|
[1] J. H. Smith, S. Montague, J. J. Sniegowski, J. R. Murray, et al., “Embedded micromechanical devices for the monolithic integration of MEMS with CMOS,” in Proc. Int. Electron Devices Meeting, Washington, DC, Dec. 10–13, pp. 609-612, 1995. [2] K. C. Liddiard, “Thin-Film Resistance Bolometer Ir Detectors,” Infrared Physics, vol. 24, pp. 57-64, 1984. [3] J. S. Shie and P. K. Weng, “Design Considerations of Metal-Film Bolometer with Micromachined Floating Membrane,” Sensors and Actuators a-Physical, vol. 33, pp. 183-189, Jun 1992. [4] A. Takana, S. Matsumoto, N. Tsukamoto, S. Itoh, E. Endoh, A. Nakazato, Y. Kumazawa, M. Hijikawa, H. Gotoh, T. Takana, and N. Teranashi, “Silicon IC process compatible bolometer infrared focal plane array, ”Proc. Int. Conf. Solid State Sensors and Actuators, 8th, Stockholm, pp. 632-635, 1995. [5] L. Brunetti and E. Monticone, “Properties of Nickel Thin-Films on Polyimide Substrata for Hf Bolometers,” Measurement Science & Technology, vol. 4, pp. 1244-1248, Nov 1993. [6] M. E. Macdonald and E. N. Grossman, “Niobium Microbolometers for Far-Infrared Detection,” IEEE Transactions on Microwave Theory and Techniques, vol. 43, pp. 893-896, Apr 1995. [7] W. Lang, et al., “A Thin-Film Bolometer Using Porous Silicon Technology,” Sensors and Actuators a-Physical, vol. 43, pp. 185-187, May 1994. [8] Li Wang, David M. Sipe, Yong Xu, and Qiao Lin “A MEMS Thermal Biosensor for Metabolic Monitoring Applications,” Journal of Microelectromechanical Systems, vol. 17, no. 2, pp. 318-327, April 2008. [9] Danijela Randjelovi´c, Anastasios Petropoulos, Grigoris Kaltsas ,Miloˇs Stojanovi´c , ˇ Zarko Lazi´c, Zoran Djuri´c, Milan Mati´c, “Multipurpose MEMS thermal sensor based on thermopiles,” Sensors and Actuators A 141, pp. 404-413, 2008. [10] R. Lenggenhager, H. Baltes, J. Peer, and M. Forster, “Thermoelectric infrared sensors by CMOS technology,” IEEE Electron Device Lett., vol. 13, no. 9, pp. 454-456, Sep. 1992. [11] K. A. A. Makinwa and M. F. Snoeij, “A CMOS temperature-to-frequency converter with. an inaccuracy of less than +/- 0.5 degrees C (3 sigma) from -40 degrees C to 105 degrees C,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 2992-2997, Dec 2006. [12] C. Hanson, “Uncooled thermal imaging at Texas Instruments,” Proc. of SPIE, Infrared Technology XIX, vol. 2020, 1993. [13] T.D. Binnie, H.J. Weller, Z. He, and D. Setiadi, “An integrated 16 ?e 16 PVDF pyroelectric sensor array,” IEEE trans. on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 47, no. 6, November 2000. [14] J. Cooper, “Minimum Detectable Power of a Pyroelectric Thermal Receiver,” Review of Scientific Instruments, vol. 33, pp. 92-&, 1962. [15] N.M. Shorrocks, A. Patel, M.J. Walker, and A.D. Parsons, “Uncooled pyroelectric arrays for contactless temperature measurements,” in Smart Focal Plane Arrays and Focal Plane Array Testing, Proc. SPIE, vol. 2474, pp. 98-109, 1995. [16] D. Setiadi, H. Weller, and T.D. Binnie, “A pyroelectric polymer infrared sensor array with a charge amplifier readout,” in Eurosensor XII, pp. 1091-1094, 1998. [17] R. Amantes, L.A. Goodman, F. Pantuso, D.J. Sauer, M. Varghese, T.S. Villani, and L.K. White, “Progress towards an uncooled IR imager with 5mK NEDT,” SPIE conference on Infrared Technology and Applications, XXIV, vol. 3436, pp. 647-659, San Diego, CA, 1998. [18] S.R. Manalis, S.C. Minne, C.F. Quate, G.G. Yaralioglu, and