van den,E.H., and Klis,F.M. (2001). Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiology 147, 781-794. Sohn,K., Urban,C., Brunner,H., and Rupp,S. (2003). EFG1 is a major regulator of cell wall dynamics in Candida albicans as revealed by DNA microarrays. Mol. Microbiol. 47, 89-102. Spencer,V.A., Sun,J.M., Li,L., and Davie,J.R. (2003). Chromatin immunoprecipitation: a tool for studying histone acetylation and transcription factor binding. Methods 31, 67-75. Spreghini,E., Davis,D.A., Subaran,R., Kim,M., and Mitchell,A.P. (2003). Roles of Candida albicans Dfg5p and Dcw1p cell surface proteins in growth and hypha formation. Eukaryot. Cell 2, 746-755. Strupp,W., Weidinger,G., Scheller,C., Ehret,R., Ohnimus,H., Girschick,H., Tas,P., Flory,E., Heinkelein,M., and Jassoy,C. (2000). Treatment of cells with detergent activates caspases and induces apoptotic cell death. J. Membr. Biol. 175, 181-189. Stubbs,H.J., Brasch,D.J., Emerson,G.W., and Sullivan,P.A. (1999). Hydrolase and transferase activities of the beta-1,3-exoglucanase of Candida albicans. Eur. J. Biochem. 263, 889-895. Sundriyal,S., Sharma,R.K., and Jain,R. (2006). Current advances in antifungal targets and drug development. Curr. Med. Chem. 13, 1321-1335. Tapia,C., Leon,E., and Palavecino,E. (2003). [Antifungal susceptibility of yeasts by Etest. Comparison of 3 media]. Rev. Med. Chil. 131, 299-302. Teparic,R., Stuparevic,I., and Mrsa,V. (2004). Increased mortality of Saccharomyces cerevisiae cell wall protein mutants. Microbiology 150, 3145-3150. Tkacz,J.S. and DiDomenico,B. (2001). Antifungals: what's in the pipeline. Curr. Opin. Microbiol. 4, 540-545. Todd,A.E., Orengo,C.A., and Thornton,J.M. (2001). Evolution of function in protein superfamilies, from a structural perspective. J. Mol. Biol. 307, 1113-1143. Torosantucci,A., Bromuro,C., Gomez,M.J., Ausiello,C.M., Urbani,F., and Cassone,A. (1993). Identification of a 65-kDa mannoprotein as a main target of human cell-mediated immune response to Candida albicans. J. Infect. Dis. 168, 427-435. Tzung,K.W., Williams,R.M., Scherer,S., Federspiel,N., Jones,T., Hansen,N., Bivolarevic,V., Huizar,L., Komp,C., Surzycki,R., Tamse,R., Davis,R.W., and Agabian,N. (2001). Genomic evidence for a complete sexual cycle in Candida albicans. Proc. Natl. Acad. Sci. U. S. A 98, 3249-3253. Ullmann,B.D., Myers,H., Chiranand,W., Lazzell,A.L., Zhao,Q., Vega,L.A., Lopez-Ribot,J.L., Gardner,P.R., and Gustin,M.C. (2004). Inducible defense mechanism against nitric oxide in Candida albicans. Eukaryot. Cell 3, 715-723. Vanden Bossche,H., Marichal,P., and Odds,F.C. (1994). Molecular mechanisms of drug resistance in fungi. Trends Microbiol. 2, 393-400. Vermes,A., Guchelaar,H.J., and Dankert,J. (2000). Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J. Antimicrob. Chemother. 46, 171-179. Wach,A. (1996). PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12, 259-265. Walther,A. and Wendland,J. (2003). An improved transformation protocol for the human fungal pathogen Candida albicans. Curr. Genet. 42, 339-343. White,T.C., Marr,K.A., and Bowden,R.A. (1998). Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin. Microbiol. Rev. 11, 382-402. Wilson,R.B., Davis,D., Enloe,B.M., and Mitchell,A.P. (2000). A recyclable Candida albicans URA3 cassette for PCR product-directed gene disruptions. Yeast 16, 65-70. Wilson,R.B., Davis,D., and Mitchell,A.P. (1999). Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J. Bacteriol. 181, 1868-1874. Wissing,S., Ludovico,P., Herker,E., Buttner,S., Engelhardt,S.M., Decker,T., Link,A., Proksch,A., Rodrigues,F., Corte-Real,M., Frohlich,K.U., Manns,J., Cande,C., Sigrist,S.J., Kroemer,G., and Madeo,F. (2004). An AIF orthologue regulates apoptosis in yeast. J. Cell Biol. 166, 969-974. Yang,Y.L. and Lo,H.J. (2001). Mechanisms of antifungal agent resistance. J. Microbiol. Immunol. Infect. 34, 79-86. Zeng,G. (1998). Sticky-end PCR: new method for subcloning. Biotechniques 25, 206-208.
