[1]楊錦欽,2002,類神經網路運用於型材矯直之研究,國立中興大學機械工程學系碩士學位論文
[2]張孝澤,以類神經網路預估迴龍地區太陽能發電系統之發電量,碩士論文,龍華科技大學,2011[3]觀測資料查詢系統CODiS
(http://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp)
[4]Lewis CD. (1982). International and business forecasting methods. London: Butterworths.
[5]Yadav, A. K., Malik, H., & Chandel, S. S. (2014). Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models. Renewable and Sustainable Energy Reviews, 31, 509-519.
[6]Belaid, S., & Mellit, A. (2016). Prediction of daily and mean monthly global solar radiation using support vector machine in an arid climate. Energy Conversion and Management, 118, 105-118.
[7]Quej, V. H., Almorox, J., Arnaldo, J. A., & Saito, L. (2017). ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment. Journal of Atmospheric and Solar-Terrestrial Physics, 155, 62-70.
[8]dos Santos, C. M., Escobedo, J. F., Teramoto, É. T., & da Silva, S. H. M. G. (2016). Assessment of ANN and SVM models for estimating normal direct irradiation (H b). Energy Conversion and Management, 126, 826-836.
[9]Citakoglu, H. (2015). Comparison of artificial intelligence techniques via empirical equations for prediction of solar radiation. Computers and Electronics in Agriculture, 118, 28-37.
[10]Ozgoren, M., Bilgili, M., & Sahin, B. (2012). Estimation of global solar radiation using ANN over Turkey. Expert Systems with Applications, 39(5), 5043-5051.
[11]Bae, K. Y., Jang, H. S., & Sung, D. K. (2017). Hourly Solar Irradiance Prediction Based on Support Vector Machine and Its Error Analysis. IEEE Transactions on Power Systems, 32(2), 935-945.
[12]Gorjian, S., Ghobadian, B., & Tavakkoli Hashjin, T. (2015). Modeling of Solar Radiation Potential in Iran Using Artificial Neural Networks. Journal of Agricultural Science and Technology, 17, 1707-1723.
[13]Jang, H. S., Bae, K. Y., Park, H. S., & Sung, D. K. (2016). Solar power prediction based on satellite images and support vector machine. IEEE Transactions on Sustainable Energy, 7(3), 1255-1263.
[14]Khatib, T., Mohamed, A., & Sopian, K. (2012). A review of solar energy modeling techniques. Renewable and Sustainable Energy Reviews, 16(5), 2864-2869.
[15]McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.
[16]Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;20:273–97.
[17]Smola A, Vapnik V. Support vector regression machines. Adv Neural Inform Process Syst 1997;9:155–61.
[18]Gunn, S, 1998. Support vector machines for classification and regression. ISIS technical report, 14.
[19]Tofallis, 2015, A Better Measure of Relative Prediction Accuracy for Model Selection and Model Estimation, Journal of the Operational Research Society, 66(8), 1352-1362
[20]https://www.mathworks.com/