跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 10:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳秀玉
論文名稱:簡單酚類化合物及黑加崙之花青素對活性雙羰基化合物之捕捉作用
論文名稱(外文):Trapping of Reactive Dicarbonyl Compound by simple phenols and anthocyanins in blackcurrant
指導教授:羅至佑
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:食品科學系研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
中文關鍵詞:雙羰基化合物黑加崙花青素
相關次數:
  • 被引用被引用:0
  • 點閱點閱:464
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來活性雙羰基化合物 (Reactive dicarbonyl species,RCS) 越來越受重視,已有研究指出此化合物在人體內累積會造成細胞傷害,長時間在體內中會使蛋白質糖化,形成不可逆的糖化終產物 (Advanced glycation end product,AGE) ,人體內的 AGE 濃度高低,已被證實與許多疾病的標記因子成正比,如糖尿病患者,其血漿中之雙羰基化合物高於正常人。因此本實驗目的為找尋可以有效減少甲基乙二醛 (Methylglyoxal,MG) 化合物的物質,可以將體內及體外的 MG 清除,避免細胞傷害及 AGE 的生成。在此實驗中,是以 21 種酚類化合物及 aminoguanidine 、黑加崙、荔枝殼萃取物 (oligonol) 做為主要探討的原料。並利用 CS ChemDraw Ultra 11.0.1 software (CSCDU) 軟體計算 21 種酚類化合物的化學結構式中苯環碳上的電荷分佈,探討可用此軟體初步判定捕捉 MG 之能力,結果顯示電荷密度負值越大者可能具有捕捉 MG 能力,故此軟體是可有效推測捕捉 MG 的一個很好工具。
在進行 MG 捕捉能力測定中,是在模擬生理的條件下所進行,以 37 ℃ , Phosphate buffered saline、 pH 7.4 下反應,而 MG 分子小具揮發性,在紫外光/可見光波長下無吸收。本實驗以 o-Phenylenediamine 與 MG 進行縮合反應形成 2-Methylquinoxaline (2MQ) 衍生物,以 HPLC 進行分析,則可在 313 nm 下被偵測出。
結果顯示黑加崙萃取物與荔枝殼萃取物 (oligonol) 分別減少 MG 百分比為 36.11 ± 7.19 % 、 47.68 ± 0.66 % ,兩者都能有效減少 MG 含量,並以黑加崙萃取物做以下實驗,藉由分離純化黑加崙萃取物中的主要花青素,探討 MG 減少百分比及花青素與 MG 有無形成加成反應。黑加崙萃取物先經 Sephadex LH-20 chromatography 管柱層析,此分離物經 LC-ESIMS 分析可得黑加崙的主要花青素為 Delphinidin-3-O-rutinoside (D3R) 及 Cyanidin 3-O-rutinoside (C3R) 。將此片段的樣品再經一次逆相管柱層析,分別收集主要兩個片段並減壓濃縮後冷凍乾燥,即可得到純化的花青素粉末。將收集到的 D3R 與 C3R 分別在 37 ℃ 水浴下反應及 D3R 、 C3R 與 MG 於 37 ℃ 水浴反應,探討 D3R 、 C3R 對熱的穩定性及與 MG 之反應變化,結果顯示在 37 ℃ 水浴下, D3R 、 C3R 減少的百分比分別為 28.60 ± 2.30 % 、 21.26 ± 1.07 % ,在37 ℃水浴下與 MG 反應, D3R 、 C3R 減少的百分比分別為 96.52 ± 0.21 %、 97.67 ± 0.08 %,表示花青素對熱很不穩定,在與 MG 反應中,除了熱不穩定而大量裂解外,花青素與 MG 的反應也導致花青素含量減少。 MG 減少百分比, D3R 、 C3R 分別為 46.72 ± 0.76 %、 49.80 ± 0.56 %,顯示 C3R 反應效果較好,除了解釋 D3R 在B環中多了羥基,導致捕捉 MG 能力不同,經 LC-ESIMS 分析發現, D3R 、 C3R 可分別接上一個 MG ,表示有加成反應的進行。


Reactive dicarbonyl species have drawn much attention in recent decades, it has been demonstrated that reactive dicarbonyl species irreversibly modified proteins over time and yielded the advanced glycation endproducts (AGEs). AGEs in the body were confirmed to be proportional to many diseases』 markers. For example, blood levels of dicarbonyl were found higher in diabetic patients than in healthy individuals. The aim of the present study is to find the substances that can reduce methylglyoxal (MG) in vivo or in vitro, in order to prevent cell injury and the AGE production. Twenty-one simple phenols, extracts of black currant, and oligonol have been evaluated for MG trapping ability. The relationships between reaction activity and physical and chemical properties of phenolic compounds were discussed further. Computer software, CS ChemDraw Ultra 11.0.1 (Copyright c 1986-2007 by Cambridge Soft Corporation (CS)) was used for the calculation of electron charges.
