|
參考文獻 Abadias, M., Benabarre, A., Teixido, N., Usall, J. and Vinas, I. 2001. Effect of freeze drying and protectants on viability of the biocontrol yeast Candida sake. Internal. J. Food Microbiol. 65: 173-182. Abyzov, S., Mitskevich, I. M., Poglazova, M. N., Barkov, N. I., Lipenkov, V. Y., Bobin, N. E., Kudryashov, B. B., and Pashkevich, V. M. 1999. Antarctic ice sheet as an object for solving some methodological problems of exobiology. Adv. Space Res. 23(2): 371-376. Arai, S., and Watanabe, M., 1986. Freeze texturing of food materials by ice- nucleation with the bacterium Erwinia ananas. Agric. Biol. Chem. 50(1):169-175. Arny, C. D., Lindow, S. E., and Upper, C. D. 1976. Frost sensitivity of Zea mays increased by application of Pseudomonas syringae. Nature 262:282- 284. Ashworth, E. N. 1992. Formation and spread of ice in plant tissues. Hortic. Rev. 13:215-255. Baerltein, D. A., Lindow, S. E., Panopoulos, N. J., Lee, S. P., Mindrindros, M. N., and Chen, T. H. 1992. Expression of a bacterial ice nucleation gene in plants. Plant Physiol. 100:1730-1736. Baowu Wang, Youling L. Xiong, and Subramanian Srinivasan .1997. Chemical stability of antioxidant-washed beef heart surimi during frozen storage. J. Food Sci. 62(5):939 Bigg, E. K. 1953. The supercooling of water. Proc. Phys. Soc., London, Sect. B 66:688-694. Blondeaux, A., and Cochet, N. 1994. High-level expression of the ice-nucleating activity of Pseudomonas syringae in relation to its growth characteristics. Appl. Microbiol. Biotechnol. 42: 116-120. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram protein utilizing the principle of protein-dye binding. Anal. Biochimie. 72: 248-254. Brown, R. 1997. Man-made snow. Scientific American 276: 119. Burke, M. J., and Lindow, S. E. 1990. Surface properties and size of the ice nucleation site in ice nucleation active bacteria: theoretical considerations. Cryobiology 27:80-84. Cai, Q., and Storey, K. B. 1997. Upregulation of a novel gene by freezing exposure in the freeze-tolerant wood frog (Rana sylvatica). Gene 198: 305-312. Castrillo, L.A., Rutherford, S. T., Lee, R, E., Jr., and Lee, M. R. 2001. Enhancement of ice-nucleating activity in Pseudomonas fluorescens and its effect on efficacy against overwintering colorado potato beetles. Biological Control 21: 27-34. Chen, S. L., Wang, P. P., and Lee, T. S. 1999. An experimental investigation of nucleation probability of supercooled water inside cylindrical capsules. Experimental Thermal and Fluid Science 18:299-306. Costanzo, J. P., Humphreys, T. L., Lee Jr, R. E., Moore, J. B., Lee, M. R., and Wyman, J. A. 1998. Long-term reduction of cold hardiness following ingestion of ice-nucleating bacteria in the Colorado potato beetle, Leptinotarsa decemlineata. J. Insect Physiol. 44: 1173-1180. Deininger C. A., Mueller G. M., and Wolber P. K. 1988. Immunological characterization of ice nucleation proteins from Pseudomonas syringae, Pseudomonas fluorescens, and Erwinia herbicola. J. Bacteriol. 170(2): 669-675. DeVries, A. L. 1971. Glycoproteins as biological antifreeze agents in Antarctic fishes. Science 172: 1152-1155. Doering, T. L., Masterson, W. J., Hart, G. W., and Englund, P. T. 1990. Biosynthesis of glycosyl phosphatidyl-inositol membrane anchors. J. Biol.Chem. 265(20): 611-614. Dubois, M., Gilles, K. A., and Hamilton, J. K. