跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/24 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王東毅
研究生(外文):Dong-Yi Wang
論文名稱:奈米零價鐵反應牆搭配過硫酸鹽處理地下水中三氯乙烯之研究-砂箱實驗
論文名稱(外文):Treatment of Trichloroethylene in Groundwater Using Permeable Nano-Scale Iron Reactive Barrier Coupled with Persulfate - Sand Box Experiments
指導教授:黃益助
指導教授(外文):Yi-Chu Huang
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:135
中文關鍵詞:三氯乙烯奈米零價鐵透水性反應牆過硫酸鈉亞鐵離子砂箱
外文關鍵詞:trichloroethylenenano-scale ironpermeable reactive barriersodium persulfateferrous ionssand box
相關次數:
  • 被引用被引用:2
  • 點閱點閱:488
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
含氯有機溶劑被廣泛地使用在工業製程上,如三氯乙烯(Trichloroethylene, TCE)和四氯乙烯(Perchloroethylene, PCE)等,使用後若不當的處置而滲漏到土壤及地下水,將造成嚴重的土壤及地下水污染。
本研究主要探討奈米零價鐵反應牆搭配過硫酸鈉處理地下水中TCE之處理效率。實驗階段以多孔介質傳輸實驗進行模擬整治受TCE污染之地下水層。使用自行合成的奈米鐵粉尺寸鑑定結果,平均粒徑為525.6 nm,比表面積為125.1 m2/g,由X-ray繞射儀進行奈米鐵粉之鑑定發現在2θ=44.960,證明有鐵金屬存在。
多孔介質傳輸實驗結果顯示,過硫酸鈉傳輸主要是受到移流及延散的影響;TCE傳輸實驗隨著距離增加TCE濃度從128 mg/L遞減至47 mg/L(A點至D點),其中A、B、C、D分別距離注入井20、40、60、80公分。添加0.75 g(1500 mg/L)過硫酸鈉,A點TCE濃度從365 mg/L下降至225 mg/L,隨時間增加,水中TCE濃度逐漸升高,顯示過硫酸鈉無法完全有效降解TCE,0.75 g的過硫酸鈉降解TCE之有效距離為20~60 cm(A點至C點)。設置厚度1公分奈米鐵反應牆內添加45.15 g鐵粉,C點TCE濃度於40~50小時間濃度從230 mg/L下降至30 mg/L,D點在第62小時所測得TCE濃度下降至17 mg/L,氯離子、亞鐵濃度與導電度也隨之上升,亞鐵離子在此傳輸距離為10 cm;當反應牆厚度增加至5 cm,內部添加98.45 g鐵粉,C點與D點TCE去除效率不如反應牆設置1 cm的效果好,且亞鐵離傳輸距離受到限制,在第64小時從注入井添加200 mL(1500 mg/L)過硫酸鈉,在第68小時D點所測得TCE濃度有短暫下降趨勢,由於水中pH和溶氧之影響,亞鐵離子易被氧化成三價鐵,若pH値太高易產生氫氧化鐵沉澱,造成反應牆阻塞,使亞鐵離子傳輸距離受到限制無法活化過硫酸鈉,導致TCE整體的去除效率降低。
研究成果顯示,奈米鐵反應牆確實能夠有效降解地下水中TCE,若要藉由鐵粉反應產生亞鐵離子活化過硫酸鈉,需考慮亞鐵離子傳輸距離和水中溶氧與pH値的影響,才能有效地結合奈米鐵還原與過硫酸鈉氧化二者技術優點應用於降解地下水中TCE,本研究所提供的技術可做為處理受含氯溶劑污染水體整治復育方法之選擇參考。
Organic chlorinated solvents are widely used in industrial processes, such as trichloroethylene (TCE) and perchloroethylene (PCE). If those chlorinated solvents are not properly handled, they may possibly leak into soil and further pollute the aquifer.