MG trapping was done under simulated physiological conditions (pH 7.4 and 37 °C). MG molecule is small and volatile, therefore no absorption in UV/Vis. The quantification of MG was based on the detection of its derivative compound, 2-methylquinoxaline (2MQ), at 313 nm in HPLC analysis.
The results showed that after reacting with black currant extract and oligonol, MG reduction rates are 36.11 ± 7.19 % and 47.68 ± 0.66 %, respectively. Both showed effective MG trapping ability. Black currant extract was then further separated and purified to obtain the main anthocyanidins within to investigate the MG trapping percentages and the addition reaction between individual anthocyanidin and MG. Black currant extract was first separated using Sephadex LH-20 chromatography. After analysis by LC-ESIMS, Delphinidin-3-O-rutinoside (D3R) and Cyanidin 3-O-rutinoside (C3R) were identified as main anthocyanidins. This particular fraction then passed through HPLC sorbents octadecyl (C18) 15-40μm chromatography again for collection of D3R and C3R. In order to study the stability of D3R and C3R under heat, both were set in 37 ℃, reaction for 1 hour. The reduction rates of D3R and C3R were 28.60 ± 2.30 % and 21.26 ± 1.07 %, respectively. D3R and C3R also reacted with MG in 37 ℃ for 1 hour. The reduction rate of D3R and C3R were 96.52 ± 0.21 % and 97.67 ± 0.08 %, respectively. Therefore, D3R and C3R were not heat-stable and reacted with MG. The MG trapping ability of D3R and C3R were 46.72 ± 0.76 % and 49.80 ± 0.56 %. C3R showed better ability than D3R did. This illustrated that one extra OH existed on B ring of D3R caused the difference in MG trapping ability. It was also found that after reaction, D3R and C3R appeared to have one MG addition when analyzed by LC-ESIMS.








致謝 I
摘要 II
Abstract IV
簡寫表 VI
目錄 VII
表目錄 XI
圖目錄 XII
壹、前言 1
貳、文獻回顧 3
一、活性雙羰基化合物 3
(一) 來源 3
(二) 與 AGE 的關係 4
(三) 雙羰基化合物與糖化終產物對生物體之影響 8
(四) 抑制 AGE 生成物質 9
二、酚類化合物簡介 12
(一) 21 種酚類化合物 13
(二) 花青素 14
(三) 花青素之構造變化 15
(四) 原花青素 17
三、化學結構式中苯環碳上的電荷分佈 17
四、實驗材料簡介 19
(一) 21 種酚類化合物 19
(二) 黑加崙 (black currant) 19
(三) 荔枝殼之萃取物 (oligonol) 19
參、研究目的與實驗架構 21
一、研究目的 21
二、實驗架構 22
肆、實驗材料與方法 24
一、實驗材料 24
(一) 21種酚纇化合物 24
(二) 黑加崙萃取物 24
(三) 荔枝殼萃取物 (oligonol) 24
二、化學藥品與溶劑 24
(一) 試藥 24
(二) 溶劑 26
