[1] Ineke, M., "Nanotechnology in Europe: Scientific Trends and Organizational Dynamics", Nanotech. 1999, 10, 1.
[2] Gleiter, H., "Nanostructured Materials: Basic Concepts and Microstructure", Acta Mater. 2000, 48, 1.
[3] Isaac, O. J.; Olivia, T.; Julia, L.; Victor, F. P., "Engineered Nonviral Nanocarriers for Intracellular Gene Delivery Applications", Biomed. Mater. 2012, 7, 054106.
[4] Chen, H. M.; Liu, R. S., "Architecture of Metallic Nanostructures: Synthesis Strategy and Specific Applications", J. Phys. Chem. C 2011, 115, 3513.
[5] Baletto, F.; Ferrando, R., "Structural Properties of Nanoclusters: Energetic, Thermodynamic, and Kinetic Effects", Rev. Mod. Phys. 2005, 77, 371.
[6] Roduner, E., "Size Matters: Why Nanomaterials Are Different", Chem. Soc. Rev. 2006, 35, 583.
[7] Mukhopadhyay, A.; Basu, B., "Consolidation – Microstructure – Property Relationships in Bulk Nanoceramics and Ceramic Nanocomposites: a Review", Mater. Rev. 2007, 52, 257.
[8] Buffat, P.; Borel, J. P., "Size Effect on the Melting Temperature of Gold Particles", Phys. Rev. A 1976, 13, 2287.
[9] Li, Y.; Boone, E.; El-Sayed, M. A., "Size Effects of PVP−Pd Nanoparticles on the Catalytic Suzuki Reactions in Aqueous Solution", Langmuir 2002, 18, 4921.
[10] Chao, M. C.; Lin, H. P.; Sheu, H. S.; Mou, C. Y., "A Study of Morphology of Mesoporous Silica SBA-15", In Stud. Surf. Sci. Catal. 2002, 141, 387.
[11] Kubo, R., "Electronic Properties of Metallic Fine Particles I", J. Phys. Soc. Jpn. 1962, 17, 975.
[12] Daniel, M. C.; Astruc, D., "Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology", Chem. Rev. 2004, 104, 293.
[13] Wang, F.; Banerjee, D.; Liu, Y.; Chen, X.; Liu, X., " Upconversion Nanoparticles in Biological Labeling, Imaging, and Therapy ", Analyst 2010, 135, 1839.
[14] Barroso, M. M., "Quantum Dots in Cell Biology", J. Histochem. Cytochem. 2011, 59, 237.
[15] Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H., " Quantum dot Bioconjugates for Imaging, Labelling and Sensing ", Nat. Mater. 2005, 4, 435.
[16] Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S., "Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics", Science 2005, 307, 538.
[17] Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N., "Probing the Cytotoxicity of Semiconductor Quantum Dots", Nano Lett. 2004, 4, 11.
[18] Song, K.; Kong, X.; Liu, X.; Zhang, Y.; Zeng, Q.; Tu, L.; Shi, Z.; Zhang, H., " Aptamer Optical Biosensor without Bio-breakage Using Upconversion Nanoparticles as Donors ", Chem. Commun. 2012, 48, 1156.
[19] Wang, F.; Liu, X., "Upconversion Multicolor Fine-Tuning: Visible to Near-Infrared Emission from Lanthanide-Doped NaYF 4 Nanoparticles", J. Am. Chem. Soc. 2008, 130, 5642.
[20] Van der Ende, B. M.; Aarts, L.; Meijerink, A., "Lanthanide Ions as Spectral Converters for Solar Cells", Phys. Chem. Chem. Phys. 2009, 11, 11081.
[21] Wang, F.; Liu, X., "Recent Advances in the Chemistry of Lanthanide-doped Upconversion Nanocrystals", Chem. Soc. Rev. 2009, 38, 976.
[22] Dong, H.; Sun, L. D.; Yan, C. H., "Energy Transfer in Lanthanide Upconversion Studies for Extended Optical Applications", Chem. Soc. Rev. 2015, 44, 1608.