A. Atalar, “Two-dimensional micromechanical bimorph arrays for detection of thermal radiation,” Appl. Phys. Lett., vol.70, pp. 3311-3313, 1997. [19] P.I. Oden, P.G. Datskos, and T. Thundat, “Uncooled thermal imaging using piezoresistive microcantilever,” Appl. Phys. Lett., vol.69, pp. 3277-3279, 1996. [20] H. Lakdawala and G.K. Fedder, “CMOS micromachined infrared imager pixel,” in Technical Digest of the IEEE International Conference on Solid-State Sensors and Actuators, Munich, Germany, pp. 1548-1551, 2001. [21] Baer, T. Hull, K. Najafi, and K.D. Wise, “A multiplexed silicon infrared thermal imager,” Transducers 91’, pp. 631-634, 1991. [22] A. Schaufelbuhl, N. Schneeberger, U. Munch, O. Paul, and H. Baltes, “Uncooled low-cost thermal imager using micromachined CMOS integrated sensor array,” Technical Digest of the IEEE International Conference on Solid-State Sensors and Actuators, Sendai, Japan, 1999. [23] T. W. Kenny, et al., “Micromachined Tunneling Displacement Transducers for Physical Sensors,” Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 11, pp. 797-802, Jul-Aug 1993. [24] A. Bakker and J. H. Huijsing, “Micropower CMOS temperature sensor with digital output,” IEEE J. Solid-State Circuits, vol. 31, no. 7, pp. 933–937, Jul. 1996. [25] M. Tuthill, “A switched-current, switched-capacitor temperature sensor in 0.6 µm CMOS,” IEEE J. Solid-State Circuits, vol. 33, no. 7, pp. 1117–1122, Jul. 1998. [26] G. C. M. Meijer, G. Wang, and F. Fruett, “Temperature sensors and voltage references implemented in CMOS technology,” IEEE Sensors J., vol. 1, no. 3, pp. 225–234, Oct. 2001. [27] M. A. P. Pertijs, K. A. A. Makinwa, and J. H. Huijsing, “A CMOS temperature sensor with a 3σ inaccuracy of 0.1℃ from 55℃ to 125℃,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2805–2815, Dec. 2005. [28] M. A. P. Pertijs, A. Bakker, and J. H. Huijsing, “A high-accuracy temperature sensor with second-order curvature correction and digital bus interface,” in Proc. ISCAS, pp. 368–371, May 2001. [29] Chun-Chi Chen, Poki Chen, An-Wei Liu, Wen-Fu Lu and Yu-Chi Chang, “An accurate CMOS delay-line-based smart temperature sensor for low-power low-cost systems,” Meas. Sci. Technol. 17, pp. 840-846, 2006. [30] I. M. Filanovsky, “Voltage reference using mutual compensation of mobility and threshold voltage temperature effects,” ISCAS 2000: IEEE International Symposium on Circuits and Systems - Proceedings, Vol V, pp. 197-200, 2000. [31] Michael S-C Lu, Dong-Hang Liu, Li-Sheng Zheng and Sheng-Hsiang Tseng, “CMOS micromachined structures using transistors in the subthreshold region for thermal sensing,” J. Micromech. Microeng. 16, pp. 1734-1739, 2006. [32] Pablo Ituero, José L. Ayala, and Marisa López-Vallejo, “A nanowatt smart temperature sensor for dynamic thermal management,” IEEE Sensors Journal, vol. 8, no. 12, pp. 2036-2043, December 2008. [33] S. Memik, R. Mukherjee, M. Ni, and J. Long, “Optimizing thermal sensor allocation for microprocessors,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Syst., vol. 27, no. 3, pp. 516–527, Mar. 2008. [34] B. Danielsson, “Calorimetric biosensors,” Biochem. Soc. Trans., vol. 19, pp. 26–28, 1991. [35] L. Wang, et al., “A MEMS thermal biosensor for metabolic monitoring applications,” Journal of Microelectromechanical Systems, vol. 17, pp. 318-327, Apr 2008.
|