三、儀器設備 26
(一) 一般儀器設備 26
(二) 化學分析相關儀器設備 27
四、實驗方法 29
(一) 簡單酚類化合物和兒茶素及 aminoguanidine 對 MG 捕捉能力測定 29
(二)以 LC-ESIMS 分析 2,4,6-trihydroxybenzoic acid 與 MG 之結合能力 29
(三) CS ChemDraw Ultra 11.0.1 software (CSCDU) 軟體計算化學結構式中苯環碳上的電荷分佈 30
(四) 多酚類化合物對 MG 捕捉能力測定 30
(五) 分離及純化黑加崙萃取物 32
(六) D3R 與 C3R 對 MG 捕捉能力測定 34
伍、結果與討論 37
一、以 HPLC 定量 Methylglyoxal (MG) 之方法 37
二、20 種簡單酚類化合物在苯環上的電荷密度及 22 種化合物與 MG 反應後剩餘之含量百分比 39
(一) 21 種酚類化合物及 aminoguanidine 與 MG 反應剩下含量百分比 39
(二) 以 LC-ESIMS 分析 2,4,6-trihydroxybenzoic acid 與 MG 之結合能力 41
(三) 20 種簡單酚類化合物苯環上碳的電荷分佈 43
(四) (-)-Epicatechin (EC) 的電荷密度 44
(五) 黑加崙中的主要花青素的電荷密度 45
三、黑加崙和荔枝殼萃取物 (oligonol) 之 MG 捕捉能力測定 46
四、分離純化花青素 49
(一) Sephadex LH-20 chromatography 49
(二) HPLC sorbents octadecyl (C18) 15-40 μm chromatography 純化片段Ⅳ當中的主要花青素 61
五、D3R 及 C3R 與 MG 反應 63
(一) D3R 及 C3R 在 37 ℃ 下之熱穩定性 64
(二) D3R 及 C3R 在37 ℃ 下與 MG 反應其 D3R 及 C3R之減少百分比 65
六、D3R 及 C3R 與 MG 反應後 MG 減少百分比 66
(一) MG 減少百分比 66
(二) 單因子變異數分析 68
七、D3R 及 C3R 與 MG 的結合能力 69
八、D3R 及 C3R 與 MG 結合的化合物以 LC-MSMS 分析 76
陸、結論與後續研究與建議 81
一、結論 81
二、後續研究與建議 82
柒、參考文獻 83




柒、參考文獻
邊玲, 范培紅.葡萄籽提取物的化學成分及藥理活性研究概況. 食品與藥品. 2005, 7, 4, 20-22.
廖佩如。2001。發酵荔枝酒品質及色澤變化之探討。國立台灣大學食品科技研究所碩士論文。
劉家瑞。2001。荔枝果汁混濁穩定性之研究。國立台灣大學園藝學研究所碩士論文。
哈伯氏生物化學(上冊),原著Murray/Granner/Mayes/Rodwell, 編譯翁鵬傑、彭俊明、陳玉燕、許碧蘭、黃東裕、盧虹佑, 校閱黃蔭樨。藝軒出版。台北市。1993。
黃亦敏。2008。數種植物萃取物及 2,4,6-Trihydroxybenzoic acid 對活性雙羰基化合物之捕捉作用。國立台灣大學食品科技研究所碩士論文。
黃為瑜。2003。紅色鄉土蔬菜中類黃酮抗氧化力及其對淋巴球DNA氧化損傷的保護作用。中國文化大學生活應用科學研究所碩士論文。
周廷光。地球村常見果實彩色圖說。楷博出版。台北縣永和市。2003。
張証維。2009。荔枝果實多酚萃取物具保護肝臟功能。國立嘉義大學生物醫藥科學研究所碩士論文。
Ahmad, M. S.; Ahmed, N. Antiglycation properties of aged garlic extract: possible role in prevention of diabetic complications. J. Nutr. 2006, 136, 796S-799S.
Beattie, J.; Crozier, A.; Duthie, G. G. Potential health benefits of berries. Curr. Nutr. & Food Sci. 2005, 1, 71-86.
Bednarski, W.; Jedrychowski, L.; Hammond. E. G.; Nikolov. Z. L. A method for the determination of α-Dicarbonyl compounds. J Dairy Sci .1989, 72, 2474-2477.
Beisswenger, P.J.; Howell, S.K.; Touchette, S. L.; Szwergold, B. S. Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes. 1999, 48, 198-203.
Bogs, J.; Downey, M. O.; Harvey, J. S.; Ashton, A. R.; Tanner, G. J.; Robinson, S. P. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiol. 2005, 139, 652-663.
