跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 04:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇郁婷
研究生(外文):Yu Ting Su
論文名稱:使用共軛焦顯微影像技術直接觀察纖維母細胞生物標記TypeICollagen和Vimentin
論文名稱(外文):Direct Visualization of Phenotypic Biomarkers of Type I Collagen and Vimentin by the Confocal Imaging Technique
指導教授:邱全芊
指導教授(外文):C. C. Chiou
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫學生物技術研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
論文頁數:58
中文關鍵詞:第一型膠原蛋白
外文關鍵詞:Type I Collagenvimentin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
太陽光的紫外線是引起皮膚傷害的主要環境來源。UVA 紫外線 ( 320~400 nm ) 可透過活性氧生成傷害微小分子,例如:核酸、脂質與蛋白質。膠原蛋白是脊椎動物組織提供張力的成分。也可維持皮膚的正常結構與功能。 而 vimentin屬於中間絲蛋白質的其中之ㄧ,vimentin修飾的生物影響跟纖維母細胞收縮能力有關,由中間絲系統的結構破壞所引起的變化與老化的過程也有相關。 此研究目的主要使用雷射掃描式共軛焦顯微鏡研究正常人類纖維母細胞與葡萄糖六磷酸氫酶缺乏之纖維母細胞在接收不同劑量UVA紫外線後,第一型膠原蛋白及vimentin在細胞中的分布情形,並且用影像軟體做半定量,提供兩種標的蛋白影像資訊,取代傳統的西方墨點法。在照UVA紫外線前,第一型膠原蛋白與vimentin在正常人類纖維母細胞的表現比葡萄糖六磷酸氫酶缺乏之纖維母細胞多。處理UVA紫外線後,第一型膠原蛋白或vimentin的螢光強度表現反映了第一型膠原蛋白或vimentin在兩株細胞內有依UVA劑量增加而下降的趨勢。有趣的是,在影像圖片中,葡萄糖六磷酸氫酶缺乏之纖維母細胞由UVA引起螢光強度的減弱比正常人類纖維母細胞還嚴重。整體而言,新發展的共軛焦顯微影像技術應用於皮膚纖維母細胞的形態生物標記也可以延伸到其它的生物化學研究。
The ultraviolet ( UV ) radiation in sunlight is the major environmental cause of skin damage. The UVA ( 320-400 nm ) irradiation may damage the micromolecules, such as nucleic acids, proteins and lipids, chiefly through the generation of reactive oxygen species ( ROS ). Collagen has been known as the principal tensile element of vertebrate tissues, such as tendon, cartilage, bone and skin. Collagen also maintains the normal structure and function of skin. Vimentin is one of intermediate filament proteins, and its biological impact of the identified vimentin modification is related to the loss of contractile capacity of fibroblasts caused by the structural breakdown of the intermediate filament system, leading to acceleration of aging process. This study aims to use laser-scanning confocal microscope to investigate the distribution of type I collagen and vimentin and semi-quantitate their content by image processing software to provide imaging information of the two target proteins in place of traditional western blot method in normal human foreskin fibroblast ( HFF3 ) and G6PD-deficient human foreskin fibroblast ( HFF1 ) receiving different fluence UVA irradiation. Prior to UVA irradiation, the type I collagen and vimentin expression in HFF3 cells are distinctly higher than those in HFF1. After UVA treatment, both types of the cells exhibited a fluence-dependent drop in fluorescence intensities of type I collagen -FITC or vimentin-FITC, which reflected a decrease of content of type I collagen or vimentin in a dose-dependent manner. Interestingly, the extent of lost fluorescence intensity induced by UVA from acquired images in HHF1 cells is more severe than in HHF3. Collectively, our newly developed confocal imaging technique for phenotypic biomarkers of skin fibroblasts can also be extended to other biochemical researches.
指導教授推薦書 …………………………………………………… i
口試委員會審定書 ………………………………………………… ii
授權書 ……………………………………………………………… iii
誌謝 ………………………………………………………………… iv
中文摘要 …………………………………………………………… v
英文摘要 …………………………………………………………… vi
目錄 ……………………………………………………………… viii
第一章 簡介 ……………………………………………………………1
1.1 皮膚的組成及構造 …………………………………………… 1
1.2皮膚的老化 …………………………………………………… 1
1.3紫外線 ………………………………………………………… 2
1.4紫外線產生活性氧物質 …………………………………………3
1.5膠原蛋白的結構及組成 ……………………………………… 7
1.6脊椎動物膠原蛋白分類 ……………………………………… 7
1.7膠原蛋白家族 ………………………………………………… 10
1.8第一型膠原蛋白 ……………………………………………… 13
1.9 Vimentin ……………………………………………………… 15
1.10葡萄糖六磷酸去氫酶 ……………………………………… 16
1.11研究目的 ………………………………………………… 19
第二章 實驗材料與方法 …………………………………………… 20
2.1 材料 ………………………………………………………… 20
2.1.1 細胞株 ………………………………………………… 20
2.1.2 細胞培養基材料 ……………………………………… 21
2.1.3 UV box ………………………………………………… 21
2.1.4 抗體 …………………………………………………… 22
2.2 實驗方法 …………………………………………………… 22
2.2.1 細胞培養 ……………………………………………… 22
2.2.2 流式細胞儀 …………………………………………… 22
2.2.3 雷射掃描式共軛焦顯微鏡 …………………………… 23
第三章 結果 ………………………………………………………… 24
3.1鑑定細胞來源為人類纖維母細胞 …………………………… 24
3.2觀察正常人類纖維母細胞 ( HFF3 ) 及葡萄糖六磷酸氫酶缺乏
之纖維母細胞 ( HFF1 ) 膠原蛋白的表現及含量 ……………24
3.3不同UVA劑量對HFF1與HFF3細胞表現膠原蛋白的差異 … 24
3.4觀察HFF1與 HFF3表現vimentin的分佈及含量 …………… 25
3.5不同UVA劑量對HFF1與HFF3細胞表現vimentin的差異 … 26
第四章 結論 ………………………………………………………… 27
第五章 討論 ………………………………………………………… 28
第六章 參考資料 …………………………………………………… 31
第七章 圖表 ………………………………………………………… 37
Abraham LC, Zuena E, Perez-Ramirez B, Kaplan DL. Guide to collagen characterization for biomaterial studies. J Biomed Mater Res B Appl Biomater. 87:264-85 (2008).

