跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.82) 您好!臺灣時間:2026/02/20 08:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王淑盈
研究生(外文):Shu-Ying Wang
論文名稱:臭氧異常高值分析-以春季台中都會區為案例
論文名稱(外文):High ozone episodes in Metropolitan Taichung
指導教授:程萬里程萬里引用關係林配練
指導教授(外文):Wan-Li ChengPay-Liam Lin
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學與工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:88
中文關鍵詞:繫留探空高臭氧事件日
外文關鍵詞:ThethersondeHODs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:402
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
台中市位處於台中盆地內,因地形特殊,區域內空氣污染物有著獨特傳輸特性,易於累積空氣污染物,當特殊天氣型態下發生容易造成臭氧事件日,例如案例期間(2007年5月3日~13日)多日臭氧異常,容易對人體健康造成影響,因此有分析探討其高值原因之必要性。利用繫留探空監測,於台中都會區2007年春季收集垂直大氣之氣象資料及採集不同高度之空氣樣本,同時與台中西屯測站逆溫儀(Meteorological Temperature Profiler version 5,MPT5-HE)監測當時的溫度剖面,並配合澳洲聯邦科學與工業研究發展組織(Commonwealth Scientific and Industrial Research Organisation, CSIRO)研發的空氣品質模式(The Air Pollution Model,TAPM)進行模擬,以探討此臭氧事件日之主要原因。
由於都市人口眾多,過多的建築物會排放廢熱,再加上汽機車工廠所排放之廢氣,都市溫度往往比郊區來的高,因此都市(大里)比郊區(烏日)相對溫度與較高,污染物也累積較多,研究結果顯示大里臭氧高值發生前幾個小時NMHC、CH4濃度皆有遞減的現象比平均濃度低;當前晚熱島強度容易造成隔日污染物高值,但在2007年5月臭氧事件日此條件於這兩個事件日(事件一:5月4日13:00達到151.9 ppb;事件二:5月11日15:00達到160.9 ppb)並不同時存在,成為一個相反列子;且台灣西半部臭氧濃度皆高,且國外-韓國、日本也是呈現高值,因此極為可能是大尺度的空氣污染和特殊天氣型態有關。
初步推估臭氧高值因子應該有很多,深入分析結果發現可能原因有如下:(1.)2007年5月高值期間,台中都會區之大里有熱島現象之發生,並造成污染物累積。(2.) 2007年5月船隻量達7,024艘,為2007年月份船隻量最高具有高相關性。(3.) 2007年5月海水溫度較低,較容易發生天氣類型(P2和P3),使臭氧值增大而造成事件日。(4.) 2007年5月聖嬰現象之發生,於台灣上空有大尺度下沈氣流,使重力位高度較高,將對流層高度較高之臭氧濃度被帶往地面,導致此次臭氧高值。
This study analyzes and discusses reasons for the May, 2007, ozone event. As a result of the large metropolis population, the large number of buildings discharge waste heat, in addition waste gases of vehicles and factory emissions, the metropolis temperature becomes higher than the suburbs. Therefore the analysis of Dali data showed that the ozone maximum occurs several hours after the NMHC and CH4 density maximum, which then decrease progressively to become lower than the average density. When the thermal island intensity is strong in the previous night, the next day pollutant values are high, but this condition was not consistently evident in the two strongest ozone events in May, 2007. Event one at 13:00 May 4 reached 151.9 ppb; event two at 15:00 May 11 reached 160.9 ppb but different conditions existed, becoming opposite examples. In West Taiwan the ozone concentration is all high, and overseas South Korea and Japan also present high values, therefore it is extremely possible that there is a strong connection between air pollution and the related special weather conditions.
Our initial estimate is that the ozone maximum has many factors, and we analyze the result to find that the following possible reasons: (1). in May, 2007, the Dali area in Taichung has the thermal island phenomenon which creates the pollutant accumulation. (2). In May, 2007, the number of ships in the harbor reached 7,024 which was the highest in 2007, and this should be relevant. (3). in May, 2007, the sea surface temperature was low, so the P2 and P3 weather type are likely to occur, which creates an ozone event. (4). in the May, 2007, El Nino phenomenon, there was a tendency for subsidence in the air over Taiwan, which brings the high ozone concentration in the upper troposphere to the ground, and causes this ozone maximum.