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem. 28: 350-356. Duman, J. G., Morris J. P., and Castellino, F. J. 1984. Purification and composition of an ice nucleating protein from queens of the hornet, Vespula maculata. J Comp Physiol B. 154: 79-83. Fall, R., and Schnell, R. S. 1985. Association of an ice-nucleating pseudomonad with cultures of the marine dinoflagellate, Heterocapsa niei. J. Mar. Res. 43: 257-265. Fall, R., and Wolber, P. K. 1995. Biochemistry of bacterial ice nuclei, Ch 4, in Biological Ice Nucleation and Its Applications, R. E. Lee, Jr., G. J. Warren, and L. V. Gusta, p. 69, 72. APS Press. Franks, F. 1985. Biophysics and Biochemistry at Low Temperatures. Cambridge University Press. Gao, W., Smith, D. W., and Sego, D. C. 1999. Ice nucleation in industrial wastewater. Cold Regions Sci. Tech. 29: 121-133. Gehrken, U., and Southon, T. E. 1997. Effect of temperature on cold-hardiness and tissue ice formation in the adult chrysomelid beetle Melasoma collaris L. . J. Insect Physiol. 43(6): 587-593. Glusker JP. 1991. Structural aspects of metal liganding to functional groups in protein. Adv. Protein Chem. 40: 3-66. Goodrich-Blair, H., Scarlato, V., Gott, J. M., Xu, M. Q., and Shub, D. A. 1990. A self-splicing group I intron in the DNA polymerase gene of Bacillus subtilis bacteriophage SP1. Cell 63(10): 417-424. Govindarajan, A. G., and Lindow, S. E. 1988. Size of bacterial ice-nucleation sites measured in situ by radiation inactivation analysis. Proc. Natl. Acad. Sci. USA 85: 1334-1338. Green, R., and Warren, G. J. 1985. Physical and functional repetition in a bacterial ice nucleation gene. Nature 317(10): 645-648. Gross, D. C., Cody, Y., Proebsting, E. L., Radamaker, G. K., and Spotts, R. A. 1983. Distribution, population dynamics, and characteristics of ice nucleation-active bacteria in deciduous fruit tree orchards. Appl. Environ. Microbiol. 46(6):1370- 1379. Gurian-Sherman, D., and Lindow, S. E. 1993. Bacterial ice nucleation: Significance and molecular basis. FASEB J. 7: 1338-1343. Gurian-Sherman, D., and Lindow, S. E. 1995. Differential effects of growth temperature on ice nuclei active at different temperatures that are produced by cells of Pseudomonas syringae. Cryobiology 32: 129-138. Hirano, S. S., and Upper, C. D. 1986. Bacterial nucleation of ice in plant leaves. Methods Enzymol. 127: 730-738. Honma, K., Makino, T., Kumeno, K., and Watanabe, M. 1993. High-pressure sterilization of ice nucleation-active Xanthomonas campestris and its application to egg processing. Biosci. Biotech. Biochem. 57(7):1091-1094. Jeong, H. S., Yoo, S. K., Kim, E. J. 2001. Cell surface display of salmobin, a thrombin-like enzyme from Agkistrodon halys venom on Escherichia coli using ice nucleating protein. Enzyme and Microbial Technology 28: 155-160. Jiang, W., Jones, P., and Inouye, M. 1993. Chloramphenicol induces the transcription of the major cold shock gene of Escherichia coli, cspA. J. Bacteriol. 175(18): 5824-5828. Jia Z, Deluca CI, Chao H, Davies PL. 1996. Structural basis for the binding of a globular antifreeze protein to ice. Nature 384: 285-288. Jones, P. G., Vanbogelen, R. A., and Neidhardt, F. C. 1987. Induction of proteins in response to low temperature in Escherichia coli. J. Bacteriol. 169(5): 2092-2095. Jones, P. G., Cashel, M. Glaser, G., and Neidhardt, F. C. 1992. Function of a relaxed-like state following temperature downshifts in Escherichia coli. J. Bacteriol. 174(12): 3903-3914. Jung, H. C., Park, J. H., Park, S. H., Lebeault, J. M., and Pan J. G. 1998. Expression of carboxymethylcellulase on the surface of Escherichia coli using Pseudomonas syringae ice nucleation protein. Enzyme and Microbial Technology 22: 348-354. Kajava, A. V., and Lindow, S. E. 1993. A model of the three-dimensional structure of ice nucleation proteins. J. Mol. Biol. 232: 709-717. Kawahara H, Hayashi Y, Hamada R, and Obata H. 1993a. Effects of polyamines on the ice-nucleating activity of Erwinia uredovora KUIN-3. Biosci. Biotech. Biochem. 