Bae JY, Lim SS, Kim SJ, Choi JS, Park J, Ju SM, Han SJ, Kang IJ, Kang YH. Bog blueberry anthocyanins alleviate photoaging in ultraviolet-B irradiation-induced human dermal fibroblasts. Mol Nutr Food Res. 53:726-38 (2009).

Barber LA, Spandau DF, Rathman SC, Murphy RC, Johnson CA, Kelley SW, Hurwitz SA, Travers JB. Expression of the platelet-activating factor receptor results in enhanced ultraviolet B radiation-induced apoptosis in a human epidermal cell line. J Biol Chem. 273:18891-7 (1998).

Baumann L. Skin ageing and its treatment. J Pathol. 211:241-51 (2007).

Boulègue C, Musiol HJ, Götz MG, Renner C, Moroder L. Natural and artificial cystine knots for assembly of homo- and heterotrimeric collagen models. Antioxid Redox Signal. 10:113-25 (2008).

Brenneisen P, Wenk J, Klotz LO, Wlaschek M, Briviba K, Krieg T, Sies H, Scharffetter-Kochanek K. Central role of Ferrous/Ferric iron in the ultraviolet B irradiation-mediated signaling pathway leading to increased interstitial collagenase (matrix-degrading metalloprotease (MMP)-1) and stromelysin-1 (MMP-3) mRNA levels in cultured human dermal fibroblasts. J Biol Chem. 273:5279-87 (1998).

Callaghan TM, Wilhelm KP. A review of ageing and an examination of clinical methods in the assessment of ageing skin. Part I: Cellular and molecular perspectives of skin ageing. Int J Cosmet Sci. 30:313-22 (2008).

Callaghan TM, Wilhelm KP. A review of ageing and an examination of clinical methods in the assessment of ageing skin. Part 2: Clinical perspectives and clinical methods in the evaluation of ageing skin. Int J Cosmet Sci. 30:323-32 (2008).

Cappellini MD, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency. Lancet. 371:64-74 (2008).

Cheng ML, Ho HY, Wu YH, Chiu DT. Glucose-6-phosphate dehydrogenase-deficient cells show an increased propensity for oxidant-induced senescence. Free Radic Biol Med. 36:580-91 (2004).

Clarke EJ, Allan V. Intermediate filaments: vimentin moves in. Curr Biol. 12:R596-8 (2002).