Calcutt, N. A.; Cooper, M. E., Kern, T. S., Schmidt, A. M. Therapies for hyperglycaemia-induced diabetic complications: from animal models to clinical trials. Nature Reviews Drug Discovery. 2009, 8, 417-430.
Castaneda-Ovando, A.; Pacheco-Hernandez, M. L.; Paez-Hernandez, M. E.; Rodriguez, J. A.; Galan-Vidal, C. A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871.
Chellan. P.; Nagaraj, R. H.; Protein crosslinking by the maillard reaction: dicarbonyl- derived imidazolium crosslinks in aging and diabetes. Archives of Biochem. and Biophysics. 1999, 368, 98–104.
Duan, X.; Wu, G.; Jiang, Y. Evaluation of the antioxidant properties of litchi fruit phenolics in relation to pericarp browning prevention. Molecules. 2007, 12, 759-771.
Elliott, S.S.; Keim, N. K.; Stern, J. S.; Teff, K.; Havel, P. J. Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr. 2002, 76, 911–922.
Fan, X.; Zhang, J.; Theves, M.; Strauch, C.; Nemet, I.; Liu, X.; Qian, J.; Giblin, F. J.; Monnier, V. M. Mechanism of lysine oxidation in human lens crystallins during aging and in diabetes. J Biol Chem. 2009, 284, 1-21.
Fujii, H.; Nishioka, H.; Wakame, K.; Magnuson, BA.; Roberts, A. Acute, subchronic and genotoxicity studies conducted with Oligonol, an oligomerized polyphenol formulated from lychee and green tea extracts. Food and Chem. Toxicology. 2008, 46, 3553–3562
Gabetta, B.; Fuzzati, N.; Griffini, A.; Lolla, E.; Pace, R., Ruffilli, T.; Peterlongo, F. Characterization of proanthocyanidins from grape seeds. Fitoterapia. 2000, 71, 162-175.
Giusti, M.M.; Wrolstad, R. E., Characterization and measurement of anthocyanins by UV- Visible spectroscopy. In Current procotols in food analytical chemistry, John Wiley& Sons: New York, 2001; pp F1.2.1-F1.2.13.
Hou, D. X.; Fujii, M.; Terahara, N.; Yoshimoto, M. Molecular mechanisms behind the chemopreventive effects of anthocyanidins. Journal of Biomed. and Biotechnology. 2004, 5, 321–325.
Kahkonen, M. P.; Hopia, A. I.; Heinonen, M. Berry phenolics and their antioxidant activity. J. Agric. Food Chem. 2001, 49, 4076-4082.
Kapasakalidis, P. G.; Rastall, R. A.; Gordon, M. H. Extraction of polyphenols from processed black currant (Ribes nigrum L.) residues. J. Agric. Food Chem. 2006, 54, 4016-4021.
Kiho, T.; Usui, S.; Hirano, K.; Aizawa, K.; Inakuma, T. Tomato paste fraction inhibiting the formation of advanced glycation end-products. Biosci. Biotechnol. Biochem. 2004, 68, 200-205.
Kikuchi, S.; Shinpo, K.; Takeuchi, K.; Yamagishi, S.; Makita, Z.; Sasaki, N., Tashiro, K. Glycation—a sweet tempter for neuronal death. Brain Res. Reviews. 2003, 41, 306–323.
Koschinsky, T.; He, C. J.; Mitsohashi, T. Orally absorbed reactive glycation products (glycotoxins): An environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci U S A. 1997, 94, 6474-6479.
Lo, C. Y.; Li, S. M.; Tan, D.; Pan, M. H.; Sang, S. M.; Ho, C. T. Trapping reactions of reactive carbonyl species with tea polyphenols in simulated physiological conditions. Mol. Nutr. Food Res. 2006, 50, (12), 1118-1128.
Lo, C. Y.; Li, S. M.; Wang, Y.; Tan, D.; Pan, M. H.;Sang, S. M.; Ho,C. T. Reactive dicarbonyl compounds and 5-(hydroxymethyl)-2-furfural in carbonated beverages containing high fructose corn syrup. Food Chem. 2008, 107, 1099–1105.