57(9): 1424 —1428. Kawahara, H., Mano, Y., and Obata, H. 1993b. Purification and characterization of extracellular ice-nucleating matter from Erwinia uredovora KUIN-3. Biosci. Biotech. Biochem. 57(9):1429-1432. Kawahara H, Mano Y, Hamada R, and Obata H. 1994. Role of spermidine in the ice-nucleating activity of the EIM from Erwinia uredovora KUIN-3. Biosci. Biotech. Biochem. 58(12): 2201-2206. Kawahara, H., Tanaka, Y., and Obata, H. 1995. Isolation and characterization of a novel ice-nucleating bacterium, Pseudomonas sp. KUIN-4, which has stable activity in acidic solution. Biosci. Biotech. Biochem. 59(8):1528-1532. Kawahara, H., Ikugawa, H., and Obata, H. 1996. Isolation and characterization of a marine ice-nucleating bacterium, Pseudomonas sp. KUIN-5, which produces cellulose and secretes it in the culture broth. Biosci. Biotech. Biochem. 60(9):1474-1478. Kazuoka, T., and Oeda, K., 1992. Heat-stable COR (cold-regulated) proteins associated with freezing tolerance in Spinach. Plant Cell Physiol. 33(8): 1107-1114. Kieft, T. L. 1988. Ice nucleation activity in lichens. Appl. Environ. Microbiol. 54(7) : 1678- 1681. Kieft, T. L., and Ruscetti, T. 1990. Characterization of biological ice nuclei from a lichen. J. Bacteriol. 172(6): 3519-3523. Klee CB. Interaction of calmodulin with Ca2+ and target proteins. In Molecular Aspects of Cellular Regulations, Vol. 5, Calmodulin; Cohen, P., Ed.; Elserier: Amsterdam, 1988; 35-56. Koda, N., Aoki, M., Kawahara, H., Yamade, K., and Obata, H. 2000. Characterization and properties of intracellular proteins after cold acclimation of the ice-nucleating bacterium Pantoea agglomerans (Erwinia herbicola) IFO12686. Cryobiology 41: 195-203. Kozloff, L. M., Schofield, M. A., and Lute, M. 1983. Ice-nucleating activity of Pseudomonas syringae and Erwinia herbicola. J. Bacteriol. 153:222-231. Kozloff, L. M., Lute, M., and Westaway, D. 1984. Phosphatidylinositol as a component of the ice nucleating site of Pseudomonas syringae and Erwinia herbicola. Science 226: 845-846. Kozloff, L. M., Turner, M. A., and Arellano, F. 1991a. Formation of bacterial membrane ice-nucleating lipoglycoprotein complexes. J. Bacteriol. 173(20): 6528-6536. Kozloff, L. M., Turner, M. A., Arellano, F., and Lute, M. 1991b. Phosphatidylinositol, a phospholipid of ice-nucleating bacteria. J. Bacteriol. 173:2053-2060. LaDuca, R. J., Rice, A. F., and Ward, P. J. 1995. Applications of biological ice nucleators in spray-ice technology. Ch 19, in Biological Ice Nucleation and Its Applications, R. E. Lee, Jr., G. J. Warren, and L. V. Gusta, p. 343. APS Press. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 277: 680-685. Langham, E.J., and Mason, B. J. 1958. The heterogeneous and homogeneous nucleation of supercooled water. Proc. R. Soc. A 247: 493-504. Lee Jr, R. E., Strong-Gunderson, J. M., Lee, M. R., Grove, K. S., and Riga, T. J. 1991. Isolation of ice nucleating active bacteria from insects. J. Experimental Zoology 257: 124-127. Lee, M. R., Lee, R. E., Strong-Gunderson, J. M., and Minges, S. R. 1995a. Isolation of ice-nucleating active bacteria from the freeze-tolerant frog, Rana sylvatica. Cryobiology 32: 358-365. Lee, Jr R. E., Lee, M. R., Strong-Gunderson, J. M. 1995b. Biological control of insect pests using ice-nucleating microorganisms. Ch 14, in Biological Ice Nucleation and Its Applications, R. E. Lee, Jr., G. J. Warren, and L. V. Gusta, p. 257. APS Press. Li, J. Izquierdo, M. P. and Lee, T. C. 1997. Effect of ice-nucleation active bacteria on the freezing of some model food systems. Int. J. Food Sci. Technol. 