跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 17:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何祚明
研究生(外文):Tsuo-Ming Ho
論文名稱:高頻超音波影像系統
論文名稱(外文):High Frequency Ultrasonic Imaging System
指導教授:李百祺
指導教授(外文):Pai-Chi Li
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:78
中文關鍵詞:高頻超音波編碼波形脈衝壓縮最佳化濾波器
外文關鍵詞:High frequency UltrasoundCoded excitationPulse compressionOptimal filter
相關次數:
  • 被引用被引用:19
  • 點閱點閱:950
  • 評分評分:
  • 下載下載:127
  • 收藏至我的研究室書目清單書目收藏:0
超音波影像是一種常用的醫學影像工具,而高頻超音波特有良好的解析度特性,可應用在許多如細微組織的診斷及基因研究上。本論文整合各種硬體和多種信號處理方法建立一套具有多種影像格式的高頻超音波影像系統,以期望應用在眼科及皮膚科的臨床診斷、應用小動物之藥物開發、癌症及基因研究上。
現有的高頻超音波影像系統受限於穿透深度較淺和無法動態聚焦的限制,本論文中藉由編碼波形提升發射信號的平均功率提升信號的穿透深度,整合各項高速硬體、配合脈衝壓縮濾波器以增加系統的訊雜比與軸向解析度,並提出以最小均方差(LMSE)為設計原則的最佳化濾波器,結合多重深度掃瞄技術以提升非聚焦區域的橫向解析度並解決無法動態聚焦的問題。
從實驗結果證明,本論文中所建立的50 MHz高頻超音波影像系統,具有55 dB 的訊雜比和100 mm 以下的影像解析度。並且利用模擬結果討論最佳化濾波器於單一探頭系統中所遭遇的問題。在未來相關高頻超音波的研究中,可參考本論文中所提出的系統架構及方法,將可針對後續如高頻組織諧波影像、微灌流的計算、高頻對比劑的特性、甚至與其他醫學影像合作等相關領域更進一步地研究,以期對臨床及生物醫學的研究有所貢獻。
Ultrasound imaging is a well-established imaging modality that provides diagnostic information in the form of cross-sectional images of soft tissue. However, for many clinical applications involving subtle tissue structure, the resolution of the conventional ultrasound imaging system that operates between 2 and 10 MHz is inadequate. Recent developments have taken advantage of the fact that resolution increases linearly with frequency. In this paper, a high frequency ultrasonic imaging system with high resolution and multi-format imaging has been developed for noninvasive imaging of small scale superficial structures such as the skin, the anterior chamber of the eye, and mouse embryos for studies in developmental biology.
The major design problem concerning medical high frequency ultrasonic imaging systems is caused by the strong attenuation of the tissue, which limits the maximum depth of penetration and the achievable signal to noise ratio (SNR). In this paper, the coded excitation and pulse compression techniques, which can increase the average transmitted power, are utilized to increase both the depth of penetration and SNR. In addition, since array transducers with dynamic focusing are not available for high frequency system, the image quality is significantly deteriorated in the out-of-focused region. Hence, a filter-based synthetic aperture focusing technique is employed here to improve the degraded beam quality. Such a filter is designed in the LMSE sense and is also known as the optimal filter. Moreover, depth scan technique is also applied to increase the depth of field for this high frequency system.
The experimental results demonstrate that the 50 MHz ultrasonic imaging system developed in this paper has resolution on the order of 100 mm and a 55-dB SNR. Implementation issues of optimal filter to increase the depth of field for a single crystal transducer system are also discussed. Based on the high frequency ultrasonic imaging system constructed in this paper, advanced high frequency ultrasound research on high frequency tissue harmonics, perfusion blood estimation and contrast agent characteristics could be performed. In addition, combined with other medical imaging systems, this system might be able to provide much more valuable information on clinical diagnostics and biomedical research in the future.
