跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.31) 您好!臺灣時間:2025/12/03 07:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊貽婷
研究生(外文):Yang, Yi-Ting
論文名稱:步態辨識參數重要性之探討
論文名稱(外文):Investigation on significance of parameters for gait recognition
指導教授:楊秉祥楊秉祥引用關係
口試委員:徐瑋勵林育慈林育志洪景華楊秉祥
學位類別:博士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:139
中文關鍵詞:步態辨識認知心理慣用腳最近鄰域分類法(KNN)
外文關鍵詞:gait recognitiongait perceptionperson recognitiondominant legk-nearest neighbor classification (KNN)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:360
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在犯罪日益猖獗的今日,無論是住家、企業甚至是國家,均利用各式科技來管制進出者的身份或是保護個人資料。人類身上有許多可用於辨識的特徵,這些特徵具有獨特性、辨別性、永久不變性、可量化性等特性。而這些特徵可分為生理特徵(如:指紋、臉形、虹膜等)與行為特徵(如:簽名、打字習慣、步態等)。其中又以步態可不受環境所限制,可將偵測設備設置於與被監測者相隔之一段距離外,亦不需要被監測者的配合即可容易獲取步態參數。目前關於步態辨識的文獻主要分為三個部份:(1)影像辨識,藉由影像處理的方式將步態特徵參數擷取並將其應用於辨識系統中;(2)藉由心理學的角度,觀察人是如何判別他人;(3)以步態之生物力學參數觀察識別結果。此類的文獻卻鮮少提到或整理辨識參數之重要性,故本研究以心理學角度出發,探討觀測者使用辨識參數之情形,並藉由下肢生物力學參數為例觀察不同面向、單一肢段參數做為識別參數與不同行走條件其個別識別之影響。以心理學的角度出發,探討觀測者用於識別之觀測參數,研究結果顯示,人類所使用之識別觀測參數會因給予不同攝影角度影片所影響,且依本研究排序分析之分區觀測參數重要性結果顯示,手部與腿部的部份皆為較重要的觀測區域。當給予觀測者不同角度影片時,所使用的觀測參數會有不同。據研究結果顯示,觀測者至少需5個觀測參數時,較容易成功判斷與識別,且走路速度、體型、走路頻率、步長、手部擺動幅度、下手臂擺動幅度等觀測參數則為較多攝影角度中之重要觀測參數。而辨識率與辨識時間皆不受觀測者角度所影響。本研究之實驗設計包含識別同人與不同人的測試,由結果推測識別同人與不同人亦可能使用不同之觀測參數,但因本研究主要探討觀測參數的重要性為主,故未探討人類識別同人與不同人時觀測參數之差異。若影像識別研發參考人類識別之觀測參數,則識別同人與不同人之方法亦為另一重要課題。因為減少識別參數、減少電腦運算量,且避免手部有其他非一般行走時之動作,故本研究之生物力學參數僅是以下半身參數做為識別範例,結果發現利用K最近鄰域分類法(K-Nearest Neighbor Classification, KNN)此演算法不僅可解決不同狀態下的步態差異(一般行走與跑步機上行走差異),且研究結果顯示慣用腳的大小腿的辨識能力較佳,因此若需要較少的資訊做為識別參數,慣用腳的大小腿資訊則為較佳的辨識參數選擇。
Nowadays, individual identification is gaining more and more importance. Face recognition and finger print recognition are the most popular methods of identification. However, some limitations of these methods exist. Distance between detectors and individual, for instance, cannot be too far. Walking acquaintances conquer these limitations. People can be identified by walking acquaintances even when they are too far to be recognized by their faces. Gait recognition, one of the individual identification methods, has potential to be applied to forensic use. In the computer science field, most of the studies used the shape of silhouette on subject’s sagittal plane for data classification and calculated the dynamic parameters such as angular motion of limb from the silhouette, but few studies concerned about which parameter is important or about which camera view can gain better recognition rate. In the psychology field, few studies asked the viewers to give some responds about which parameters were used for recognizing the target subject in the video. Although the recognizing parameters were obtained from the viewers, the level of importance for each parameter is not clear. In the biomechanical field, kinetics and kinematics data of lower limbs were used for individual identification. Few studies address on the important of recognition parameters for identification. The objectives of this study are: (1) to determine how many details in segmental area or kinematics need for individual identification and (2) to determine which segment or which plane were significance for identifying individuals by taking the biomechanical parameters of lower limb as an example. Forty-one viewers in the human recognition test were asked to take a questionnaire after they recognized the subjects in the video. These questionnaires would be analyzed with accuracy. Based on the results, getting an increasing rate had to select five options at least. Rank of each parameter was obtained by Ψ correlation of parameter selection and answer results, ρ correlation of accuracy and parameter-selecting rate. Most important parameters were walking speed, body size, cadence, step length, range of arm swing and range of lower arm swing. According to the different shot angles, viewers would adopt different parameters to identify the subjects. The accuracy and time spent would not be affected by shot angles. Last but not least, the study established bionic recognition system with K-Nearest Neighbor Classification (KNN), and demonstrated it by adopting biomechanical parameters of lower limbs. KNN not only solved the difference between overgound and walking on the treadmill, but also found the importance of the parameters of frontal plane. Dominant leg was gain better recognition rate than another. For developing biometrics, those parameters should be concerned for individual identification.