Maillard, L. C. Action of amino acids on sugars. Formation of melanoidins in a methodical way. Compt. Rend. 1912, 154, 66-68.
Matsumoto, H.; Hanamura, S; Kawakami, T.; Sato, Y.; Hirayama, M. Preparative-scale isolation of four anthocyanin components of black currant (Ribes nigrum L.) fruits. J. Agric. Food Chem. 2001, 49, 1541-1545.
Mcdougall, G. J.; Gordon, S.; Brennan, R.; Stewart, D. Anthocyanin-flavanol condensation products from black currant (Ribes nigrum L.). J Agric Food Chem. 2005, 53, 7878-7885.
Mohamed, A.K.; Bierhaus, A.; Schiekofer, S.; Tritschler, H.; Ziegler, R.; Nawroth, P. P. The role of oxidative stress and NF-κB activation in late diabetic complications. BioFactors. 1999, 10, 157–167.
Monnier, V. M. Intervention against the maillard reaction in vivo. Archives of Biochem. and Biophysics. 2003, 419, 1–15.
Nakajima, J.I.; Tanaka, I.; Seo, S.; Yamazaki, M.; Saito, K. LC/PDA/ESI-MS Profiling and radical scavenging activity of anthocyanins in various berries. Journal of Biomed. and Biotechnology. 2004, 5, 241–247.
Namiki, M.; Hayashi, T. A new mechanism of the Maillard reaction involving sugar fragmentation and free radical formation. In The Maillard Reaction in Foods and Nutrition; Waller, G. R., Feather, M. S., Eds.; ACS Symposium Series 215; American Chemical Society: Washington, DC, 1983; pp 21-46.
Ogasawara, J.; Kitadate, K.; Nishioka, H.; Fujii, H.; Sakurai, T.; Kizaki, T.; Izawa, T.; Ishida, H.; Ohno, H. Oligonol, A New lychee fruit-derived lowmolecular form of polyphenol, enhances lipolysis in primary rat adipocytes through activation of the ERK1/2 pathway. Phytother. Res. 2009, 23, 1626–1633
Pinelo, M.; Landbo, Anne-Katrine. R.; Vikbjerg, A. F.; Meyer, A. S. Effect of clarification techniques and rat intestinal extract incubation on phenolic composition and antioxidant activity of black currant Juice. J. Agric. Food Chem. 2006, 54, 6564-6571.
Prior, R. L.; Cao, G.; Martin, A.; Sofic, E.; McEwen, J.; O』Brien, C.; Lischner, N.; Ehlenfeldt, M.; Kalt, W.; Krewer, G.; Mainland, C. M. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J. Agric. Food Chem. 1998, 46, 2686-2693.
Ramirez-totosa, C.; Andersen, O. M.; Gardner, P. T.; Morrice, P. C.; Wood, S. G.; Duthie, S. J.; Collins, A. R.; Duthie, G. G. Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin E-depleted rats. Free Radical Biology & Med. 2001, 31, 1033–1037.
Reddy, V. P.; Beyaz, A. Inhibitors of the maillard reaction and AGE breakers as therapeutics for multiple diseases. Drug Discovery Today. 2006, 11, 646-654.
Rein, M. Copigmentation reactions and color stability of berry anthocyanins.Ph.D. Dissertation, Helsinki, University of Helsinki, Finland, 2005.
Sang, S.; Shao, X.; Bai, N.; Bai, N.; Lo, C. Y.; Yang, C. S.; Ho, C. T., Tea Polyphenol(-)-epigallocatechin-3-gallate: A new trapping agent of reactive dicarbonyl species. Chem.Res. Toxicol. 2007, 20, 1862-1870.
Sarni-Manchado, P.; Le Roux, E.; Le Guerneve, C.; Lozano, Y.; Cheynier, V. Phenolic composition of litchi fruit pericarp. J Agric Food Chem. 2000, 48, 5995-6002.
Sasaki, N.; Fukatsu, R.; Tsuzuki, K., Hayashi, Y., Yoshida, T.; Fujii, N.; Koike, T.; Wakayama, I.; Yanagihara, R.; Garruto, R.; Amano, N.; Makita, Z. Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases. American Journal of Pathology. 1998, 153, 1149-1155.