The objective of this study is to investigate the treatment efficiency of aqueous trichloroethylene by permeable reactive barrier (PRB) filled with nano-sacle iron and coupled with persulfate (Na2S2O8). The experiments were designed to simulate the solutes transporting through the porous media and the remediation of TCE contaminated aquifer. The results from preliminary study showed that the average particle size and BET specific surface area of lab synthesized nano-scale iron were 525.6 nm and 125.1 m2/g, respectively. The iron component of particles was detected through X-ray powder diffraction(XRD) examination at 2θ=44.960.
The results from transport experiments through porous media showed that the breakthrough time of persulfate transport was slightly quicker than that of water flow owing to the influence of advection and dispersion. From the results of TCE transport experiments, TCE concentration reduced with the increase of distance from 128 mg/L to 47 mg/L between sampling Point A and Point D, which were 20 cm and 80 cm away from the injection well, respectively. Sampling Point A、B、C、D away from the injection well 20、40、60、80 cm, respectively. With addition of 0.75 g, i.e. 1500 mg/L, sodium persulfate (Na2S2O8), TCE concentration at sampling point A decreased from 365 mg/L to 225 mg/L. But TCE concentration gradually increased with test time implicated that TCE was not effective degraded by Na2S2O8. Degradation of TCE by Na2S2O8 was observed between point A and point C which were 20 and 40 cm away from the injection well. Addition of 45.15 g nano-scale iron into PRB with thickness of 1 cm, TCE concentration at sampling point C reduced from 230 mg/L to 30 mg/L during 40~50 hours and further reduced to 17 mg/L at sampling point D at the 62nd hour. Conductivity and concentration of chloride and ferrous increased with test time. The transport distance of ferrous ions (Fe2+) was about 10 cm in the design sandbox. TCE removal efficiencies at