第一章 緒論 1
1.1 高頻超音波影像簡介 1
1.1.1 高頻超音波影像簡史 1
1.1.2 高頻超音波影像應用 2
1.2 研究動機與目標 8
1.3 論文架構 10
第二章 高頻超音波影像特性 11
2.1 聲波頻譜 11
2.2 超音波成像原理 12
2.3 組織衰減效應 15
2.4 常見影像格式 18
第三章 高頻影像技術 21
3.1 編碼發射信號 21
3.2 脈衝壓縮技術 25
3.2.1 匹配濾波器 26
3.2.2 最佳化濾波器設計 26
3.3 橫向濾波器 28
3.4 馬達掃瞄技術 31
3.4.1 多重深度掃瞄 31
3.4.2 固定深度影像 33
第四章 實驗系統設計 34
4.1 實驗系統架構與介面 34
4.2 雜訊量測與消除系統 38
4.3 影像仿體製作 40
4.3.1 線仿體 40
4.3.2 組織仿體 40
4.3.2 in-vitro眼睛仿體 42
第五章 結果分析與討論 43
5.1 頻率響應 43
5.2 雜訊抑制 45
5.2.1 熱雜訊 45
5.2.2 量化雜訊分析 46
5.2.3 電磁保護屏蔽 47
5.2.4 信號平均 48
5.2.5 編碼波形及脈衝壓縮 50
5.3 影像解析度 52
5.3.1 評估解析度方法 52
5.3.2 脈衝壓縮技術 52
5.3.3 橫向濾波器 55
5.3.3.1 觸發信號錯誤 56
5.3.3.2 馬達位移錯誤 57
5.3.3.3 探頭角度錯誤 58
5.4 穿透深度 60
5.4.1 評估穿透深度方法 60
5.4.2 衰減係數 61
5.4.3 編碼波形及脈衝壓縮 61
5.5馬達掃瞄技術與其他影像格式 63
5.5.1 多重深度掃瞄 63
5.5.2 固定深度掃瞄 65
5.5.3 三維影像重建 67
5.6 in-vitro影像 69
5.7組織諧波影像 71
5.8 結論 73
5.9 未來工作 74
第六章 參考文獻 76
[1] “Acoustic Microscopy by mechanical scanning” Applied Physics Letter, Vol. 24, pp.163-164, 1974.
[2] Ian R. Smith et al.“An Acoustic Microscope for Industrial Applications” IEEE Trans. On Ultrasound, Ferroelectrics, and Frequency Control, Vol. SU-32, No. 2, March 1985.
[3] Andrew J. Miller “Scanning Acoustic Microscopy in Eletronics Research” IEEE Trans. On Ultrasound, Ferroelectrics, and Frequency Control, Vol. SU-32, No. 2, March 1985.
[4]Geoff R. Lockwood , D.H. Turnbull D.A. Christopher and F. Stuart Foster ,”Beyond 30MHz, applications of high-frequency Ultrasound Imaging” IEEE engineering in Medicine and Biology Nov. 1996
[5] Sherar MD, Noss MB, Foster FS, “Ultrasound Backscatter microscopy images the internal structure of living tumour spheroids ” Nature, Vol. 26, 330, pp. 493-495, 1987.
[6]C. Passmann and H. Ermert et al. ,“In Vivo Ultrasound Biomicroscopy” 1993 IEEE Ultrasonics Symposium
[7]C. Passmann and H. Ermert ,“Adaptive 150MHz Ultrasound Imaging of the Skin and the Eye using an Optimal combination of Shor Pulse Mode and Pulse Compression Mode” 1995 IEEE Ultrasonics Symposium
[8] C. Passmann et al. ,“A 100-MHz Ultrasound Imaging System for Dermatologic and Ophthalmologic Diagnostics,” IEEE Trans. On Ultrasound, Ferroelectrics, and Frequency Control, Vol. 41, No. 5, Jan. 1996.
[9]F. Stuart Foster, Charles J. Palvin , Kasia A. Harasiewicz, Donald A. Christopher , and Daniel H. Turnbull ,“Advances in Ultrasound biomicroscopy” Ultrasound in Med.&Biol., Vol. 26, No. 1, pp. 1-27, 2000.
[10] Donald A. Knapik, Brian Starkoski, Charles J. Palvin, and F. Stuart Foster ,”A 100-200 MHz Ultrasound Biomicroscope” IEEE Trans. On Ultrasound, Ferroelectrics, and Frequency Control, Vol. 47, No. 6, Nov. 2000.
[11] http://www.visualsonics.com/
[12] Charles J. Pavlin and F. Stuart Foster ,“Ultrasound Biomicroscopy of the Eye” Springer-Verlag Press 1995
[13] Marshall, "The Rise Of The Mouse: Biomedicine''s Model Mammal", Science, vol. 288, pp. 248-257, 2000.
[14] S. G. Ye, K. A. Harasiewicz, C.J. Pavlin, Stuart Foster et al. ,“Ultrasound Characterization of Normal Ocular Tisue in the Frequency Range form 50 MHz to 100 MHz” IEEE Trans. On Ultrasound, Ferroelectrics, and Frequency Control, Vol. 42, No. 1, Jan. 1995.
[15] Geoff R. Lockwood , D.H. Turnbull D.A. Christopher and F. Stuart Foster ,”A 40-100 MHz B-scan Ultrasound backscatter microscope for skin imaging” Ultrasound in Med.&Biol., Vol. 21, No. 1, pp. 79-88, 1995.