[23] Wang, G.; Peng, Q.; Li, Y., "Upconversion Luminescence of Monodisperse CaF 2 :Yb 3+ /Er 3+ Nanocrystals", J. Am. Chem. Soc. 2009, 131, 14200.
[24] Chen, D.; Lei, L.; Zhang, R.; Yang, A.; Xu, J.; Wang, Y., "Intrinsic Single-band Upconversion Emission in Colloidal Yb/Er(Tm):Na 3 Zr(Hf)F 7 nanocrystals", Chem. Commun. 2012, 48, 10630.
[25] Wang, Y. F.; Liu, G. Y.; Sun, L. D.; Xiao, J. W.; Zhou, J. C.; Yan, C. H., "Nd 3+ -Sensitized Upconversion Nanophosphors: Efficient In Vivo Bioimaging Probes with Minimized Heating Effect", ACS Nano 2013, 7, 7200.
[26] Wang, L.; Yan, R.; Huo, Z.; Wang, L.; Zeng, J.; Bao, J.; Wang, X.; Peng, Q.; Li, Y., "Fluorescence Resonant Energy Transfer Biosensor Based on Upconversion-Luminescent Nanoparticles", Angew. Chem. Int. Ed. 2005, 44, 6054.
[27] Wang, C.; Cheng, L.; Liu, Z., "Drug Delivery with Upconversion Nanoparticles for Multi-functional Targeted Cancer Cell Imaging and Therapy", Biomaterials 2011, 32, 1110.
[28] Chen, G.; Shen, J.; Ohulchanskyy, T. Y.; Patel, N. J.; Kutikov, A.; Li, Z.; Song, J.; Pandey, R. K.; Å gren, H.; Prasad, P. N.; Han, G., "(α-NaYbF 4 :Tm 3+ )/CaF 2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging", ACS Nano 2012, 6, 8280.
[29] Tian, G.; Gu, Z.; Zhou, L.; Yin, W.; Liu, X.; Yan, L.; Jin, S.; Ren, W.; Xing, G.; Li, S.; Zhao, Y., "Mn 2+ Dopant-Controlled Synthesis of NaYF 4 :Yb/Er Upconversion Nanoparticles for in Vivo Imaging and Drug Delivery", Adv. Mater. 2012, 24, 1226.
[30] Shan, J.; Budijono, S. J.; Hu, G.; Yao, N.; Kang, Y.; Ju, Y.; Prud''homme, R. K., "Pegylated Composite Nanoparticles Containing Upconverting Phosphors and meso-Tetraphenyl porphine (TPP) for Photodynamic Therapy", Adv. Funct. Mater. 2011, 21, 2488.
[31] Nam, S. H.; Bae, Y. M.; Park, Y. I.; Kim, J. H.; Kim, H. M.; Choi, J. S.; Lee, K. T.; Hyeon, T.; Suh, Y. D., "Long-Term Real-Time Tracking of Lanthanide Ion Doped Upconverting Nanoparticles in Living Cells", Angew. Chem. Int. Ed. 2011, 50, 6093.
[32] Zhan, Q.; Qian, J.; Liang, H.; Somesfalean, G.; Wang, D.; He, S.; Zhang, Z.; Andersson-Engels, S., "Using 915 nm Laser Excited Tm 3+ /Er 3+ /Ho 3+ -Doped NaYbF 4 Upconversion Nanoparticles for In Vitro and Deeper In Vivo Bioimaging without Overheating Irradiation", ACS Nano 2011, 5, 3744.
[33] Xie, X.; Liu, X., "Photonics: Upconversion Goes Broadband", Nat. Mater. 2012, 11, 842.
[34] Wang, R.; Li, X.; Zhou, L.; Zhang, F., "Epitaxial Seeded Growth of Rare-Earth Nanocrystals with Efficient 800 nm Near-Infrared to 1525 nm Short-Wavelength Infrared Downconversion Photoluminescence for In Vivo Bioimaging", Angew. Chem. Int. Ed. 2014, 53, 12086.
[35] Weissleder, R., "A Clearer vision for In Vivo Imaging", Nat. Biotech. 2001, 19, 316.
