跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 02:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳美伶
研究生(外文):Mei-Ling Chen
論文名稱:冰核活性菌Pseudomonasfluorescens之分離、鑑定、培養條件及其冰核活性物質之分離與應用
論文名稱(外文):Isolation, Identification, Culture Conditions of Ice-nucleation Active Bacterium Pseudomonas fluorescens, and the Isolation and Application of Its Ice-nucleation Matters
指導教授:江善宗邱思魁邱思魁引用關係
指導教授(外文):Shann-Tzong JiangTze-Kuei Chiou
學位類別:博士
校院名稱:國立海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:108
中文關鍵詞:冰核菌冰核活性
外文關鍵詞:ice-nucleation active bacteriumice-nucleation activity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由鯖魚﹙Scomber australasicus﹚頭部表面分離出一株冰核菌,編號MACK-4,經鑑定為Pseudomonas fluorescens。培養於含2.5% glycerol之nutrient broth (NB-G)時最適生長條件為15oC及pH 6.5,培養54 h可得到最高冰核活性﹙ice-nucleating activity, INA﹚,但以25 oC以上溫度培養48 h 即喪失活性。P. fluorescens MACK-4以peptone 為氮源及碳源以dextrin或starch培養時,菌數成長最迅速,而sorbitol、 mannose及starch為碳源之培養可得到最高冰核活性。以sorbitol為碳源,氮源為無機氮鹽、malt extract 或 gelatine時, 菌生長不易,但氮源為peptone、 yeast extract、 tryptone 或skim milk則生長迅速。於30C 培養後可以5C低溫誘導出活性,飢餓培養基則無法促進活性表現。由化學試劑與金屬離子作用結果,推測冰核活性物質之蛋白質部分含SH基團。P. fluorescens MACK-4之穩定期培養液pH約為7.2- 7.5,菌濾液之冰核活性log(INA/mL)為0.710,菌液以1 M 鹽酸調整至pH 6.0,離心過濾除菌後,可得最高濾液活性1.95。不同體積純水,加入菌液或粗萃取冰核活性物質(extracellular ice nucleation matter, EINM)進行冷凍,可減少過冷卻現象,且體積愈大者效果愈明顯,但卻無助於減少完全冷凍所需時間。添加不同量菌液於純水,菌量增加,減少過冷卻之程度愈明顯,但同樣無法減少完全冷凍所需時間。牛奶樣品添加菌液與EINM可減少過冷卻現象,且添加EINM較未添加者完全凍結所需時間短,10% starch結果與純水系統相同,但添加於果汁與魚漿其冷凍曲線則不因添加而有所改善。推論冰核菌主要為促進初始冰核形成,無助於冰核成長。添加不同濃度抗凍劑,當濃度達20%,菌液與EINM均無活性,glycerol會明顯抑制活性,其他糖類之影響依濃度增加而增加,且EINM較菌液易受影響。去除P. fluorescens MACK-4菌體後濾液之冰核活性高於細胞壁膜物質與胞內物質,濾液藉50 kDa 濃縮過濾膜分離冰核活性物質(EINM)。IAA、-Me、SDS、urea和金屬離子會抑制所分離出之EINM活性,因此EINM內蛋白質可能具SH官能基,Protease可水解EINM。電泳分析結果顯示該EINM包含兩個分子量大於670 kDa之醣蛋白及一個約550 kDa之蛋白質所組合而成的複合體。兩個分子量大於670 kDa之醣蛋白可能是由三個以上且分子量在140∼180 kDa間之蛋白質與醣結合而成之醣蛋白,該醣蛋白會因SDS處理而分離為蛋白質與醣基,說明該醣蛋白之蛋白質與醣基是以疏水性鍵結或親水性鍵結結合而成。

An ice-nucleating bacterium, designated as MACK-4, was isolated from ice-stored mackerel (Scomber australasicus) and identified as a Pseudomonas fluorescens. The optimal temperature and pH for its growth in nutrient broth with 2.5% glycerol (NB-G) were 15C and 6.5, respectively. The maximal ice nucleating activity (INA) was obtained after 54 h incubation at 15C. However, the INA almost completely lost after 48 h incubation at 25C or higher temperatures. The highest ice-nucleating activity was observed on those grown in the media with sorbitol, mannose or starch using peptone as nitrogen source. According to OD600, the cells seemed to be difficult to grow in media with inorganic substances, malt extract or gelatine nitrogen sources. However, rapid growth was observed on the media with peptone, yeast extract, tryptone or skim milk. The concentrations of carbon or nitrogen sources did not significant affect the INA. The INA was greatly induced when the growth temperature was shifted from 30 to 5C. However, it was not affected by transferring the cells into the media with deficiency of nutrients. According the chemical agents and metal effects on INA, the active site on the proteins of INA components might contain SH group. The pH of culture at stationary stage was 7.2-7.5, while the INA was 0.710. The maximum ice nucleation activity of extracellular ice nucleation matter (EINM) was 1.95 when the pH of culture was adjusted to 6.0. The