32:41-49. Li, J., and Lee, T. C. 1998. Bacterial extracellular ice nucleator effects on freezing of foods. J. Food Sci. 63(3):375-381. Li, J., and Lee, T. C. 1995. Bacterial ice nucleation and its potential application in the food industry. Trends. Food Sci. Tech. 6:259-265. Lindow, S. E., Arny, D. C., and Upper, C. D. 1978. Erwinia herbicola: A bacterial ice nucleus active in increasing frost injury to corn. Phytopathology 68: 523-527. Lindow, S. E., Arny, D. C., and Upper, C. D. 1982. Bacterial ice nucleation: A factor in frost injury to plants. Plant Physiol. 70: 1084-1089. Lindow, S. E. 1983. The role of bacterial ice nucleation in frost injury to plants. Annu. Rev. Phytopathol. 21:363-384. Lindow, S. E. 1987. Competitive exclusion of epiphytic bacteria by ice‾ Pseudomonas syringae mutants. Appl. Environ. Microbiol. 53(10): 2520-2527. Lindow, S. E., Lahue, E., Govindarajan, A. G., Panopoulos, N. J., and Gies, D. 1989. Localization of ice nucleation activity and the iceC gene product in Pseudomonas syringae and Escherichia coli. Molecular Plant-Microbe Interactions 2(5): 262-272. Loomis SH, Zinser M. 2001. Isolation and identification of an ice-nucleating bacterium from the gills of the intertidal bivalve mollusk Geukensia demissa. J. Experimental Marine Biology and Ecology 261: 225-235. Maki, L. R., and Willoughby, K. J.1978. Bacteria as biogenic sources of freezing nuclei. J. Appl. Microbiol. 17: 1049-1053. Glusker JP. 1991. Structural aspects of metal liganding to functional groups in protein. Adv. Protein Chem. 40: 3-66. McBride, J. M. 1992. Crystal polarity: A window on ice nucleation. Science 256(5): 814-818 Mignon, J., Haubruge, E., and Gaspar, C. 1991. Effect of ice-nucleating bacteria (Pseudomonas syringae Van Hall) on insect susceptibility to sub-zero temperatures. J. Stored Res. 34(1): 81-86. Morreale AP, Murphy KP, Cera ED, Fall R, DeVries AL, Gill SJ. 1988. Inhibition of bacterial ice nucleators by fish antifreeze glycoproteins. Nature 333: 782-783. Nemecek-Marshall, M., Laduca, R., and Fall, R. 1993. High-level expression of ice nuclei in a Pseudomonas syringae strain is induced by nutrient limitation and low temperature. J. Bacteriol. 175(13): 4062-4070. Neuhoff, V., Arold, N., Taube, D., and Ehrhardt, W. 1988. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using coomassie brilliant blue G-250 and R-250. Electrophoresis 9: 255-262. Neven, L. G., Duman, J. G., Low, M. G., Sehl, L. C., and Castellino, F. J. 1989. Purification and characterization of an insect hemolymph lipoprotein ice nucleator : evidence for the importance of phosphatidylinositol and apolipoprotein in the ice nucleator activity. J. Comp. Physiol. B. 159: 71-82. Obata, H., Muryoi, N., Kawahara, H., Yamade, K., and Nishikawa, J. 1999. Identification of a navel ice-nucleating bacterium of antarctic origin and its ice nucleation properties. Cryobiology 38:131-139. Obata, H., Saeki, Y., Tanishita, J., Tokuyama, T., Hori, H., and Higashi, Y. 1987. Identification of an ice-nucleating bacterium KUIN-1 as Pseudomonas fluorescens and its ice nucleation properties. Agric. Biol. Chem. 51(7):1761-1766. Obata, H., Takinami, K., Tanishita, J. J., Hasegawa, y., Kawate, S., Tokuyama, T., and ueno, T. 1990. Identification of a new ice-nucleating bacterium and its ice nucleation properties. Agric. Biol. Chem. 54(3):725-730. Obata, H., Ishigaki, H., Kawahara, H., and Yamade, K. 1998. Purification and characterization of a novel cold-regulated protein from an ice-nucleating bacterium, Pseudomonas fluorescens KUIN-1. Biosci. Biotechnol. Biochem. 62(11): 2091-2097. Ozilgen, S., and Reld, D. S. 1993. The use of DSC to study the effects of solutes on hetero- geneous ice nucleation kinetics in model food emulsions. Lebersm. Wiss. U. Technol. 