Schmidt, A. M.; Yan, S. D.; Wautier, J.L.; Stern, D. Activation of receptor for advanced glycation end products a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circulation Res. 1999, 84, 489-497.
Shao, X.; Bai, N.; He, K., Ho, C. T.; Yang, C. S.; Sang, S. Apple polyphenols, Phloretin and Phloridzin: new trapping agents of reactive dicarbonyl species. Chem. Res. Toxicol. 2008, 21, 2042–2050.
Shibamoto, T. Analytical methods for trace levels of reactive carbonyl compounds formed in lipid peroxidation systems. Journal of Pharmaceutical and Biomed. Analysis. 2006, 41, 12–25.
Slimestad, R.; Solheim, H. Anthocyanins from black currants (Ribes nigrum L.). J. Agric. Food Chem. 2002, 50, 3228-3231.
Stadler, R. H.; Blank, I.; Varga, N.; Robert, F.; Hau, J.; Guy. P.A.; Robert, M. C.; Riediker, S. Food chemistry:Acrylamide from maillard reaction products. Nature. 2002, 419, 449-450.
Steinert, R. E.; Ditscheid, B.; Netzel, M.;Jahreis, G. Absorption of black currant anthocyanins by monolayers of human intestinal epithelial caco-2 cells mounted in ussing type chambers. J. Agric. Food Chem. 2008, 56, 4995–5001.
Stephens, J. W.; Khanolkar, M. P.; Bain, S. C. The biological relevance and measurement of plasma markers of oxidative stress in diabetes and cardiovascular disease. Atherosclerosis. 2009, 202, 321–329.
Stitt, A. W. Advanced glycation: an important pathological event in diabetic and age related ocular disease. Br J Ophthalmol. 2001, 85, 746–753.
Su, M. S.; Chien, P. J. Antioxidant activity, anthocyanins, and phenolics of rabbiteye blueberry (Vaccinium ashei) by-products as affected by fermentation. Food Chem. 2007, 104, 182-187.
Suarez, G. Nonenzymatic browning of proteins and the sorbitol pathway. Prog. Clin. Biol. Res. 1989, 304, 141-162.
Takagi, Y.; Kashiwagi. A.; Tanaka, Y.; Asahina, T.; Kikkawa, R.; Shigeta, Y. Significance of fructose-induced protein oxidation and formation of advanced glycation end product. Journal of Diabetes and Its Complications. 1995, 9, 87-91.
Tan, D. Trapping of methylglyoxal by dietary compounds in vitro. Ph.D. Dissertation, Rutgers, The State University of New Jersey, New Jersey, 2007.
Thomas, M. C.; Baynes, J. W., Thorpe, S. R., Cooper, M. E. The role of AGEs and AGE inhibitors in diabetic cardiovascular disease. Curr. Drug Targets. 2005, 22, 453-474.
Thornalley, P. J. The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem. J. 1990, 269, 1-11.
Thornalley, P.J.; Langborg, A.; Minhas, H. S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 1999, 344, 109-116.
Thronalley, P. J.; Battah, S.; Ahmed, N.; Karachalias, N.; Agalou, S.; Babaei- jadidi, R.; Dawnay, A. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem. J. 2003, 375, 581–592.
Ulrich, P.; Cerami, A. Protein glycation, diabetes, and aging. Recent Progress in Hormone Res. 2001, 56, 1-22.
Walton, M. C.; Hendriks, W. H.; Broomfield, A. M.; Mcghie, T. K. Viscous food matrix influences absorption and excretion but not metabolism of blackcurrant anthocyanins in rats. Journal of Food Sci. 2009, 74, H22-H29.
Walton, M. C.; Lentle, R. G.; Reynolds, G. W.; Kruger, M. C.; Mcghie, Y. K. Anthocyanin absorption and antioxidant status in pigs. J. Agric. Food Chem. 2006, 54, 7940-7946.
Wang, S. Y.; Lin, H. S. Antioxidant activity in fruits and leaves of blackberry, raspberry and strawberry varies with cultivar and developmental stage. J Agric. Food Chem. 2000, 48, 140-146.