temperature of supercooling point was raised during freezing, when the water, milk or 10% starch was mixed with active bacteria cells or EINM. The decrease of supercooling point increased with the volume of water and the cells or EINM added. However, the addition of active bacteria cells or EINM did not affect the freezing time. No significant difference of the freezing curve between control and EINM or cells containing juice and surimi was observed. The cryoprotectants inactivated the INA of active bacteria cells or EINM, and in the freezing curve of lost when the concentration was over 20%. Glycerol and carbohydrates could inhibit, however, the degree of inhibition of carbohydrate increased with the increase of concentration. The extracellular ice nucleating matter (EINM) from P. fluorescens MACK-4 was isolated by using 50 kDa membrane fractionation. The ice nucleating activity (INA) of the isolated INM was inhibited by IAA, -Me, SDS, urea and divalent metal ions. This phenomenon suggested that the active site of the proteins on EINM might contain SH group. Protease could hydrolyze the proteins on EINM and consequently increased the INA of EINM. Electrophoretic analysis suggested that EINM was glycoprotein and easily de-glycosylated during isolation. The INA of MACK-4 was found to be highest in broth, then cell plasma and membrane. The EINM consisted of 2 glycoproteins with MW>670kDa and 1 protein with MW around 550 kDa. These glycoproteins were considered to be polysaccharides bond with at least 3 proteins with MW between 140 and 180 kDa. SDS could easily rupture the bounding of these glycoproteins, suggesting the bounds between polysaccharides and proteins be hydrophobic or hydrophilic interactions.

表次 Ⅳ
圖次 Ⅴ
中文摘要 Ⅵ
英文摘要 Ⅷ
研究動機與目的 Ⅹ
實驗設計 ⅩⅡ
第一章 文獻整理 1
一、 凍結之形成 1
A、冰核之形成 1
B、細菌冰核 2
二、 冰核菌之特性 3
A、冰核菌之分離與生長條件探討 3
B、冰核物質特性探討 5
三、 冰核菌活性物質之組成 7
A、冰核結構之蛋白質成分 8
B、冰核結構之sugars成分 9
C、冰核結構之phosphatidylinositol 11
D、多胺類對冰核結構之影響 12
 四、冰核菌與冰核物質之應用 14 
第二章 鯖魚體表冰核菌之分離、鑑定及其特性 18
 壹、摘要 18
 貳、前言 20 
 參、實驗材料 21
  一、原料 21
二、培養基 21
三、實驗藥品 21
四、儀器 22
 肆、實驗方法 23
   一、培養 23
二、穿透式電子顯微鏡 24
   三、革蘭式染色 24
   四、API 20NE系統之鑑定 24
五、冰核活性測定 24
   六、最適培養條件條件與影響活性因子探討 25
   七、菌液活性影響因子探討 25
 伍、結果與討論 26
   一、冰核菌之分離 26
   二、探討MACK-4之培養條件及其對活性之影響 27
   三、最適培養之溫度與pH 28
   四、pH 與溫度對MACK-4之冰核活性影響 29
第三章 探討增進P. fluorescens MACK-4冰核活性之培養條件 31
壹、 摘要 31
貳、 前言 33
參、 材料與方法 34
一、準備菌種 34
二、金屬鹽類、碳與氮源之影響 34
三、冰核活性測定 34
四、化學試劑與金屬離子對冰核活性之影響 34
五、低溫處理與營養缺乏對冰核活性之誘導 35
六、統計分析 35
肆、 結果與討論 35
一、 碳與氮源對MACK-4之生長與活性影響 35
二、 培養基中碳與氮源濃度之影響 37
三、 低溫處理與營養缺乏對MACK-4之生長與活性影響 38
四、 金屬鹽類之影響 39
五、 金屬離子與化學試劑之影響 39
第四章P. fluorescens MACK-4 與其冰核活性物質在食品冷凍加工上
之應用 41
壹、 摘要 41
貳、 前言 43
參、 材料與方法 45
一、準備菌體 45
二、樣品製備 45
三、粗萃取冰核活性物質製備 45
四、冷凍曲線 46
五、冰核活性測定 46
六、抗凍劑對冰核活性之影響 46
肆、 結果與討論 46
一、 粗萃取液製備 46
二、 純水冷凍 47
三、 食品冷凍 47
四、 抗凍劑之影響 48
第五章 P. fluorescens MACK-4之冰核活性物質的分離與特性 50
壹、 摘要 50
貳、 前言 52
參、 材料與方法 53
一、 粗冰核活性物質之萃取 54
二、 膜物質分離 54
三、 超過濾濃縮 54
四、 醣基染色反應 54
五、 總醣含量分析 54
六、 酵素作用之影響 55
七、 冰核活性測定 55
八、 化學試劑與金屬離子對冰核活性之影響 55
九、電泳分析 55
肆、 結果與討論 56
一、 菌膜物質分離 56
二、 冰核活性物質分離 56
三、 金屬離子對冰核活性物質活性之影響 58
四、 化學試劑對冰核活性物質活性之影響 58
五、 酵素對冰核活性物質活性之影響 59
綜合結論 61
參考文獻 62

參考文獻
Abadias, M., Benabarre, A., Teixido, N., Usall, J. and Vinas, I. 2001. Effect of freeze drying and protectants on viability of the biocontrol yeast Candida sake. Internal. J. Food Microbiol. 65: 173-182.