sampling points C and D of 5-cm thickness of PRB filled with 98.45 g nano-scale iron were worse than those of 1-cm thickness of PRB and transport distance of ferrous ions was restricted. Addition of 200 mL and 1500 mg/L Na2S2O8 from injection well at 64th hour, short-term TCE concentration at sampling point D decreased at 68th hour. Under the influence of aqueous pH and dissolved oxygen (DO), ferrous ions were easily oxidized to ferric ions (Fe3+) and formed ferric hydroxide precipitation due to high pH resulting in the clogging of PRB. The transport distance of ferrous ions were restricted by the precipitation of ferric hydroxide that caused Na2S2O8 not activated by ferrous ions. Thus that reduced the removal efficiency of TCE.
This study shows TCE in aquifer can be effectively degraded by PRB filled with nano-sacle iron. The parameters concerned for activation of sodium persulfate by ferrous ions includes the transport distance of ferrous ions, dissolved oxygen and pH. The proposed technique combined the advantages of redox reaction of nano-scale iron and persulfate can be applied to effectively degrade TCE in aquifer. This study can be referred as an alternative for in-situ remediation of organic chlorinated solvents in aquifer.
摘 要 I
Abstract III
謝誌 VI
目錄 VII
表目錄 X
圖目錄 XI
第1章 前言 1
1.1 研究動機 1
1.2 研究內容及目的 3
第2章 文獻回顧 5
2.1 三氯乙烯用途及污染現況 5
2.1.1 三氯乙烯之用途 5
2.1.2 三氯乙烯污染現況 6
2.2 三氯乙烯之物化特性及其危害與管制標準 9
2.2.1 三氯乙烯之物化特性 9
2.2.2 三氯乙烯對人體之危害 10
2.2.3 土壤與地下水含氯有機溶劑之管制標準 11
2.3 三氯乙烯於地層中之傳輸與移動行為 13
2.4 受有機溶劑污染之土壤與地下水相關整治技術 14
2.5 土壤與地下水現地化學氧化整治法 16
2.5.1 常用氧化劑之特性 16
2.5.2 亞鐵離子催化過硫酸鹽技術 18
2.6 零價鐵反應牆去除水中污染物之現況 21
2.6.1 零價鐵基本原理 21
2.6.2 三氯乙烯還原脫氯反應途徑 22
2.6.3 奈米微粒製備方法 22
2.6.4 零價鐵暨奈米零價鐵去除污染物之現況 25
2.6.5 滲透性反應牆之處理機制 26
2.6.6 滲透性反應牆之結構 27
2.6.7 滲透性反應牆使用材質 29
2.6.8 影響反應材質耐久性之因素 29
第3章 材料與方法 32
3.1 材料與設備 32
3.1.1 供試砂 32
3.1.2 實驗藥品 32
3.1.3 分析儀器 34
3.1.4 實驗設備(砂箱) 36
3.2 方法與步驟 39
3.2.1 實驗流程 39
3.2.1.1 奈米零價鐵粉製備方法 41
3.2.1.2 過硫酸鈉分析方法 41
3.2.1.3 亞鐵與總鐵分析方法 41
3.2.2 石英砂之孔隙率試驗與粒徑分析 42