[36] Chen, G.; Ohulchanskyy, T. Y.; Liu, S.; Law, W. C.; Wu, F.; Swihart, M. T.; Å gren, H.; Prasad, P. N., "Core/Shell NaGdF 4 :Nd 3+ /NaGdF 4 Nanocrystals with Efficient Near-Infrared to Near-Infrared Downconversion Photoluminescence for Bioimaging Applications", ACS Nano 2012, 6, 2969.
[37] McNichols, R. J.; Gowda, A.; Kangasniemi, M.; Bankson, J. A.; Price, R. E.; Hazle, J. D., "MR Thermometry-based Feedback Control of Laser Interstitial Thermal Therapy at 980 nm", Lasers Surg. Med. 2004, 34, 48.
[38] Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y., "New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging", Chem. Rev. 2010, 110, 2620.
[39] Wu, X.; Lee, H.; Bilsel, O.; Zhang, Y.; Li, Z.; Chen, T.; Liu, Y.; Duan, C.; Shen, J.; Punjabi, A.; Han, G., "Tailoring Dye-sensitized Upconversion Nanoparticles Excitation Bands towards Excitation Wavelength Selective Imaging". Nanoscale 2015, 7, 18424.
[40] Kushida, T.; Marcos, H. M.; Geusic, J. E., "Laser Transition Cross Section and Fluorescence Branching Ratio for Nd 3+ in Yttrium Aluminum Garnet", Phys. Rev. 1968, 167, 289.
[41] Shen, J.; Chen, G.; Vu, A. M.; Fan, W.; Bilsel, O. S.; Chang, C. C.; Han, G., "Engineering the Upconversion Nanoparticle Excitation Wavelength: Cascade Sensitization of Tri-doped Upconversion Colloidal Nanoparticles at 800 nm", Adv. Opt. Mater. 2013, 1, 644.
[42] Boyer, J. C.; Vetrone, F.; Cuccia, L. A.; Capobianco, J. A., "Synthesis of Colloidal Upconverting NaYF 4 Nanocrystals Doped with Er 3+ , Yb 3+ and Tm 3+ , Yb 3+ via Thermal Decomposition of Lanthanide Trifluoroacetate Precursors", J. Am. Chem. Soc. 2006, 128, 7444.
[43] Wang, M.; Abbineni, G.; Clevenger, A.; Mao, C.; Xu, S., "Upconversion Nanoparticles: Synthesis, Surface Modification, and Biological Applications", Nanomedicine 2011, 7, 710.
[44] Bogdan, N.; Rodriguez, E. M.; Sanz-Rodriguez, F.; Iglesias de la Cruz, M. a. C.; Juarranz, A.; Jaque, D.; Sole, J. G.; Capobianco, J. A., "Bio-functionalization of Ligand-free Upconverting Lanthanide Doped Nanoparticles for Bio-imaging and Cell Targeting", Nanoscale 2012, 4, 3647.
[45] Chen, G.; Qiu, H.; Prasad, P. N.; Chen, X., "Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics", Chem. Rev. 2014, 114, 5161.
[46] Yi, G. S.; Chow, G. M., "Synthesis of Hexagonal-Phase NaYF 4 :Yb,Er and NaYF 4 :Yb,Tm Nanocrystals with Efficient Up-Conversion Fluorescence", Adv. Func. Mater. 2006, 16, 2324.
[47] Chen, Z.; Chen, H.; Hu, H.; Yu, M.; Li, F.; Zhang, Q.; Zhou, Z.; Yi, T.; Huang, C., "Versatile Synthesis Strategy for Carboxylic Acid−functionalized Upconverting Nanophosphors as Biological Labels", J. Am. Chem. Soc. 2008, 130, 3023.
[48] Bogdan, N.; Vetrone, F.; Ozin, G. A.; Capobianco, J. A., "Synthesis of Ligand-Free Colloidally Stable Water Dispersible Brightly Luminescent Lanthanide-Doped Upconverting Nanoparticles", Nano Lett. 2011, 11, 835.
[49] Qian, H. S.; Zhang, Y., "Synthesis of Hexagonal-Phase Core−Shell NaYF 4 Nanocrystals with Tunable Upconversion Fluorescence", Langmuir 2008, 24, 12123.