目 錄

第一章 緒論................................................................................................................. 1
1-1 研究緣起............................................................................................................ 1
1-2 研究目的............................................................................................................ 1
第二章 文獻回顧......................................................................................................... 2
2-1 臭氧前驅物排放特性...................................................................................... 2
2-2 臭氧生成機制與成分特性.............................................................................. 3
2-3 天氣型.............................................................................................................. 5
2-4 混合層高度和臭氧的關係.............................................................................. 6
2-5 軌跡模式.......................................................................................................... 7
第三章 研究方法......................................................................................................... 8
3-1 研究背景............................................................................................................ 8
3-2 採樣地點及頻率選定...................................................................................... 10
3-3 監測流程.......................................................................................................... 11
3-3.1 監測地區資料收集分析......................................................................... 11
3-3.2 繫留探空流程......................................................................................... 12
3-4 使用儀器設備.................................................................................................. 15
3-5 空氣污染模式................................................................….............................. 15
3-6 模式所需資料.................................................................................................. 19
3-6.1 氣象資料來源......................................................................................... 19
3-6.2 污染物排放資料來源............................................................................. 20
3-6.3 模式網格設定......................................................................................... 21
3-7 模式模擬結果性能評估.................................................................................. 23
3-7.1 氣象場模擬............................................................................................. 23
3-7.2 臭氧濃度模擬......................................................................................... 24
第四章 結果與討論................................................................................................... 26
4-1 台中都會區濃度分析...................................................................................... 26
4-2 2007年春季五月綜觀天氣型態.................................................................... 30
4-2.1 研究期間台灣之天氣型態..................................................................... 31
4-2.2 研究期間台灣之空氣品質..................................................................... 31
4-2.3 2007年春季監測案例分析................................................................... 31
4-3 TAPM模式模擬結果.................................................................................... 41
4-3.1 氣象場模擬結果評估............................................................................. 41
4-3.2 臭氧濃度模擬結果................................................................................. 53
第五章 促成臭氧高值因素之討論........................................................................... 57
5-1 人為因素.......................................................................................................... 57
5-1.1 都市熱島現象......................................................................................... 58
5-1.2 臭氧前驅物............................................................................................. 60
5-1.3 都市與郊區之氣溫與臭氧相關性......................................................... 61
5-1.4 外海船舶排放......................................................................................... 62
5-2 自然因素.......................................................................................................... 63
5-2.1 綜觀尺度天氣型態................................................................................. 64
5-2.2 氣象條件................................................................................................. 66
5-2.3 東西半部及地形因素影響..................................................................... 69
5-2.4 洋流因素................................................................................................. 72
5-2.5大尺度海氣濤動....................................................................................... 76
第六章 結論............................................................................................................... 80
6-1 結論.................................................................................................................. 80
參考文獻........................................................................................................... 83
附件一............................................................................................................... 85
參考文獻
Alvalá, P. C., Boian, C., Kirchhoff, V. W. J. H., 2004. Measurements of CH4 and CO during ship cruises in the South Atlantic. Atmospheric Environment, 38, 4583-4588.
Arya, S. P., 1999, Air pollution meteorology and dispersion. Oxford University Press, Inc. 310 p.p.
Boian, C., Kirchhoff, V. W. J. H., 2005. Surface ozone enhancements in the south of Brazil owing to large-scale air mass transport. Atmospheric Environment, 39, 6140-6146.
Berman, S., Ku, J. Y., Zhang, J, Trivikrama Rao, S., 1997. Uncertainties in estimating the mixing height – comparing three mixing depth models with profiler measurements. Atmospheric Environment, 31(18), 3023-3039.
Brücher, W., C. Kessler, M. J. Kerschgens and A. Ebel, 2000: Simulation of 53 traffic-induced air pollution on regional to local scales. Atmos. Environ., 34, 4675-4681
Cheng, W-L., 2000. A vertical profile of ozone concentration in the atmospheric boundary layer over central Taiwan. Meteorology and Atmospheric Physics, 75, 251-258.
Cheng, W-L., 2001a. Spatio-temporal variations of sulphur dioxide patterns with wind conditions in central Taiwan. Environmental Monitoring and Assessment, 66, 77-98.
Chen, C. L., Tsuang, B. J., Tu, C. Y., Cheng, W. L, Lin, M. D., 2002. Wintertime vertical profiles of air pollutants over a suburban area in central Taiwan. Atmospheric Environment, 36, 2049-2059.
Delcloo, A. W., Backer, H. D., 2005. Modelling planetary boundary layer ozone, using meteorological parameters at Uccle and Payerne. Atmospheric Environment, 39, 5067-5077.
Elbir, T., 2004. A GIS based decision support system for estimation, visualization and analysis of air pollution for large Turkish cities. Atmospheric Environment, 38, 4509-4517.
Fishman,j,C.E. Watson,J.C. Larsen ,and J.A. Logan. ( 1990): Distribution of tropospheric ozone determined from staellite data. J.Geophys . Res.,95,3599-3617.
Gerd, H., Platt, U., 2002. Observations of BrO and its vertical distribution during surface ozone depletion at Alert. Atmospheric Environment, 36, 2481-2489.
Gras, J. L., Keywood, M. D., Ayers, G. P., 2001. Factors controlling winter-time aerosol light scattering in Launceston, Tasmania. Atmospheric Environment, 35, 1881-1889.
Helmiga, D. D., Boultera, J., Davida, D., Birksa, J. W., Cullena, N. J., Steffena, K., Johnson, B. J., Oltmansb, S. J., 2002. Ozone and meteorological boundary-layer conditions at Summit, Greenland, during 3-21June 2000. Atmospheric Environment, 36, 2595-2608.