3.2.3 多孔介質傳輸試驗 42
3.3數據分析之品質保證及品質管制(QA/QC) 46
3.3.1 檢量線製作 46
3.3.2 重覆樣品分析 47
3.3.3 查核樣品分析 48
第4章 結果與討論 49
4.1 石英砂基本性質測定-奈米級零價鐵尺寸鑑定 49
4.2 多孔介質傳輸實驗 51
4.2.1 過硫酸鈉傳輸實驗 52
4.2.2 三氯乙烯傳輸實驗 56
4.2.3 過硫酸鈉降解三氯乙烯實驗 59
4.2.4 奈米鐵反應牆降解三氯乙烯實驗 65
4.2.5 奈米鐵反應牆搭配過硫酸鈉降解三氯乙烯實驗 71
4.3 試驗前後奈米鐵粉之FTIR、SEM-EDS測定 78
4.3.1 掃瞄式電子顯微鏡-能量分散光譜儀分析 78
4.3.2 表面型態觀察 79
4.3.3 傅立葉紅外線光譜儀分析 81
第5章 結論與建議 82
5.1 結論 82
5.2 建議 83
5.3 本研究之貢獻 83
參考文獻 84
附錄 1
作者簡介 135

表目錄
表2-1 TCE進口與出口之年度總重量及價值 5
表2-2 美國546個優先整治場址中最常見的20 種地下水污染物及 其所佔比例 7
表2-3 受含氯有機溶劑之整治場址 8
表2-4 TCE之基本物化特性 9
表2-5 TCE對於人體之健康危害效應 11
表2-6 我國氯化碳氫化合物污染物之相關管制標準值 12
表2-7 現地化學氧化法四種氧化劑之特性彙整 17
表2-8 常見氧化還原反應及其氧化電位 17
表2-9 過硫酸鹽在水中溶解度 18
表2-10 氧化劑對關切污染物降解之有效性 21
表2-11 奈米製備之物理與化學方法整理 24
表2-12 奈米零價鐵可應用處理的污染物種類 25
表2-13 PRB中鐵腐蝕與沉澱物之相關反應彙整 31
表3-1 供試石英砂之基本性質 32
表3-2 供試用地下水之基本分析(97年1月量測) 33
表3-3 HPLC分析三氯乙烯之設定條件 34
表3-4 離子層析儀分析條件 34
表3-5 HACH分析亞鐵與總鐵設定條件 35
表3-6 重複樣品分析結果 47
表3-7 查核樣品分析結果 48
表4-1 管柱實驗砂柱中之石英砂孔隙率 49
表4-2 砂箱實驗中之各項參數 51
表4-3 A點、B點、C點及D點其前三個最高之過硫酸鈉濃度 54
表4-4 自行合成奈米鐵粉SEM-EDS元素分析圖 78
表4-5 奈米鐵粉還原TCE後SEM-EDS元素分析圖 79

圖目錄
圖2-1 地下水有機污染物出現頻率 8
圖2-2 DNAPL物質於地表下之移動情形 14
圖2-3 過硫酸鹽溶解度 19
圖2-4 零價鐵還原脫氯反應機制示意圖 23
圖2-5 三氯乙烯還原脫氯之反應途徑 23
圖2-6 滲透性反應牆示意圖 27
圖2-7 滲透性反應牆型式 28
圖2-8 滲透性反應牆型式使用概況 28
圖2-9 滲透性反應牆填充材質之應用現況 29
圖2-10 零價鐵反應過程中表面上的腐蝕與沉澱作用機制 30
圖3-1 為砂箱模型配置圖 38
圖3-2 砂箱內長採樣針與短採樣針示意圖 39
圖3-3 砂箱內奈米零價鐵反應牆示意圖 39
圖3-4 實驗架構流程圖 40
圖3-5 過硫酸鈉分析方法流程 41
圖3-6 採樣點與過硫酸鈉注入點之砂箱上視圖 43
圖3-7 採樣點與TCE注入點之砂箱上視圖 44
圖3-8 採樣點與TCE和過硫酸鈉2處不同注入點之砂箱上視圖 44
圖3-9 反應牆降解三氯乙烯試驗之採樣點與TCE注入點之砂箱 上視圖 45
圖3-10 反應牆搭配過硫酸鈉還原氧化三氯乙烯試驗之採樣點與 TCE和過硫酸鈉2處不同注入點之砂箱上視圖 46
圖3-11 三氯乙烯之檢量線 46
圖3-12 過硫酸鈉之檢量線 47
圖4-1 奈米鐵粒徑分佈 50
圖4-2 自行合成奈米鐵之X-RAY圖譜 50
圖4-3 設定時間下不同採樣點及採樣位置(上部與底部平均)之 過硫酸鈉濃度變化圖 52
圖4-4 設定時間下不同採樣點上部採樣位置之過硫酸鈉濃度變化圖 53
圖4-5 設定時間下不同採樣點底部採樣位置之過硫酸鈉濃度變化圖 53
圖4-6 不同採樣點之過硫酸鈉濃度曲線下之面積變化圖 54
圖4-7 過硫酸鈉濃度、面積與距離之關係圖 55
圖4-8 過硫酸鈉實驗中砂箱水頭差變化及地下水PH值變化圖 55
圖4-9 設定時間下地下水導電度與過硫酸鈉濃度變化圖 56
圖4-10 設定時間下不同採樣點地下水中底部採樣位置TCE濃度 變化圖 57
圖4-11 設定時間下不同採樣點地下水中上部採樣位置TCE濃度 變化圖 57
圖4-12 地下水中TCE濃度(上部與底部平均)與距離之變化圖 58