PartII: bi-Said,D., Anaissie,E., Uzun,O., Raad,I., Pinzcowski,H., and Vartivarian,S. (1997). The epidemiology of hematogenous candidiasis caused by different Candida species. Clin. Infect. Dis. 24, 1122-1128. Chen,C.G., Yang,Y.L., Shih,H.I., Su,C.L., and Lo,H.J. (2004). CaNdt80 is involved in drug resistance in Candida albicans by regulating CDR1. Antimicrob. Agents Chemother. 48, 4505-4512. Christianson,T.W., Sikorski,R.S., Dante,M., Shero,J.H., and Hieter,P. (1992). Multifunctional yeast high-copy-number shuttle vectors. Gene 110, 119-122. Chu,S., DeRisi,J., Eisen,M., Mulholland,J., Botstein,D., Brown,P.O., and Herskowitz,I. (1998). The transcriptional program of sporulation in budding yeast. Science 282, 699-705. Chu,S. and Herskowitz,I. (1998). Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Mol. Cell 1, 685-696. Coste,A.T., Karababa,M., Ischer,F., Bille,J., and Sanglard,D. (2004). TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot. Cell 3, 1639-1652. de,M.M., Bille,J., Schueller,C., and Sanglard,D. (2002). A common drug-responsive element mediates the upregulation of the Candida albicans ABC transporters CDR1 and CDR2, two genes involved in antifungal drug resistance. Mol. Microbiol. 43, 1197-1214. Fingerman,I.M., Sutphen,K., Montano,S.P., Georgiadis,M.M., and Vershon,A.K. (2004). Characterization of critical interactions between Ndt80 and MSE DNA defining a novel family of Ig-fold transcription factors. Nucleic Acids Res. 32, 2947-2956. Karababa,M., Coste,A.T., Rognon,B., Bille,J., and Sanglard,D. (2004). Comparison of gene expression profiles of Candida albicans azole-resistant clinical isolates and laboratory strains exposed to drugs inducing multidrug transporters. Antimicrob. Agents Chemother. 48, 3064-3079. Kofron,M., Demel,T., Xanthos,J., Lohr,J., Sun,B., Sive,H., Osada,S., Wright,C., Wylie,C., and Heasman,J. (1999). Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFbeta growth factors. Development 126, 5759-5770. Kohler,J.R. and Fink,G.R. (1996). Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development. Proc. Natl. Acad. Sci. U. S. A 93, 13223-13228. Krishnamurthy,S., Gupta,V., Prasad,R., Panwar,S.L., and Prasad,R. (1998). Expression of CDR1, a multidrug resistance gene of Candida albicans: transcriptional activation by heat shock, drugs and human steroid hormones. FEMS Microbiol. Lett. 160, 191-197. Lamoureux,J.S. and Glover,J.N. (2006). Principles of protein-DNA recognition revealed in the structural analysis of Ndt80-MSE DNA complexes. Structure. 14, 555-565. Lamoureux,J.S., Stuart,D., Tsang,R., Wu,C., and Glover,J.N. (2002). Structure of the sporulation-specific transcription factor Ndt80 bound to DNA. EMBO J. 21, 5721-5732. Lopez-Ribot,J.L., McAtee,R.K., Lee,L.N., Kirkpatrick,W.R., White,T.C., Sanglard,D., and Patterson,T.F. (1998). Distinct patterns of gene expression associated with development of fluconazole resistance in serial Candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob. Agents Chemother. 42, 2932-2937. Lyons,C.N. and White,T.C. (2000). Transcriptional analyses of antifungal drug resistance in Candida albicans. Antimicrob. Agents Chemother. 