Hurley, P., 2005. The Air Pollution Model (TAPM) User Manual, CSIRO. Atmospheric Research.
Hurley, P. J., Physick, W. L., Luhar, A. K., 2005. TAPM: a practical to prognostic meteorological and air pollution modeling. Environmental Modelling & Software, 20, 737-752.
Hurley, P., Manins, P., Lee, S., Boyle, R., Ng, Y. L., Dewundege, P., 2003. Year-long, high-resolution, urban airshed modeling: verification of TAPM predictions of smog and particles in Melbourne, Australia. Atmospheric Environment, 37, 1899-1910.
Hurley, P., Manins, P., Lee, S., Boyle, R., Ng, Y. L., Dewundege, P., 2002. Year-long urban airshed modelling in Melbourne: verification of TAPM for photochemical smog and particles. Proceedings of the 16th International Clean Air & Environment Conference of CASANZ, Christchurch, New Zealand, 19-22 August.
Hurley, P. J., Blockley, A., Rayner, K., 2001. Verification of a prognostic meyeorological and air pollution model for year-long predictions in the Kwinana industrial region of Western Australia. Atmospheric Environment, 35, 1871-1880
Jacobson, MZ, R. Lu, RP Turco, and OB Toon, 1996: Development and application of a new air pollution modeling system. Part I: Gas-phase simulations. Atmos.Environ., 30B, 1939-1963.
Katsoulis, B. D., 1996. The relationship between synoptic, mesoscale and microscale meteorological parameters during poor air quality events in Athens, Greece. The Science of Total Environment, 181, 13-24.
Lena, F., Desiato, F., 1999. Intercomparison of nocturnal mixing height estimate methods for urban air pollution modeling. Atmospheric Environment, 33, 2385-2393.
Lin, C. H., Wu, Y. L., Lai, C. H., Lin, P. H., Lai, H. C., Lin, P. L., 2004. Experimental investigation of ozone accumulation overnight during a wintertime ozone episode in south Taiwan. Atmospheric Environment, 38, 4267-4278.
Lin, C. H. and Wu, Y. L., 2003. Semi-statistical model for evaluating the effects of source emissions and meteorological effects on daily average NOx concentrations in South Taiwan. Atmospheric Environment, 37, 2051-2059
Luhar, A. K., Hurley, P. J., 2003. Evaluation of TAPM, a prognostic meteorological and air pollution model, using urban and rural point-source data. Atmospheric Environment, 37, 2795-2810.
Luhar, A. K., Hurley, P. J., 2002. Comparison of meteorological and dispersion predictions obtained using TAPM with the Kincaid (rural), Indianapolis (urban) and Kwinana (coastal) field data sets. 8th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Sofia, Bulgaria.
Pielke, R. A., 1984. Mesoscale Meteorological Modeling. Academic Press, Orlando, 612 pp.
Pison, I., Laurent, M., 2004. Quantification of the impact of aircraft traffic emissions on tropospheric ozone over Paris area. Atmospheric Environment, 38, 971-983
Seinfeld, J. H., Pandis, S. N., 1998. Atmospheric chemistry and physics from Air Pollution to climate change. John Wiley & Sons, Inc., 1326 p.p.
Seibert, P., Beyrich, F., Gryning, S. E., J, S., R, A. and T, P. (2000) Review and intercomparsion of operational methods for the determination of the mixing height. Atmospheric Environment 34,1001-1027
Tsuang, B. J., Lee, C. T., Cheng, M. T., Lin, N. H., Lin, Y. C., Chen, C. L., Peng, C. M., Kuo, P. H., 2003. Quantification on the source/receptor relationship of primary pollutants and secondary aerosols by a Gaussian plume trajectory model: Part III - Asian dust-storm periods. Atmospheric Environment, 37, 4007-4017.
Wang Z., W. Sha and H. Ueda, 2000: Numerical modeling of pollutant transport and chemistry during a high-ozone event in Northern Taiwan. Tellus, 52B, 1189-1205.
Wilson, J. G., Peyman, Z. R., 2006. Intraurban-scale dispersion modeling of particulate matter concentrations: Applications for exposure estimates in cohort studies. Atmospheric Environment, 40, 1053-1063.
白玨玲,1998,中部地區臭氧濃度特徵與天氣型態相關探討,碩士論文,東海大學環境科學系。
黃怡嘉、程萬里,2001,中部空品區高臭氧日氣象條件之解析,中華民國環境保護學會會誌,24,26-50。
林能暉,2000,“北中南空品區O3與PM10污染之氣象條件研究”,國科會/環保署科技合作研究計劃報告。
中央氣象局全球資訊網,http://www.cwb.gov.tw/V5/index.htm。
中華民國行政院環境保護署全球資訊網,http://www.epa.gov.tw/main/index.asp。
澳洲CSIRO全球資訊網,http://www.cmar.csiro.au/。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top