圖4-13 TCE傳輸實驗之砂箱水頭差變化及地下水PH值變化圖 58
圖4-14 設定時間下地下水導電度與TCE濃度變化圖 59
圖4-15 過硫酸鈉降解三氯乙烯實驗底部採樣點之TCE濃度變化圖 60
圖4-16 過硫酸鈉降解三氯乙烯實驗底部採樣點之過硫酸鈉濃度 變化圖 60
圖4-17 過硫酸鈉降解三氯乙烯實驗之A點TCE與過硫酸鈉濃度 變化圖 61
圖4-18 過硫酸鈉降解三氯乙烯實驗之B點TCE與過硫酸鈉濃度 變化圖 62
圖4-19 過硫酸鈉降解三氯乙烯實驗之C點TCE與過硫酸鈉濃度 變化圖 62
圖4-20 過硫酸鈉降解三氯乙烯實驗之D點TCE與過硫酸鈉濃度 變化圖 63
圖4-21 過硫酸鈉降解三氯乙烯實驗之砂箱水頭差變化及地下水PH 值變化圖 64
圖4-22 過硫酸鈉降解三氯乙烯實驗之出水槽導電度及TCE濃度 變化圖 64
圖4-23 過硫酸鈉降解三氯乙烯實驗之出水槽導電度及過硫酸鈉濃度 變化圖 65
圖4-24 奈米鐵反應牆降解三氯乙烯實驗底部採樣位置之TCE濃度 變化圖 67
圖4-25 奈米鐵反應牆降解三氯乙烯實驗F點採樣位置地下水中總 鐵、亞鐵與三價鐵濃度變化圖 67
圖4-26 奈米鐵反應牆降解三氯乙烯實驗C點底部採樣位置TCE與 氯離子濃度變化圖 68
圖4-27 奈米鐵反應牆降解三氯乙烯實驗D點底部採樣位置TCE與 氯離子濃度變化圖 69
圖4-28 奈米鐵反應牆降解三氯乙烯實驗砂箱水頭差變化及地下水 PH值變化圖 70
圖4-29 奈米鐵反應牆降解三氯乙烯實驗出水槽內導電度及地下水 中氯離子變化圖 70
圖4-30 奈米鐵反應牆搭配過硫酸鈉降解三氯乙烯實驗底部採樣位 置TCE濃度變化圖 72
圖4-31 奈米鐵反應牆搭配過硫酸鈉降解三氯乙烯實驗反應牆內ORP 變化圖 73
圖4-32 奈米鐵反應牆搭配過硫酸鈉降解三氯乙烯實驗反應牆內PH 值與導電度變化圖 73
圖4-33 奈米鐵反應牆搭配過硫酸鈉降解三氯乙烯實驗D點底部採 樣位置過硫酸鈉與TCE濃度變化圖 74
圖4-34 奈米鐵反應牆搭配過硫酸鈉降解三氯乙烯實驗F點採樣位 置地下水中總鐵、亞鐵與三價鐵濃度變化圖 75
圖4-35 奈米鐵反應牆搭配過硫酸鈉降解三氯乙烯實驗C點底部採 樣位置TCE與氯離子濃度變化圖 76
圖4-36 奈米鐵反應牆搭配過硫酸鈉降解三氯乙烯實驗D點底部採 樣位置TCE與氯離子濃度變化圖 76
圖4-37 奈米鐵反應牆搭配過硫酸鈉降解三氯乙烯實驗砂箱水頭差 變化及地下水PH值變化圖 77
圖4-38 奈米鐵反應牆搭配過硫酸鈉降解三氯乙烯實驗出水槽導電 度與氯離子濃度變化圖 77
圖4-39 自行合成奈米鐵粉SEM-EDS元素分析圖 78
圖4-40 奈米鐵粉還原TCE後SEM-EDS元素分析圖 79
圖4-41 奈米鐵粉未參與反應前SEM影像(20000倍) 80
圖4-42 奈米鐵粉還原TCE後SEM影像(10000倍) 80
圖4-43 奈米鐵還原TCE前FTIR圖譜 81
圖4-44 奈米鐵還原TCE後FTIR圖譜 81
中興工程顧問社,2000,土壤與地下水污染整治標準及處理技術之現況評估。
行政院環境保護署,2008a,土壤及地下水污染整治網,http://sgw.epa.gov.tw/public/site_chart.asp, Accessed 1 May 2008.
行政院環境保護署,2007,土壤及地下水污染場址現地化學氧化整治法講習會,台北。
行政院環境保護署,2008b,地下水污染管制標準,http://w3.epa.gov.tw/epalaw/search/LnameTypeList.aspx?ltype=14&lkind=02, Accessed 1 May 2008.
阮國棟,1998,多氯化烷烯化合物使用與環境風險問題-兼論地下水防治政策及技術趨勢,化學年會。
林建芬,1994,甲烷分解菌對三氯乙烯好氧分解之影響,碩士論文,國立中興大學,環境工程系,台中。
林育暄,2007,奈米零價鐵搭配過硫酸鹽還原氧化脫氯水中三氯乙烯之研究,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。
官知嫻、李季眉、盧至人,1998a,「酚分解菌共代謝三氯乙烯」,第二十三屆廢水處理技術研討會論文集,台中,第710-718頁。
官知嫻、李季眉、盧至人,1998b,「甲苯分解菌共代謝三氯乙烯」,第二十三屆廢水處理技術研討會論文集,台中,第727-733頁。
毒性化學物質安全資料表,2008,http://www.eric.org.tw/Chm_/Chm_index.aspx?vp=MSDS, Accessed 1 May 2008.