Di Domenico G, Del Vecchio L, Postiglione L, Ramaglia L.
Immunophenotypic analysis of human gingival fibroblasts and
its regulation by Granulocyte-Macrophage Colony-Stimulating
Factor (GM-CSF). Minerva Stomatol. 52:81-7, 87-91 (2003).

Eckes B, Dogic D, Colucci-Guyon E, Wang N, Maniotis A, Ingber D, Merckling A, Langa F, Aumailley M, Delouvée A, Koteliansky V, Babinet C, Krieg T. Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. J Cell Sci. 111:1897-907 (1998).

Evans RM. Vimentin: the conundrum of the intermediate filament gene family. Bioessays. 20:79-86 (1998).

Fox MA. Novel roles for collagens in wiring the vertebrate nervous system. Curr Opin Cell Biol. 20:508-13. (2008).

Grinnell F. Fibroblast mechanics in three-dimensional collagen matrices. J Bodyw Mov Ther. 12:191-3. (2008).

Hall PF. The roles of calmodulin, actin, and vimentin in steroid synthesis by adrenal cells. Steroids. 62:185-9 (1997).

Hanada K, Gange RW, Connor MJ. Effect of glutathione depletion on sunburn cell formation in the hairless mouse. J Invest Dermatol. 96:838-40 (1991).
Heino J. The collagen family members as cell adhesion proteins. Bioessays. 29:1001-10 (2007).

Ho HY, Cheng ML, Lu FJ, Chou YH, Stern A, Liang CM, Chiu DT. Enhanced oxidative stress and accelerated cellular senescence in glucose-6-phosphate dehydrogenase (G6PD)-deficient human fibroblasts. Free Radic Biol Med. 29:156-69 (2000).

Iovine B, Nino M, Irace C, Bevilacqua MA, Monfrecola G. Ultraviolet B and A irradiation induces fibromodulin expression in human fibroblasts in vitro. Biochimie. 91:364-72 (2009).

Ivaska J, Pallari HM, Nevo J, Eriksson JE. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res. 313:2050-62 (2007).

Jurkiewicz BA, Buettner GR. EPR detection of free radicals in UV-irradiated skin: mouse versus human. Photochem Photobiol. 64:918-22 (1996).

Kadler KE, Baldock C, Bella J, Boot-Handford RP. Collagens at a glance.
J Cell Sci. 120:1955-8 (2007).

Kadler KE, Hill A, Canty-Laird EG. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol. 20:495-501 (2008).

Kavitha O, Thampan RV. Factors influencing collagen biosynthesis. J Cell Biochem. 104:1150-60 (2008).

Khoshnoodi J, Pedchenko V, Hudson BG. Mammalian collagen IV. Microsc Res Tech. 71:357-70 (2008).

Koide T. Designed triple-helical peptides as tools for collagen biochemistry and matrix engineering. Philos Trans R Soc Lond B Biol Sci. 362:1281-91 (2007).

Kueper T, Grune T, Prahl S, Lenz H, Welge V, Biernoth T,
Vogt Y, Muhr GM, Gaemlich A, Jung T, Boemke G, Elsässer HP,
Wittern KP, Wenck H, Stäb F, Blatt T. Vimentin is the specific target in
skin glycation. Structural prerequisites, functional consequences, and
role in skin aging. J Biol Chem. 282:23427-36 (2007).

Kusin S, Lippitz J. Skin fillers. Dis Mon. 55:236-56 (2009).

Li F, Fan C, Cheng T, Jiang C, Zeng B. Efficient inhibition of fibroblast proliferation and collagen expression by ERK2 siRNAs. Biochem Biophys Res Commun. 382:259-63 (2009).

Martys JL, Ho CL, Liem RK, Gundersen GG. Intermediate filaments in motion: observations of intermediate filaments in cells using green fluorescent protein-vimentin. Mol Biol Cell. 10:1289-95 (1999).

Masaki H, Atsumi T, Sakurai H. Detection of hydrogen peroxide and hydroxyl radicals in murine skin fibroblasts under UVB irradiation. Biochem Biophys Res Commun. 206:474-9 (1995).

Mason PJ, Bautista JM, Gilsanz F. G6PD deficiency: the genotype-phenotype association. Blood Rev. 21:267-83 (2007).