摘 要 i
ABSTRACT iv
誌 謝 vi
目 錄 vii
表目錄 ix
圖目錄 x
一、 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 研究目的 7
二、 文獻回顧 8
2.1 影像步態辨識 8
2.1.1 Model-free methods 9
2.1.2 Model-based methods 10
2.2 心理學相關文獻 19
2.3 生物力學參數步態辨識 24
2.4 小結 29
三、 步態特徵參數擷取與探討 31
3.1 人類步態識別參數 31
3.2.1 人類步態識別參數實驗結果與討論 39
3.2.2 人類步態識別參數研究限制 70
3.2 生物力學辨識參數 71
3.1.1 辨識演算法 72
3.1.2 生物力學參數實驗結果與討論 81
3.1.3 生物力學參數實驗研究限制 90
四、 結論 91
五、 未來方向 93
六、 參考文獻 94
附錄A 101
附錄B 104
Alton, F., L. Baldey, S. Caplan and M. C. Morrissey (1998). "A kinematic comparison of overground and treadmill walking." Clinical Biomechanics 13(6): 434-440.
Aqmar, M. R., K. Shinoda and S. Furui (2010). "Robust gait recognition against speed variation." Proceedings of the 2010 20th International Conference on Pattern Recognition (ICPR 2010): 2190-2193.
Aqmar, M. R., K. Shinoda and S. Furui (2012). "Robust Gait-Based Person Identification against Walking Speed Variations." Ieice Transactions on Information and Systems E95D(2): 668-676.
Bazazian, S. and M. Gavrilova (2012). Context based gait recognition. Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2012. J. J. Braun. Bellingham, Spie-Int Soc Optical Engineering. 8407.
BenAbdelkader, C., R. Cutler and L. Davis (2002). "Stride and Cadence as a Biometric in Automatic Person Identification and Verification." Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition: 372-377.
BenAbdelkader, C., R. Cutler, L. Davis, S. Ieee Computer and S. Ieee Computer (2002). Stride and cadence as a biometric in automatic person identification and verification. Los Alamitos, Ieee Computer Soc.
Benedetti, J. K. (1977). "On the Nonparametric Estimation of Regression Functions." Journal of the Royal Statistical Society Series B 39: 6.
Birch, I., L. Raymond, A. Christou, M. A. Fernando, N. Harrison and F. Paul (2013). "The identification of individuals by observational gait analysis using closed circuit television footage." Science & Justice 53(3): 339-342.
Birch, I., W. Vernon, G. Burrow and J. Walker (2014). "The effect of frame rate on the ability of experienced gait analysts to identify characteristics of gait from closed circuit television footage." Science & Justice 54(2): 159-163.
Bouchrika, I., M. Goffredo, J. N. Carter and M. S. Nixon (2009). Covariate Analysis for View-Point Independent Gait Recognition. Advances in Biometrics. M. Tistarelli and M. S. Nixon. Berlin, Springer-Verlag Berlin. 5558: 990-999.
Bouchrika, I. and M. S. Nixon (2007). Model-based feature extraction for gait analysis and recognition. Computer Vision/Computer Graphics Collaboration Techniques. A. Gagalowicz and W. Philips. Berlin, Springer-Verlag Berlin. 4418: 150-160.
Bouchrika, I., M. S. Nixon and Ieee (2008). Exploratory Factor Analysis of Gait Recognition.
Boulgouris, N. V. and Z. X. Chi (2007). "Human gait recognition based on matching of body components." Pattern Recognition 40(6): 1763-1770.
Boulgouris, N. V., D. Hatzinakos and K. N. Plataniotis (2005). Gait recognition: A challenging signal processing technology for biometric identification. Ieee Signal Processing Magazine. 22: 78-90.
Chang, M. D., S. Shaikh and T. Chau (2009). "Effect of treadmill walking on the stride interval dynamics of human gait." Gait & Posture 30(4): 431-435.