財政部關稅總局統計室,1996-2006,中華民國台灣地區進出口貿易統計月報,財政部關稅總局統計室。
翁義雄,2004,TX-100加強亞鐵離子催化過硫酸鈉氧化地下水中三氯乙烯之相關批次和砂箱研究,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。
陳家洵,2004,地下水及土壤污染,財團法人中興工程科技研究發展基金會,台北,第15頁。
陳家洵,1997a,「台灣地區地下水污染之討論」,現代化研究,第12期,第49-55頁。
黃光照,李重賢,李美英,劉怡君,2004,奈米科技交響曲-物理篇,國立台灣大學出版中心,台北,第15頁。
鄭雅文,2006,TX-100搭配電解加強奈米鐵反應牆處理地下水中三氯乙烯之研究,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。
蔡政勳,零價鐵反應牆處理三氯乙烯污染物之反應行為研究,碩士論文,國立中央大學,環境工程研究所,桃園。
蔡文田,1992,「含氯有機溶劑之毒性及新陳代謝機制」,工業污染防治,第11卷,第3期,第175-187頁。
盧至人(譯),Charbeneau, R. J., Bedient, P. B. and Loehr, R. C.(著),1998,地下水的污染整治,國立編譯館,台北,第109-143頁。
Bendient, P. B., Rifai, H. S. and Newell, C. J., 1999, Ground Water Contamination: Transport and Remediation, 2nd ed., PRT Prentice-Hall.
Campbell, T. J., Burris, D. R., Roberts, A. L. and Wells, J. R., 1997, “Trichloroethylene and Tetrachloroethylene Reduction in a Metallic Iron-Water-Vapor Batch System,” Environmental Toxicology and Chemistry, Vol. 16, No. 4, pp. 625-630.
Chien, C. C., Inyang, H. I. and Everett, L. G., 2006, Barrier Systems for Environmental Contaminant containment and Treatment, CRC Taylor and Francis, New York.
Choe, S. Y., Chang, Y., Hwang, K. Y. and Khim, J., 2000, “Kinetics of Reductive Denitrification by Nanoscale Zero-Valent Iron,” Chemosphere, Vol. 41, No. 8, pp. 1307-1311.
Eberson, L., 1987. Electron Transfer Reactions in Organic Chemistry, Springer-Verlag, Berlin.
Fahrig, R., Madle, S. and Baumann, H., 1995, “Genetic toxicology of trichloroethylene (TCE),” Mutation research, Vol. 340, No. 1, pp. 1-36.
FMC., 2006, “Persulfates Technical Information,” Available at: http://www.fmcchemicals.com/LinkClick.aspx?fileticket=y%2F0DZcxPM4w%3D&tabid=1468&mid=2563, Accessed 1 May 2008.
Fountain, J. C., 1998, “Technology for Dense Nonaqueous Phase Liquid Source Zone Remediation,” Ground-Water Remediation Technologies Analysis Center, TE-98-02.
Gavaskar, A. R., Gupta, N., Sass, B. M., Janosy, R. J. and O’Sullivan, D., 1998, Permeable Barriers for Groundwater Contamination: Design, Construction and Monitoring, 1sd ed., Battelle Press, Columbus.
Gillham, R. W. and O’Hannesin, S. F., 1994, “Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron,” Ground Water, Vol. 32, No. 6, pp. 958-967.
Gist, G. L. and Burg, J. R., 1995, “Trichloroethylene-a review of the Literature from a Health Effects Perspective,” Toxicology and industrial health, Vol. 11, No. 3, pp. 253-307.
House, D. A., 1962, “Kinetics and Mechanism of Oxidations by Peroxydisulfate,” Chemical reviews, Vol. 62, No. 3, pp. 185-203.
Huang, K. C., Couttenye, R. A. and Hoag, G. E., 2002. “Kinetics of Heat-Assisted Persulfate Oxidation of Methyl Tert-Butyl Ether (MTBE),” Chemosphere, Vol. 49, No. 4, pp. 413-420.
IARC, 1995, “Dry Cleaning, Some Chlorinated Solvents and Other Industrial Chemicals,” IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Available at: monographs.iarc.fr, Accessed 1 May 2008.
ITRC(The Interstate Technology & Regulatory Council) 2005, “Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater,” 2nd ed., Available at: www.itrcweb.org, Accessed 1 May 2008.