26: 116-120. Palaiomylitou, M.A., Kalimanis, A., Koukkou, A. I., Drainas, C., Anastassopoulos, E., Panopoulos, N. j., Ekateriniadou, L. V., and Kyriakidis, D. A. 1998. Phospholipid analysis and fractional reconstitution of the ice nucleation protein activity purified from Escherichia coli overexpressing the inaZ gene of pseudomonas syringae. Cryobiology 37:67-76. Pearce, R. S. 2001. Plant freezing and damage. Amnals of Botany 87: 417-424. Phelps, P., Gidding, T. H., Prochoda, M., and Fall, R. 1986. Release of cell-free ice nuclei by Erwinia herbicola. J. Bacteriol. 167(2):496-502. Pouleur, S., richard, C., Martin, J. G., and Antoun H. 1992. Ice nucleation activity in Fusarium acuminatum and Fusarium avenaceum. Appl. Environ. Microbiol. 58(9): 2960-2964. Rogers, J. S., Stall, R. E., and Burke, M. J. 1987. Low temperature conditioning of the ice nucleation active bacterium, Erwinia herbicola. Cryobiology 24: 270-279. Rosinski, J., Nagamoto, C. T., and Zhou, M. Y. 1995. Ice-forming nuclei over the east china sea. Atmospheric Research 36: 95-105. Ruggles, J.A., Nemecek-Marshall, M., and Fall, R. 1993. Kinetics of appearance and disappearance of classes of bacterial ice nuclei support an aggregation model for ice nucleus assembly. J. Bacteriol. 175(22): 7216-7221. Schmid D, Pridmore D, Capitani G, Battistutta R, Neeser JR, and Jann A. 1997. Molecular organisation of the ice nucleation protein InaV from Pseudomonas syringae. FEBS Letters 414: 590-594. SAS Institute, 1987. SAS/STAT User’s Guide, Version 6. SAS Institute, Cary, NC, USA. Skirvin, R. M., Kohler, E., Steiner, H., Ayers, D., laughnan, A., Norton, M. A., and Warmund, M. 2000. The use of genetically engineered bacteria to control frost on strawberries and potatoes. Waterever happened to all of that reseach? Scientia Horticulturae 84:179-189. Southworth, M. W., Wolber, P. K., and Warren, G. J. 1988. Nonliner relationship between concentration and activity of a bacterial ice nucleation protein. J. Biol. Chem. 263(29):15211-15216. Strong-Gunderson, J. M., Lee Jr, R. E., Lee, M. R., and Riga, T. J. 1990. Ingestion of ice-nucleating active bacteria increases the supercooling point of the lady beetle Hippodamia convergens. J. Insect Physiol. 36(3): 153-157. Strong-Gunderson, J. M., and Palumbo, A. V. 1997. Laboratory studies identify a colloidal groundwater tracer: Implications for bioremediation. FEMS Microbiol. Letters 148: 131-135. Subramanian Srinivasan and Herbert O. Hultin, 1995. Hydroxyl radical modification of fish muscle proteins. J. Food Biochem. 18:405-425. Tegos G, Vargas C, Vartholomatos G, Perysinakis A, Nieto JJ, Ventosa A, and Drainas C. 1997. Identification of a promoter region on the Halomonas elongata cryptic plasmid pHE1 employing the inaZ reporter gene of Pseudomonas syringae. FEMS Microbiology Letters. 154:45-51. Torreggiani D, Forni E, Guercilena I, Maestrelli A, Bertolo G, Archer G. P., Kennedy C. J., Bone S, Blond G, Contreras-Lopez E, and Champion D. 1999. Modification of glass transition temperature through carbohydrates additions: effect upon colour and anthocyanin pigment stability in frozen strawberry juices. Food Research International.32:441-446. Trudinger PA. Thiol reagents. 1986. In Data for Biochemical Research, 3rd Edition. Dawson RMC, Elliott WH, Jones KM eds. Oxford University Press, New York. 312—335. Tsuda, S., Ito, A., and Matsushima, N. 1997. A hairpin-loop conformation in tandem repeat sequence of the ice nucleation protein revealed by NMR spectroscopy. FEBS Letters 409: 227-231. Turner, M. A., Arellano, F., and Kozloff, L. M. 1990. Three separate classes of bacterial ice nucleation structures. J. Bacteriol. 