Cunado, D., M. S. Nixon and J. N. Carter (2003). "Automatic extraction and description of human gait models for recognition purposes." Computer Vision and Image Understanding 90(1): 1-41.
Cutting, J. E. and L. T. Kozlowski (1977). "Recoginizing Friends by Their Walk-Gait Perception Without Familiarity Cues." Bulletin of the Psychonomic Society 9(5): 353-356.
Cutting, J. E., C. Moore and R. Morrison (1988). "Masking the motions of human gait." Perception & Psychophysics 44(4): 339-347.
Draper, E. R. C. (2000). "A treadmill-based system for measuring symmetry of gait." Medical Engineering & Physics 22(3): 215-222.
Fang, S. C. and H. L. Chan (2009). "Human identification by quantifying similarity and dissimilarity in electrocardiogram phase space." Pattern Recognition 42(9): 1824-1831.
Flinchbaugh, B. E. and B. Chandrasekaran (1981). "A Theory of Spatio-Temporal Aggregation for Vision." Artificial Intelligence 17(1-3): 387-407.
Hausdorff, J. M., T. Herman, R. Baltadjieva, T. Gurevich and N. Giladi (2003). "Balance and gait in older adults with systemic hypertension." American Journal of Cardiology 91(5): 643-645.
He, R., T. N. Tan and L. Wang (2014). "Robust Recovery of Corrupted Low-Rank Matrix by Implicit Regularizers." Ieee Transactions on Pattern Analysis and Machine Intelligence 36(4): 770-783.
Hossain, M. A., Y. Makihara, J. Q. Wang and Y. Yagi (2010). "Clothing-invariant gait identification using part-based clothing categorization and adaptive weight control." Pattern Recognition 43(6): 2281-2291.
Huang, P. S., C. J. Harris and M. S. Nixon (1999). "Human Gait Recognition in Canonical Space Using Temporal Templates." Iee Proceedings-Vision Image and Signal Processing 146(2): 93-100.
Huang, P. S., C. J. Harris and M. S. Nixon (1999). "Recognising humans by gait via parametric canonical space." Artificial Intelligence in Engineering 13(4): 359-366.
Jain, A. K., A. Ross and S. Prabhakar (2004). "An Introduction to Biometric Recognition." IEEE Transactions on Circuits and Systems for Video Technology 14(1): 4-20.
Jain, A. K., A. A. Ross and K. Nandakumar (2011). Introduction to Biometrics. New York, Springer.
Jokisch, D., I. Daum and N. F. Troje (2006). "Self recognition versus recognition of others by biological motion: Viewpoint-dependent effects." Perception 35(7): 911-920.
Kale, A., A. Sundaresan, A. N. Rajagopalan, N. P. Cuntoor, A. K. Roy-Chowdhury, V. Kruger and R. Chellappa (2004). "Identification of humans using gait." Ieee Transactions on Image Processing 13(9): 1163-1173.
Kozlowski, L. and J. Cutting (1977). "Recognizing the sex of a walker from a dynamic point-light display." Perception & Psychophysics 21(6): 575-580.
Kuhtz-Buschbeck, J. P. and B. Jing (2012). "Activity of upper limb muscles during human walking." Journal of Electromyography and Kinesiology 22(2): 199-206.
Larsen, P. K., E. B. Simonsen and N. Lynnerup (2008). "Gait analysis in forensic medicine." Journal of Forensic Sciences 53(5): 1149-1153.
Lee, L. and W. E. L. Grimson (2002). "Gait analysis for recognition and classification." Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition: 155-162.
Lee, S. J. and J. Hidler (2008). "Biomechanics of overground vs. treadmill walking in healthy individuals." Journal of Applied Physiology 104(3): 747-755.
Li, X. L., S. J. Maybank, S. C. Yan, D. C. Tao and D. Xu (2008). "Gait components and their application to gender recognition." Ieee Transactions on Systems Man and Cybernetics Part C-Applications and Reviews 38(2): 145-155.
Lin, Y.-C. and Y.-T. Lin (2013). "Human Recognition based on Plantar Pressure Patterns during Gait." Journal of Mechanics in Medicine and Biology 13(2).
Lin, Y.-C., B.-S. Yang, Y.-T. Lin, M.-Y. Chen and Y.-T. Yang (2011). "Variations of Human Gait Between Normal Subjects Based on Electromyogram." International Journal of Intelligent Systems Science and Technology 3(4): 5.
Lin, Y.-C., B.-S. Yang, Y.-T. Lin and Y.-T. Yang (2011). "Human Recognition Based on Kinematics and Kinetics of Gait." Journal of Medical and Biological Engineering 31(4): 255-263.