44, 2296-2303. Marger,M.D. and Saier,M.H., Jr. (1993). A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem. Sci. 18, 13-20. Michaelis,S. and Berkower,C. (1995). Sequence comparison of yeast ATP-binding cassette proteins. Cold Spring Harb. Symp. Quant. Biol. 60, 291-307. Montano,S.P., Cote,M.L., Fingerman,I., Pierce,M., Vershon,A.K., and Georgiadis,M.M. (2002). Crystal structure of the DNA-binding domain from Ndt80, a transcriptional activator required for meiosis in yeast. Proc. Natl. Acad. Sci. U. S. A 99, 14041-14046. Pak,J. and Segall,J. (2002). Regulation of the premiddle and middle phases of expression of the NDT80 gene during sporulation of Saccharomyces cerevisiae. Mol. Cell Biol. 22, 6417-6429. Pfaller,M.A., Diekema,D.J., Messer,S.A., Boyken,L., and Hollis,R.J. (2003). Activities of fluconazole and voriconazole against 1,586 recent clinical isolates of Candida species determined by Broth microdilution, disk diffusion, and Etest methods: report from the ARTEMIS Global Antifungal Susceptibility Program, 2001. J. Clin. Microbiol. 41, 1440-1446. Prasad,R., De,W.P., Goffeau,A., and Balzi,E. (1995). Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr. Genet. 27, 320-329. Puri,N., Krishnamurthy,S., Habib,S., Hasnain,S.E., Goswami,S.K., and Prasad,R. (1999). CDR1, a multidrug resistance gene from Candida albicans, contains multiple regulatory domains in its promoter and the distal AP-1 element mediates its induction by miconazole. FEMS Microbiol. Lett. 180, 213-219. Sanglard,D., Ischer,F., Monod,M., and Bille,J. (1997). Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology 143 ( Pt 2), 405-416. Sanglard,D., Ischer,F., Monod,M., and Bille,J. (1996). Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob. Agents Chemother. 40, 2300-2305. Sanglard,D., Kuchler,K., Ischer,F., Pagani,J.L., Monod,M., and Bille,J. (1995). Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob. Agents Chemother. 39, 2378-2386. Schaller,M., Bein,M., Korting,H.C., Baur,S., Hamm,G., Monod,M., Beinhauer,S., and Hube,B. (2003). The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect. Immun. 71, 3227-3234. Schmitt,M.E., Brown,T.A., and Trumpower,B.L. (1990). A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 18, 3091-3092. Sherman,F. (2002). Getting started with yeast. Methods Enzymol. 350, 3-41. Sopko,R., Raithatha,S., and Stuart,D. (2002). Phosphorylation and maximal activity of Saccharomyces cerevisiae meiosis-specific transcription factor Ndt80 is dependent on Ime2. Mol. Cell Biol. 22, 7024-7040. Tapia,C., Leon,E., and Palavecino,E. (2003). [Antifungal susceptibility of yeasts by Etest. Comparison of 3 media]. Rev. Med. Chil. 131, 299-302. Vanden,B.H., Marichal,P., and Odds,F.C. (1994). Molecular mechanisms of drug resistance in fungi. Trends Microbiol. 2, 393-400. White,T.C., Holleman,S., Dy,F., Mirels,L.F., and Stevens,D.A. (2002). Resistance mechanisms in clinical isolates of Candida albicans. Antimicrob. Agents Chemother. 46, 1704-1713. Wirsching,S., Michel,S., Kohler,G., and Morschhauser,J. (2000). Activation of the multiple drug resistance gene MDR1 in fluconazole-resistant, clinical Candida albicans strains is caused by mutations in a trans-regulatory factor. J. Bacteriol. 182, 400-404. Xu,L., Ajimura,M., Padmore,R., Klein,C., and Kleckner,N. (1995). NDT80, a meiosis-specific gene required for exit from pachytene in Saccharomyces cerevisiae. Mol. Cell Biol. 15, 6572-6581. Yang,Y.L. and Lo,H.J. (2001). Mechanisms of antifungal agent resistance. J. Microbiol. Immunol. Infect. 34, 79-86. 石欣怡 (Shih Hsin-I) 分離鑑定白色念珠菌CDR1 基因之調控因子 Identification of the Trans-Regulatory Factors and Cis-Elements of CDR1 in Candida albicans. 2001. Master thesis, Institute of Biological Science and Technology, National Chiao Tung University.
|