Keely, J. F., 1989, “Introduction,” Seminar Publication: Transport and Fate of Contaminants in the Subsurface, Chapter 1, EPA-625-4-89-019, pp. 1-4.
Kolthoff, I. M., Medalia, A. I. and Raaen, H. P., 1951, “The Reaction between Ferrous Iron and Peroxides. IV. Reaction with Potassium Persulfate,” Journal of the American Chemical Society, Vol. 73, No. 4, pp. 1733-1739.
Latimer, W. M., 1952, The Oxidation States of the Elements and their Potentials in Aqueous Solutions, Prentice-Hall, EngleWood Cliffs, NJ.
Liang, C., Bruell, C. J., Marley, M. C. and Sperry, K. L., 2004, “Persulfate Oxidation for In Situ Remediation of TCE. I. Activated by Ferrous Ion with and Without a Persulfate–Thiosulfate Redox Couple,” Chemosphere, Vol. 55, pp. 1213-1223.
Liang, C. J., Bruell, C. J., Marley, M. C. and Sperry, K. L., 2003, “Thermally Activated Persulfate Oxidation of Trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in Aqueous Systems and Soil Slurries,” Soil Sediment Conta., Vol. 12, No. 2, pp. 207-228.
Liang, C. and Bruell, C. J., 2001, “Kinetics of Thermally Activated Persulfate Oxidation of Trichloroethylene (TCE) and 1,1,1-Trichloroehtane (TCA),” Proceedings of The First Interational Conference on Oxidation and Reduction Technologies for In-Situ Treatment of Soil and Groundwater, Canada.
Lien, H. L., Elliott, D. W., Sun, Y. P. and Zhang, W. X., 2006, “Recent Progress in Zero-Valent Iron Nanoparticles for Groundwater Remediation,” Journal of Environmental Engineering, Vol. 16, No. 6, pp. 371-380.
Lien, H. L. and Zhang, W. X., 2001,“Nanoscale Iron Particles for Complete Reduction of Chlorinated Ethenes,” Colloids Surfaces A, Vol. 191, pp. 97-105.
Lien, H. L., 2000, Nanoscale Bimetallic Particles for Dehalogenation of Halogenated Aliphatic Compounds, Doctor Dissertation, Lehigh University, Bethlehem, Pennsylvania.
Lien, H. L. and Zhang, W. X., 1999, “Dechlorination of Chlorinated Methanes in Aqueous Solutions Using Nanoscale Bimetallic Particles,” ASCE: Journal of Environmental Engineering, Vol. 125, No. 11, pp. 1042-1047.
Loraine, G. A., 2001, “Effects of Alcohols and Nonionic Surfactants on the Reduction of PCE and TCE by Zero-Valent Iron,” Water research, Vol. 35, No. 6, pp. 1453-1460.
Lovelace, K. A., 1997,“Evaluation the Technical Impracticability of Groundwater Cleapup,”International Conference on Groundwater Quality Protection, Taipei, pp. 165-179.
Masciangioli, T. and Zhang, W. X., 2003, “Environmental Technologies at the Nanoscale,” Environmental science & technology, Vol. 37, No. 5, pp. 102A-108A.
Matheson, L. J. and Tratnydk, P. G., 1994, “Reductive Dehalogenation of Chlorinated Methanes by Iron Metal,” Environmental science & technology, Vol. 28, No. 12, pp. 2045-2053.
Neta, P., Madhavan, V., Zemel, H. and Fessenden, R., 1977, “Rate Constants and Mechanism of Reaction of SO with Aromatic Compounds,” Journal of the American Chemical Society, Vol. 99, pp. 163-167.
Nyer, E. K., 1999, “Dnapl-Stop the Madness,” Ground Water Monitoring & Remediation, Vol. 19, No. 1, pp.62-66.
O’Hannesin, S. F. and Gillham, R. W., 1998, “Long-Term Performance of an In Situ Iron Wall for Remediation of VOCs,” Ground Water, Vol. 36, No. 1, pp. 164-170.