Lin, Y.-C., B.-S. Yang and Y.-T. Yang (2008). "People Recognition by Kinematics and Kinetics of Gait." 13th International Conference on Biomedical Engineering. Singapore.
Lin, Y.-C., B.-S. Yang and Y.-T. Yang (2009). "Human Recognition Based on Foot Pressure Patterns During Gait." 4th Asian Pacific Conference on Biomechanics Christchurch, New Zealand.
Lin, Y. C., B. S. Yang, Y. T. Lin and Y. T. Yang (2011). "Human Recognition Based on Kinematics and Kinetics of Gait." Journal of Medical and Biological Engineering 31(4): 255-263.
Liu, K., T. Liu, K. Shibata, Y. Inoue and R. Zheng (2009). "Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system." Journal of biomechanics 42(16): 2747-2752.
Loula, F., S. Prasad, K. Harber and M. Shiffrar (2005). "Recognizing people from their movement." Journal of Experimental Psychology-Human Perception and Performance 31(1): 210-220.
Ma, Q. Y., S. K. Wang, D. D. Nie and J. F. Qiu (2007). "Recognizing humans based on gait moment image." Los Alamitos, Ieee Computer Soc.
Matovski, D. S., M. S. Nixon, S. Mahmoodi and J. N. Carter (2012). "The Effect of Time on Gait Recognition Performance." Ieee Transactions on Information Forensics and Security 7(2): 543-552.
McKean, K. A., S. C. Landry, C. L. Hubley-Kozey, M. J. Dunbar, W. D. Stanish and K. J. Deluzio (2007). "Gender differences exist in osteoarthritic gait." Clinical Biomechanics 22(4): 400-409.
Muaaz, M., C. Nickel and Ieee (2012). "Influence of Different Walking Speeds and Surfaces on Accelerometer-Based Biometric Gait Recognition." 2012 35th International Conference on Telecommunications and Signal Processing (Tsp): 508-512.
Murray, M. P., G. B. Spurr, S. B. Sepic, G. M. Gardner and L. A. Mollinger (1985). "Treadmill vs floor walking - kinematics, electromyogram, and heart-rate." Journal of Applied Physiology 59(1): 87-91.
Nigg, S., J. Vienneau, C. Maurer and B. M. Nigg (2013). "Development of a Symmetry Index Using Discrete Variables." Gait & Posture 38(1): 115-119.
Nixon, M. S. and J. N. Carter (2006). "Automatic Recognition by Gait." Proceedings of the IEEE 94(11): 2013-2024.
Nixon, M. S., T. N. Tan and R. Chellappa (2006). "Human identification based on gait." Boston, MA, Springer.
O'Keeffe, D. T., D. H. Gates and P. Bonato (2007). A wearable pelvic sensor design for drop foot treatment in post-stroke patients, Lyon, France, IEEE Engineering in Medicine and Biology Society.
Pataky, T. C., T. T. Mu, K. Bosch, D. Rosenbaum and J. Y. Goulermas (2012). "Gait recognition: highly unique dynamic plantar pressure patterns among 104 individuals." Journal of the Royal Society Interface 9(69): 790-800.
Pogorelc, B., Z. Bosnic and M. Gams (2012). "Automatic recognition of gait-related health problems in the elderly using machine learning." Multimedia Tools and Applications 58(2): 333-354.
Riley, P. O., J. Dicharry, J. Franz, U. Della Croce, R. P. Wilder and D. C. Kerrigan (2008). "A kinematics and kinetic comparison of overground and treadmill running." Medicine and Science in Sports and Exercise 40(6): 1093-1100.
Riley, P. O., G. Paolini, U. Della Croce, K. W. Paylo and D. C. Kerrigan (2007). "A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects." Gait & Posture 26(1): 17-24.
Rokanujjaman, M., M. S. Islam, M. A. Hossain, M. R. Islam, Y. Makihara and Y. Yagi (2015). "Effective part-based gait identification using frequency-domain gait entropy features." Multimedia Tools and Applications 74(9): 3099-3120.
Ross, A. and A. Jain (2003). "Information Fusion in Biometrics." Pattern Recognition Letters 24(13): 2115-2125.
Runeson, S. and G. Frykholm (1983). "Kinematic specification of dynamics as an informational basis for person-and-action perception: expectation, gender recognition, and deceptive intention." Journal of Experimental Psychology-General 112(4): 585-615.
Sadeghi, H., P. Allard and M. Duhaime (1997). "Functional gait asymmetry in able-bodied subjects." Human Movement Science 16(2-3): 243-258.