Mazlyzam AL, Aminuddin BS, Saim L, Ruszymah BH. Human serum is an advantageous supplement for human dermal fibroblast expansion: clinical implications for tissue engineering of skin. Arch Med Res. 39(8):743-52 (2008).

Minin AA, Moldaver MV. Intermediate vimentin filaments and their role in intracellular organelle distribution. Biochemistry (Mosc). 73:1453-66 (2008).

Minucci A, Giardina B, Zuppi C, Capoluongo E. Glucose-6-phosphate dehydrogenase laboratory assay: How, when, and why? IUBMB Life. 61:27-34 (2009).

Norlén L, Masich S, Goldie KN, Hoenger A. Structural analysis of vimentin and keratin intermediate filaments by cryo-electron tomography. Exp Cell Res. 313:2217-27 (2007).
Oh HI, Shim JS, Gwon SH, Kwon HJ, Hwang JK. The effect of
xanthorrhizol on the expression of matrix metalloproteinase-1 and
type-I procollagen in ultraviolet-irradiated human skin fibroblasts.
Phytother Res. (2009).

Ong VH, Carulli MT, Xu S, Khan K, Lindahl G, Abraham DJ, Denton CP. Cross-talk between MCP-3 and TGFbeta promotes fibroblast collagen biosynthesis. Exp Cell Res. 315:151-61 (2009).

Pan Z, Lee W, Slutsky L, Clark RA, Pernodet N, Rafailovich MH. Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small. 5:511-20 (2009).

Park HJ, Cho DH, Kim HJ, Lee JY, Cho BK, Bang SI, Song SY, Yamasaki K, Di Nardo A, Gallo RL. Collagen synthesis is suppressed in dermal fibroblasts by the human antimicrobial peptide LL-37. J Invest Dermatol. 129:843-50 (2009).

Quan T, He T, Kang S, Voorhees JJ, Fisher GJ. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type II receptor/Smad signaling. Am J Pathol. 165:741-51 (2004).

Rhee S, Grinnell F. Fibroblast mechanics in 3D collagen matrices. Adv Drug Deliv Rev. 59:1299-305 (2007).

Rittié L, Fisher GJ. UV-light-induced signal cascades and skin aging. Ageing Res Rev. 1:705-20 (2002).

Salati LM, Amir-Ahmady B. Dietary regulation of expression of glucose-6-phosphate dehydrogenase. Annu Rev Nutr. 21:121-40 (2001).

Toivola DM, Krishnan S, Binder HJ, Singh SK, Omary MB. Keratins modulate colonocyte electrolyte transport via protein mistargeting. J Cell Biol. 164:911-21 (2004).

Tolstonog GV, Shoeman RL, Traub U, Traub P. Role of the intermediate filament protein vimentin in delaying senescence and in the spontaneous immortalization of mouse embryo fibroblasts. DNA Cell Biol. 20:509-29 (2001).

Wang N, Stamenovic D. Mechanics of vimentin intermediate filaments.
J Muscle Res Cell Motil. 23:535-40 (2002).

Watson D, Keller GS, Lacombe V, Fodor PB, Rawnsley J, Lask GP. Autologous fibroblasts for treatment of facial rhytids and dermal depressions. A pilot study. Arch Facial Plast Surg. 1:165-70 (1999).

Wells PG, Bhuller Y, Chen CS, Jeng W, Kasapinovic S, Kennedy JC, Kim PM, Laposa RR, McCallum GP, Nicol CJ, Parman T, Wiley MJ, Wong AW. Molecular and biochemical mechanisms in teratogenesis involving reactive oxygen species. Toxicol Appl Pharmacol. 207:354-66 (2005).

Wu YH, Cheng ML, Ho HY, Chiu DT, Wang TC. Telomerase prevents accelerated senescence in glucose-6-phosphate dehydrogenase (G6PD)-deficient human fibroblasts. J Biomed Sci. 16:18 (2009).

Yaar M, Gilchrest BA. Photoageing: mechanism, prevention and therapy. Br J Dermatol. 157:874-87 (2007).

Yasui H, Sakurai H. Chemiluminescent detection and imaging of reactive oxygen species in live mouse skin exposed to UVA. Biochem Biophys Res Commun. 269:131-6 (2000).

Zhang Z, Garron TM, Li XJ, Liu Y, Zhang X, Li YY, Xu WS. Recombinant human decorin inhibits TGF-beta1-induced contraction of collagen lattice by hypertrophic scar fibroblasts. Burns. 35:527-37 (2009).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top