[50] Dou, Q.; Idris, N. M.; Zhang, Y., "Sandwich-structured Upconversion Nanoparticles with Tunable Color for Multiplexed Cell Labeling", Biomaterials 2013, 34, 1722.
[51] Chen, X.; Peng, D.; Ju, Q.; Wang, F., "Photon Upconversion in Core-Shell Nanoparticles", Chem. Soc. Rev. 2015, 44, 1318.
[52] Auzel, F., "Upconversion and Anti-Stokes Processes with f and d Ions in Solids", Chem. Rev. 2004, 104, 139.
[53] Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Muller, J. O.; Schlogl, R.; Carlsson, J. M., "Graphitic Carbon Nitride Materials: Variation of Structure and Morphology and Their Use as Metal-free Catalysts", J. Mater. Chem. 2008, 18, 4893.
[54] Zhu, J.; Xiao, P.; Li, H.; Carabineiro, S. A. C., "Graphitic Carbon Nitride: Synthesis, Properties, and Applications in Catalysis", ACS App. Mater. & Inter. 2014, 6, 16449.
[55] Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M., "A Metal-free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light", Nat. Mater. 2009, 8, 76.
[56] Niu, P.; Yin, L. C.; Yang, Y. Q.; Liu, G.; Cheng, H. M., "Increasing the Visible Light Absorption of Graphitic Carbon Nitride (Melon) Photocatalysts by Homogeneous Self-Modification with Nitrogen Vacancies", Adv. Mater. 2014, 26, 8046.
[57] Martin, D. J.; Qiu, K.; Shevlin, S. A.; Handoko, A. D.; Chen, X.; Guo, Z.; Tang, J., "Highly Efficient Photocatalytic H 2 Evolution from Water using Visible Light and Structure-Controlled Graphitic Carbon Nitride", Angew. Chem. Int. Ed. 2014, 53, 9240.
[58] Lin, L. S.; Cong, Z. X.; Li, J.; Ke, K. M.; Guo, S. S.; Yang, H. H.; Chen, G. N., "Graphitic-phase C3N4 Nanosheets as Efficient Photosensitizers and pH-responsive Drug Nanocarriers for Cancer Imaging and Therapy", J. Mater. Chem. B 2014, 2, 1031.
[59] Hamilton, A.; Hortobagyi, G., "Chemotherapy: What Progress in the Last 5 Years?", J. Clin. Oncol. 2005, 23, 1760.
[60] Silva, Zenildo S.; Bussadori, Sandra K.; Fernandes, K. Porta S.; Huang, Y. Y.; Hamblin, Michael R., "Animal Models for Photodynamic Therapy (PDT)", Biosci. Rep. 2015, 35.
[61] Kato, H., "Photodynamic Therapy for Lung Cancer—A Review of 19 Years'' Experience", J. Photochem. Photobiol. B 1998, 42, 96.
[62] Vij, R.; Triadafilopoulos, G.; Owens, D. K.; Kunz, P.; Sanders, G. D., "Cost-effectiveness of Photodynamic Therapy for High-grade Dysplasia in Barrett''s Esophagus", Gastrointest. Endosc. 2004, 60, 739.
[63] Skyrme, R. J.; French, A. J.; Datta, S. N.; Allman, R.; Mason, M. D.; Matthews, P. N., "A Phase-1 Study of Sequential Mitomycin C and 5–aminolaevulinic acid-mediated Photodynamic Therapy in Recurrent Superficial Bladder Carcinoma", BJU Int. 2005, 95, 1206.
[64] Schuller, D. E.; McCaughan, J. S.; Jr; Rock, R. P., "Photodynamic Therapy in Head and Neck Cancer", Arch. Otolaryngol. 1985, 111, 351.
[65] Rhodes, L. E.; de Rie, M.; Enström, Y., "Photodynamic Therapy using Topical Methyl Aminolevulinate vs Surgery for Nodular Basal Cell Carcinoma: Results of a Multicenter Randomized Prospective Trial", Arch. Dermatol. 2004, 140, 17.