Wang, X.; Yuan, S.; Wang, J.; Lin, P.; Liu, G.; Lu, Y.; Zhang, J.; Wang, W.; Wei, Y. Anticancer activity of litchi fruit pericarp extract against human breast cancer in vitro and in vivo. Toxicol. Appl. Pharmacol. 2006, 215, 168-178.
Wautier, J. L.; Wautier, M. P.; Schmidt, A. M.; Anderson, G. M.; Hori, O,; Zoukourian, C.; Capron, L.; Chappey, O.; Yan, S. D.; Brett, J.; Guillausseau, P. J.; Stern, D. Advanced glycation end products (AGEs) on the surface of diabetic erythrocytes bind to the vessel wall via a specific receptor inducing oxidant stress in the vasculature: A link between surfaceassociated AGEs and diabetic complications. Proc. Natl. Acad. Sci. USA. 1994, 7742-7746.
Wrolstad, R. E.; Durst, R. W.; Lee, J. Tracking color and pigment changes in anthocyanin products. Trends in Food Sci. & Technology. 2005, 16, 423–428.
Wu. X.; Monnier, V. M. Enzymatic deglycation of proteins. Archives of Biochem. and Biophysics. 2003, 419, 16–24.
Xing, S.; Melton, L. D.; Easteal, A. J.; Siew, D. Stability and antioxidant activity of black currant anthocyanins in solution and encapsulated in glucan gel. J. Agric. Food Chem. 2006, 54, 6201-6208.
Yao, L. H.; Jiang, Y. M.; Shi, J.; Tomas-Barberan, F. A.; Datta, N.; Singanusong, R.; Chen, S. S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr. 2004, 59, 113-122.
Zafra-Stone, S.;Yasmin, T.; Bagchi, M.; Chatterjee, A.; Vinson, J. A.; Bagchi, D., Berry anthocyanins as novel antioxidants in human health and disease prevention.Mol. Nutr.Food Res. 2007, 51, 675-683.
Zhang, D.; Quantick, P. C.; Grigor, J. M. Changes in phenolic compounds in litchi (Litchi chinensis Sonn.) fruit during postharvest storage. Postharvest boil. and techno. 2000, 19, 165-172.
Zieman, S. J.; Kass, D. A. Advanced glycation endproduct crosslinking in the cardiovascular system : potential therapeutic target for cardiovascular disease. Drugs. 2004, 64, 459-470.




連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 紀俊臣 (2004),永續發展與行政區域設計,中國行政評論,第13 卷,第2 期,頁66-69
2. 周志龍(2001),全球化發展與台灣行政區劃再結構,經社法制論叢,27,159~189
3. 黃錦堂(1994),德國聯邦體制之研究,本文原載於美歐月刊,第九卷第六期
4. 劉佩怡(2008),台灣行政區域調整的規劃理路,通識研究集刊,13,131~146。
5. 謝秉憲(1998),地方自治立法權界限之探討,台灣立法院院聞第26卷第9期.頁55
6. 羅正忠(2005),地方財政與經濟規模-台灣之實證分析,財稅研究,37(1)63-80頁
7. 〈性情論話語背景下的《中庸》〉,馬育良,孔孟學報,83期,2005年09月
8. 〈孟子「四端」說與「情」〉,馬育良,孔孟月刊,39卷12期,2001年08月
9. 〈荀子性情觀及相關思想之討論〉,馬育良,孔孟學報,81期 ,2003年09月
10. 〈先秦儒家性情觀之演進及其文化闡釋〉,馬育良,孔孟月刊,39卷6期,2001年02月
11. 〈荀子由智成德理論的重建與檢討〉,周天令,孔孟學報,84期 ,2006年09月
12. 〈「荀子」書中孔子形象析論─兼論孟、荀對孔子認知之同異〉,柯金木,孔孟學報,76期, 1998年09月
13. 〈「孟子」書中的孔子形象析論〉,柯金木,孔孟月刊,36卷7期,1998年03月
14. 〈儒家的音樂思想探源〉,陳章錫,鵝湖,23卷7期,1998年01月
15. 〈儒家禮樂思想中的身體思維─從「禮記」論起〉,孫長祥,東吳哲學學報,10 期,2004年08月