O’Hannesin, S. F. and Gillham, R. W., 1992, “Permeable Reaction Wall for In Situ Degradation of Halogenated Organic Compounds,” In Proceeding of the 45th Canadian Geotechnical Conference, Canada.
Palmer, C. J., and Johnson, R. L., 1989, “Physical Processes Controlling the Transport of Non-aqueous Phase Liquids in the Subsurface,” Seminar Publication: Transport and Fate of Contaminants in the Subsurface, Chapter 3, EPA-625-4-89-019, pp. 23-28.
Pankow. J. F. and Cherry, J. A., 1996, Dense Chlorinated Solvents, Waterloo Press, Portland Oregon.
Roberts, A. L., Totten, L. A., Arnold, W. A., Burris, D. R. and Campbell, T. J., 1996, “Reductive Elimination of Chlorinated Ethylenes by Zero- Valent Metals,” Environmental science & technology, Vol. 30, No. 8, pp. 2654-2659.
Scherer, M. M., Richter, S., Valentine, R. L. and Alvarez, P. J. J., 2000, “Chemistry and Microbiology of Permeable Reactive Barriers for In Situ Groundwater Clean up,” Critical Reviews in Environmental Science and Technology, Vol. 30, No. 3, pp. 363-411.
Senzaki, T. and Kumagai, Y., 1992, “Removal of Organic Chlorine Chemical Compounds by Use of Some Reduction Processes (The 2nd Report)-Processing Trichloroethylene with Iron Powder,” National Aeronautics and Space Administration, TT-21249, pp. 1-20.
Starr, R. C. and Cherry, J. A., 1994, “In Situ Remediation of Contaminated Ground Water: The Funnel-and-Gate System,” Ground Water, Vol. 32, No. 3, pp. 465-476.
Suthersan, S. S. and Payne, F. C., 2005, In Situ Remediation Engineering, CRC Press, New York.
Suthersan, S. S., 1997, Remediation Engineering Design Concepts, CRC Press, New York.
Thiruvenkatachari, R., Vigneswaran, S. and Naidu, R., 2008, “Permeable Reactive Barrier for Groundwater Remediation,” Journal of Industrial and Engineering Chemistry, Vol. 14, No. 2, pp. 145-156.
Tursman, J. F. and Cork, D. J., 1992, “Subsurface Contaminant Bioremediation Engineering,” Critical Reviews in Environmental Control, Vol. 22, No. 1/2, pp. 1-26.
U.S. EPA., 2006, In-Situ Chemical Oxidation - Engineering Issue, Office of Research and Development National Risk Management Research Laboratory, EPA-600-R-06-072.
U.S. EPA., 2002, Field Applications of in Situ Remediation Technologies:Permeable Reactive Barriers, Office of Solid Waste and Emergency Response, Technology Innovation Office.
U.S. EPA., 1999b, Groundwater Cleanup: Overview of Operation Experience at 28 Sites, Office of Solid Waste and Emergency Response, EPA-542-R-99-006.
U.S. EPA., 1998, Permeable Reactive Barrier Technologies for Contaminant Remediation, Office of Research and Development, EPA-600-R-98-125.
U.S. EPA., 1997a, Permeable Reactive Subsurface Barriers for the Interception and Remediation of Chlorinated Hydrocarbon and Chromium (VI) Plumes in Ground Water, National Risk Management Research Laboratory and Office of Research and Development, EPA-600-F-97-008.
U.S. EPA., 1989e, Ground Water Research, Research Description, EPA-600-9-89-088.
Vogel, T. M., Criddle, C. S. and Mccarty, P. L., 1987, “Transformation of Halogenated Aliphatic Compounds,” Environmental science & technology, Vol. 21, No. 8, pp. 722-736.
Wilson, J. L. and Lin, J. 1997, “Duelling Time Constants:Competing Processes in Aquifer Contamination and Remediation,” International Conference on Groundwater Quality Protection, Taipei, pp. 269-303.
Zhang, W. X., Wang, C. B. and Lien, H. L., 1998, “Treatment of Chlorinated Organic Comtaminants with Nanoscale Bimetallic Particles,” Catalysis Today, Vol. 40, pp. 387-395.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top