172(19): 2521-2526. Turner, M. A., Arellano, F., and Kozloff, L. M. 1991. Components of ice nucleation structures of bacteria. J. Bacteriol. 173(20): 6515-6527. Vali, G., and Stansbury, E. J. 1966. Time-dependent characteristics of the heterogeneous nucleation of ice. Cam. J. Phys. 44:477-502. Vali, G. 1971. Quantitative evaluation of experimental results on the heterogeneous freezing nucleation of supercooled liquids. J. Atmos. Sci. 28:402-409. Vonnegut B. 1947. The nucleation of ice formation by silver iodide. J. Appl. Phys. 18:593-595. Warren, G, and Corotto, L. 1989. The consensus sequence of icenucleation proteins from Erwinia herbicola, Pseudomonas fluorescens and Pseudomonas syringae. Gene 85:239-242. Warren, J. G. 1995. Identification and analysis of ina gene and proteins, Ch 5, in Biological Ice Nucleation and Its Applications, R. E. Lee, Jr., G. J. Warren, and L. V. Gusta, p. 91. APS Press. Watabe, S., Abe, K., Hirata, A., Emori, Y., Watanabe. M., and Arai, Soichi. 1993. Large-scale production and purification of an Erwinia ananas ice nucleation protein and evaluation of its ice nucleation activity. Biosci. Biotech. Biochem. 57(4): 603-606. Watanabe, M., Watabe, S., and Arai, S. 1988. Interaction of an antinucleating chemical and an ice nucleation active bacterium: A case study with an n-octylbenzyldimethyl-ammonium salt and Erwinia ananas. Agric. Biol. Chem. 52(7): 1869-1871. Watanabe, M., Watanabe, J., Kumeno, k., Nakahama, N., and Arai, S. 1989. Freeze concentration of some foodstuffs using ice nucleation-active bacterial cells entrapped in calcium alginate gel. Biol. Chem. 53(10):2731-2735. Watanabe, M., makino, T., Kumeno, K., and Arai, S. 1991. High- pressure sterilization of ice nucleation-active bacterial cells. Agric. Biol. Chem. 55(1): 291-292. Watanabe, M., Watanabe, J., Makino, T., Honma, K., Kumeno, K., and Arai, S. 1993. Isolation and cultivation of a novel ice nucleation-active strain of Xanthomonas campestris. Biosci. Biotech. Biochem. 57(6):994-995. Watanabe, M. and Watanabe, J. 1994. Screening, isolation, and identification of food-originated compounds enhancing the ice-nucleation activity of Xanthomonas campestris. Biosci. Biotech. Biochem. 58(1):64- 66. Watanabe, M., and Arai, S. 1994. Bacterial ice-nucleation activity and its application to freeze concentration of fresh foods for modification of their properties. J. Food Engineering 22: 453-473. Watanabe, M., Watatanabe, J., and Michigami, Y. 1994. Enhancing effect of 4-hydroxy-3-nitrophenylacetic acid on transcription of the ice nucleation-active gene of Xanthomonas campestris. Biosci. Biotech. Biochem. 58(12): 2269-2270. Westh, P., Kristiansen, J., and Hvidt, A. 1991. Ice-nucleating activity in the freeze-toilerant tardigrade Adorybiotus coronifer. Comp. Biochem. Physiol. 99A(3):401-404. Wharton, D. A., and Worland, M. R. 1998. Ice nucleation activity in the freezing-tolerant antarctic nematode Panagrolaimus davidi. Cryobiology 36: 279-286. Wilson, P., and Ramlov, H. 1995. Hemolymph ice nucleating proteins from the new Zealand alpine weta Hemideina maori (Orthoptera: Stenopelmatidae). Comp. Biochem. Physiol. 112B (3): 535-542. Wolber, P. K., Deininger, C. A., Southworth, M. W., Vandekerckhove, J., Montagu, M. V., and Warren, G. 1986. Identification and purification of a bacterial ice-nucleation protein. Proc. Natl. Acad. Sci. USA. 83(10):7256-7260. Wolber, P., and Warren, G.. 1989. Bacterial ice-nucleation proteins. TIBS.14(5): 179-182. Zachariassen, K. E., and Kristiansen, E. 2000. Ice nucleation and antinucleation in nature. Cryobiology 41: 257-279. Zasypkin, D. V., and Lee, T. C., 1999. Extracellular ice nucleators from Pantoea ananas: effects on freezing of model foods. J. Food Sci. 64(3):473-478.
|