[16] Pai-Chi Li, “Diffraction and Beam formation Using arrays,” 醫用超音波原理及技術, pp. 36-51, 2000.
[17] F. Stuart Foster et al. ,“Principles and Applications of Ultrasound Backscatter Micorscopy” IEEE Trans. On Ultrasound, Ferroelectrics, and Frequency Control, Vol. 38, No. 1, Sep. 1993.
[18] Pai-Chi Li, “Pulse Compression for Finite Amplitude Distortion Based Harmonic Imaging Using Coded Waveforms”, Ultrasonic Imaging, Vol. 21, pp. 1-16, 1999..
[19]M. O’Donnell et al. ,“Coded excitation system for improving the penetration of real-time phased-array imaging systems,” IEEE Trans. On Ultrasound, Ferroelectrics, and Frequency Control, Vol. 38, No. 1, Jan. 1992.
[20] Pai-Chi Li, Emad Ebbini and Matthew O’Donnell ,”A New Filter Design Technique for Coded Excitation Systems” IEEE Trans. On Ultrasound, Ferroelectrics, and Frequency Control, Vol. 39, No. 6, Sep. 1992.
[21] Martin Pollakowski and Helmut Ermert ,”Chirp Signal Matching and Signal Power Optimization in Pulse-Echo Mode Ultrasonic Nondestructive Testing” IEEE Trans. On Ultrasound, Ferroelectrics, and Frequency Control, Vol. 41, No. 5, Sep. 1994.
[22] S. Freeman, Pai-Chi Li and M. O’Donnell, “Retrospective dynamic transmit focusing,” Ultrasonic Imaging, Vol. 17, pp. 173-196, 1995.
[23] Meng-Lin Li, Pai-Chi. Li, “Filter-based synthetic transmit and receive focusing,” Ultrasonic Imaging, Vol. 23, pp. 73-89, 2001.
[24]Geoff R. Lockwood, John W. Hunt and F. Stuart Foster ,“The Design of Protection Circuitry for High-Frequency Ultrasound Imaging Systems” IEEE Trans. On Ultrasound, Ferroelectrics, and Frequency Control, Vol. 38, No. 1, Jan. 1991.
[25]Geoff R. Lockwood and F. Stuart Foster ,“Modeling and Optimization of High-Frequency Ultrasound Transducers” IEEE Trans. On Ultrasound, Ferroelectrics, and Frequency Control, Vol. 38, No. 1, Jan. 1991.
[26] W. H. Chen, E. J. Gottlieb, J. M. Cannata, Y. F. Chen and K. K. Shung ,”Development of sector scanning Ultrasonic Backscatter Microscope” 2001 IEEE Ultrasonics Symposium
[27] N. Abraham Cohn, Stanislav Y. Emelianov, Mark A. Lubinski, Matthew O’Donnell,”An Elasticity Microscope. Part I: Methods” IEEE Trans. On Ultrasound, Ferroelectrics, and Frequency Control, Vol. 44, No. 6, Jan. 1997.
[28]Robert F. Wagner, Stephen W. Smith, John M. Sandrik and Hector Lopez ,”Statistics of speckle in Ultrasound B-Scans” IEEE Trans. On Ultrasound, Ferroelectrics, and Frequency Control, Vol. 30, No. 3, Sep. 1983.
[29] S.-H. Wang, K. K. Shung “In Vivo Measurements of Ultrasonic Backscattering in Blood” IEEE Trans. On Ultrasound, Ferroelectrics, and Frequency Control, Vol. 48, No. 2, March 2001.
[30] “Clinical scanner for B-, C- and Reflex Transmission imaging” 1992 IEEE Ultrasonics Symposium, 1119-1123.
[31] “Safety Levels for Exposure of Cornea and Lens to Very High-Frequency Ultrasound” Journal of Ultrasound Med Vol.20 pp.979-986 2001
[32] “A 30-MHz Piezo-Composite Ultrasound Array for Medical Imaging Applications” IEEE Trans. On Ultrasound, Ferroelectrics, and Frequency Control, Vol. 49, No. 2, Feb. 2002.
[33] http://www.gemedicalsystems.com/rad/us/
[34] J. Nelson Wright “Image Formation in Diagnostic Ultrasound” 1997 IEEE Ultrasonics Symposium Short Course
[35] “Experimental investigation of finite amplitude distortion-based second harmonic pulse echo ultrasonic imaging” IEEE Trans. On Ultrasound, Ferroelectrics, and Frequency Control, Vol. 45, No. 1, Jan. 1998.
[36] “Finite amplitude distortion-based inhormogeneous pulse echo ultrasonic imaging” IEEE Trans. On Ultrasound, Ferroelectrics, and Frequency Control, Vol. 44, No. 1, Jan. 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top