[66] Oseroff, A. R.; Blumenson, L. R.; Wilson, B. D.; Mang, T. S.; Bellnier, D. A.; Parsons, J. C.; Frawley, N.; Cooper, M.; Zeitouni, N.; Dougherty, T. J., "A Dose Ranging Study of Photodynamic Therapy with Porfimer Sodium (Photofrin® ) for Treatment of Basal Cell Carcinoma ", Lasers Surg. Med. 2006, 38, 417.
[67] Qian, H. S.; Guo, H. C.; Ho, P. C. L.; Mahendran, R.; Zhang, Y., "Mesoporous-Silica-Coated Up-Conversion Fluorescent Nanoparticles for Photodynamic Therapy", Small 2009, 5, 2285.
[68] Selvasekar, C. R.; Birbeck, N.; McMillan, T.; Wainwright, M.; Walker, S. J., "Photodynamic Therapy and the Alimentary Tract", Aliment. Pharmacol. Ther. 2001, 15, 899.
[69] Frangioni, J. V., "In Vivo Near-Infrared Fluorescence Imaging", Curr. Opin. Chem. Biol. 2003, 7, 626.
[70] Wang, Y.; Wang, H.; Liu, D.; Song, S.; Wang, X.; Zhang, H., "Graphene Oxide Covalently Grafted Upconversion Nanoparticles for Combined NIR Mediated Imaging and Photothermal/photodynamic Cancer Therapy", Biomaterials 2013, 34, 7715.
[71] Wu, S.; Han, G.; Milliron, D. J.; Aloni, S.; Altoe, V.; Talapin, D. V.; Cohen, B. E.; Schuck, P. J., "Non-blinking and Photostable Upconverted Luminescence from Single Lanthanide-doped Nanocrystals", Proc. Natl. Acad. Sci. 2009, 106, 10917.
[72] Yu, M.; Li, F.; Chen, Z.; Hu, H.; Zhan, C.; Yang, H.; Huang, C., "Laser Scanning Up-Conversion Luminescence Microscopy for Imaging Cells Labeled with Rare-Earth Nanophosphors", Anal. Chem. 2009, 81, 930.
[73] Lim, S. F.; Riehn, R.; Ryu, W. S.; Khanarian, N.; Tung, C. K.; Tank, D.; Austin, R. H., "In Vivo and Scanning Electron Microscopy Imaging of Upconverting Nanophosphors in Caenorhabditis elegans", Nano Lett. 2006, 6, 169.
[74] Idris, N. M.; Gnanasammandhan, M. K.; Zhang, J.; Ho, P. C.; Mahendran, R.; Zhang, Y., "In Vivo Photodynamic Therapy Using Upconversion Nanoparticles as Remote-controlled Nanotransducers", Nat. Med. 2012, 18, 1580.
[75] Lucky, S. S.; Muhammad Idris, N.; Li, Z.; Huang, K.; Soo, K. C.; Zhang, Y., "Titania Coated Upconversion Nanoparticles for Near-Infrared Light Triggered Photodynamic Therapy", ACS Nano 2015, 9, 191.
[76] Fultz, B.; Howe, J., "The TEM and Its Optics", In Transmission Electron Microscopy and Diffractometry of Materials, Springer Berlin Heidelberg: 2008; Chapter 2, 61.
[77] Williams, D. B.; Carter, C. B., "The Instrument", In Transmission Electron Microscopy, Springer US: 2009; Chapter 8, 141.
[78] 林麗娟 ''X 光繞射原理及其應用'', 工業材料 1994, 86, 100.[79] 鄭信民; 林麗娟 ''X 光繞射應用簡介'', 工業材料 2002, 181, 100.[80] Skook D. A.; West D. M.; Holler J. F.; Crouch S. R. "Ultraviolet–Visible Spectroscopy", Fundamentals of Analytic Chemistry 8 th edition, 2004, 786.
[81] Hersberg G. "Molecular Spectra and Molecular Structure II", Infrared and Roman Spectra of Polyatomic Molecules, Van Nostrand, 1945, 632.