Sant'Anna, A. and N. Wickstrom (2010). "A symbol-based approach to gait analysis from acceleration signals: identification and detection of gait events and a new measure of gait symmetry." IEEE Transactions on Information Technology in Biomedicine 14(5): 1180-1187.
Sarkar, S., P. J. Phillips, Z. Y. Liu, I. R. Vega, P. Grother and K. W. Bowyer (2005). "The HumanID gait challenge problem: Data sets, performance, and analysis." Ieee Transactions on Pattern Analysis and Machine Intelligence 27(2): 162-177.
Schollhorn, W. I., B. M. Nigg, D. J. Stefanyshyn and W. Liu (2002). "Identification of Individual Walking Patterns Using Time Discrete and Time Continuous Data Sets." Gait & Posture 15(2): 180-186.
Shahjahan, M., S. U. Ahmed, H. M. Imran Hassan and K. Murase (2010). "Extraction of Interesting Features from Human Motion." 3D Research 1(3): 2 (8 pp.)-2 (8 pp.)2 (8 pp.).
Shuai, Z., Z. Junge, H. Kaiqi, H. Ran and T. Tieniu (2011). "Robust view transformation model for gait recognition." 2011 18th IEEE International Conference on Image Processing (ICIP 2011): 2073-2076.
Stolze, H., J. P. Kuhtz-Buschbeck, C. Mondwurf, A. Boczek-Funcke, K. Johnk, G. Deuschl and M. Illert (1997). "Gait analysis during treadmill and overground locomotion in children and adults." Electromyography and Motor Control-Electroencephalography and Clinical Neurophysiology 105(6): 490-497.
Stone, C. J., P. J. Bickel, L. Breiman, D. R. Brillinger, H. D. Brunk, D. A. Pierce, H. Chernoff, T. M. Cover, D. R. Cox, W. F. Eddy, F. Hampel, R. A. Olshen, E. Parzen, M. Rosenblatt, J. Sacks and G. Wahba (1977). "Consistent Nonparametric Regression." Annals of Statistics 5(4): 595-645.
Tafazzoli, F. and R. Safabakhsh (2010). "Model-based human gait recognition using leg and arm movements." Engineering Applications of Artificial Intelligence 23(8): 1237-1246.
Vesanto, J. and E. Alhoniemi (2000). "Clustering of the Self-Organizing Map." IEEE Transactions on Neural Networks 11(3): 586-600.
Wagg, D. K. and M. S. Nixon (2004). "On automated model-based extraction and analysis of gait." Proceedings. Sixth IEEE International Conference on Automatic Face and Gesture Recognition: 11-16.
Wang, L., T. Tan, H. Z. Ning and W. M. Hu (2003). "Silhouette analysis-based gait recognition for human identification." Ieee Transactions on Pattern Analysis and Machine Intelligence 25(12): 1505-1518.
Webb, J. A. and J. K. Aggarwal (1982). "Structure from Motion of Rigid and Jointed Objects." Artificial Intelligence 19(1): 107-130.
White, S. C., H. J. Yack, C. A. Tucker and H. Y. Lin (1998). "Comparison of vertical ground reaction forces during overground and treadmill walking." Medicine and Science in Sports and Exercise 30(10): 1537-1542.
Yam, C. Y., M. S. Nixon and J. N. Carter (2004). "Automated person recognition by walking and running via model-based approaches." Pattern Recognition 37(5): 1057-1072.
Yu, S. Q., D. L. Tan and T. N. Tan (2006). A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. 18th International Conference on Pattern Recognition, Vol 4, Proceedings. Y. Y. Tang, S. P. Wang, G. Lorette, D. S. Yeung and H. Yan. Los Alamitos, Ieee Computer Soc: 441-444.
Yu, S. Q., T. N. Tan, K. Q. Huang, K. Jia and X. Y. Wu (2009). "A Study on Gait-Based Gender Classification." Ieee Transactions on Image Processing 18(8): 1905-1910.
Zhang, R., C. Vogler and D. Metaxas (2007). "Human gait recognition at sagittal plane." Image and Vision Computing 25(3): 321-330.
Zhao, G. Y., L. Cui and H. Li (2005). "Combining wavelet velocity moments and reflective symmetry for gait recognition." Advances in Biometric Person Authentication, Proceedings. S. Z. Li, Z. Sun, T. Tan et al. Berlin, Springer-Verlag Berlin. 3781: 205-212.
邱皓政 (2010). 量化研究與統計分析:SPSS/PASW資料分析範例解析. 台北, 五南圖書出版股份有限公司.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top