[82] Skook D. A.; Holler J. F.; Crouch S. R., ''Molecular Luminescence Spectrometry'', In Principles of Instrumental Analysis, 6 th edition, 1992, 399.
[83] http://www.bioma-tek.com/tw/technology.php?act=view&no=34 (Bio Materials Analysis Technology)
[84] 美嘉儀器-共軛焦小組, ''LEICA Confocal Laser Scanning Microscope Technical & Application'', 2000, 3.
[85] Wang, F.; Deng, R.; Wang, J.; Wang, Q.; Han, Y.; Zhu, H.; Chen, X., Liu, X., "Tuning Upconversion Through Energy Migration in Core–Shell Nanoparticles". Nat. Mater. 2011, 10, 968.
[86] Wang, G. F.; Peng, Q.; Li, Y. D., "Lanthanide-Doped Nanocrystals: Synthesis, Optical-Magnetic Properties, and Applications", Accounts Chem Res. 2011, 44, 322.
[87] Kramer, K. W.; Biner, D.; Frei, G.; Gudel, H. U.; Hehlen, M. P.; Luthi, S. R., "Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors", Chem. Mater. 2004, 16, 1244.
[88] Li, C.; Quan, Z.; Yang, J.; Yang, P.; Lin, J., "Highly Uniform and Monodisperse β-NaYF 4 :Ln 3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) Hexagonal Microprism Crystals: Hydrothermal Synthesis and Luminescent Properties", Inorg. Chem. 2007, 46, 6329.
[89] Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G., "Simultaneous Phase and Size Control of Upconversion Nanocrystals Through Lanthanide Doping", Nature 2010, 463, 1061.
[90] Barman, S.; Sadhukhan, M., "Facile Bulk Production of Highly Blue Fluorescent Graphitic Carbon Nitride Quantum Dots and Their Application as Highly Selective and Sensitive Sensors for the Detection of Mercuric and Iodide Ions in Aqueous Media", Mater. Chem. 2012, 22, 21832.
[91] Wang, W.; Yu, J. C.; Shen, Z.; Chan, D. K. L.; Gu, T., "g-C 3 N 4 Quantum Dots: Direct Synthesis, Upconversion Properties and Photocatalytic Application", Chem. Commun. 2014, 50, 10148.
[92] Zhou, J.; Yang, Y.; Zhang, C. Y., "A Low-Temperature Solid-Phase Method to Synthesize Highly Fluorescent Carbon Nitride Dots with Tunable Emission", Chem. Commun. 2013, 49, 8605.
[93] Ge, L.; Zuo, F.; Liu, J.; Ma, Q.; Wang, C.; Sun, D.; Bartels, L.; Feng, P., "Synthesis and Efficient Visible Light Photocatalytic Hydrogen Evolution of Polymeric g-C3N4 Coupled with CdS Quantum Dots", Phys. Chem. C 2012, 116, 13708.
[94] Ma, T. Y.; Tang, Y.; Dai, S.; Qiao, S. Z., "Proton-Functionalized Two-Dimensional Graphitic Carbon Nitride Nanosheet: An Excellent Metal-/Label-Free Biosensing Platform", Small 2014, 10, 2382.
[95] Bogdan, N.; Vetrone, F.; Ozin, G. A.; Capobianco, J. A., "Synthesis of Ligand-Free Colloidally Stable Water Dispersible Brightly Luminescent Lanthanide-Doped Upconverting Nanoparticles", Nano Lett. 2011, 11, 835.
[96] Hartono, S. B.; Gu, W.; Kleitz, F.; Liu, J.; He, L.; Middelberg, A. P.; Yu, C.; Lu, G. Q.; Qiao, S. Z., "Poly-L-Lysine Functionalized Large Pore Cubic Mesostructured Silica Nanoparticles as Biocompatible Carriers for Gene Delivery", ACS nano. 2012, 6, 2104.
[97] Perelman, A.; Wachtel, C.; Cohen, M.; Haupt, S.; Shapiro, H.; Tzur, A., "JC-1: Alternative Excitation Wavelengths Facilitate Mitochondrial Membrane Potential Cytometry", Cell Death Dis. 2012, 3, 430.