Abyzov, S., Mitskevich, I. M., Poglazova, M. N., Barkov, N. I., Lipenkov, V. Y., Bobin, N. E., Kudryashov, B. B., and Pashkevich, V. M. 1999. Antarctic ice sheet as an object for solving some methodological problems of exobiology. Adv. Space Res. 23(2): 371-376.
Arai, S., and Watanabe, M., 1986. Freeze texturing of food materials by ice- nucleation with the bacterium Erwinia ananas. Agric. Biol. Chem. 50(1):169-175.
Arny, C. D., Lindow, S. E., and Upper, C. D. 1976. Frost sensitivity of Zea mays increased by application of Pseudomonas syringae. Nature 262:282- 284.
Ashworth, E. N. 1992. Formation and spread of ice in plant tissues. Hortic. Rev. 13:215-255.
Baerltein, D. A., Lindow, S. E., Panopoulos, N. J., Lee, S. P., Mindrindros, M. N., and Chen, T. H. 1992. Expression of a bacterial ice nucleation gene in plants. Plant Physiol. 100:1730-1736.
Baowu Wang, Youling L. Xiong, and Subramanian Srinivasan .1997. Chemical stability of antioxidant-washed beef heart surimi during frozen storage. J. Food Sci. 62(5):939
Bigg, E. K. 1953. The supercooling of water. Proc. Phys. Soc., London, Sect. B 66:688-694.
Blondeaux, A., and Cochet, N. 1994. High-level expression of the ice-nucleating activity of Pseudomonas syringae in relation to its growth characteristics. Appl. Microbiol. Biotechnol. 42: 116-120.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram protein utilizing the principle of protein-dye binding. Anal. Biochimie. 72: 248-254.
Brown, R. 1997. Man-made snow. Scientific American 276: 119.
Burke, M. J., and Lindow, S. E. 1990. Surface properties and size of the ice nucleation site in ice nucleation active bacteria: theoretical considerations. Cryobiology 27:80-84.
Cai, Q., and Storey, K. B. 1997. Upregulation of a novel gene by freezing exposure in the freeze-tolerant wood frog (Rana sylvatica). Gene 198: 305-312.
Castrillo, L.A., Rutherford, S. T., Lee, R, E., Jr., and Lee, M. R. 2001. Enhancement of ice-nucleating activity in Pseudomonas fluorescens and its effect on efficacy against overwintering colorado potato beetles. Biological Control 21: 27-34.
Chen, S. L., Wang, P. P., and Lee, T. S. 1999. An experimental investigation of nucleation probability of supercooled water inside cylindrical capsules. Experimental Thermal and Fluid Science 18:299-306.
Costanzo, J. P., Humphreys, T. L., Lee Jr, R. E., Moore, J. B., Lee, M. R., and Wyman, J. A. 1998. Long-term reduction of cold hardiness following ingestion of ice-nucleating bacteria in the Colorado potato beetle, Leptinotarsa decemlineata. J. Insect Physiol. 44: 1173-1180.
Deininger C. A., Mueller G. M., and Wolber P. K. 1988. Immunological characterization of ice nucleation proteins from Pseudomonas syringae, Pseudomonas fluorescens, and Erwinia herbicola. J. Bacteriol. 170(2): 669-675.
DeVries, A. L. 1971. Glycoproteins as biological antifreeze agents in Antarctic fishes. Science 172: 1152-1155.
Doering, T. L., Masterson, W. J., Hart, G. W., and Englund, P. T. 1990. Biosynthesis of glycosyl phosphatidyl-inositol membrane anchors. J. Biol.Chem. 265(20): 611-614.
Dubois, M., Gilles, K. A., and Hamilton, J. K. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem. 28: 350-356.
Duman, J. G., Morris J. P., and Castellino, F. J. 1984. Purification and composition of an ice nucleating protein from queens of the hornet, Vespula maculata. J Comp Physiol B. 154: 79-83.
Fall, R., and Schnell, R. S. 1985. Association of an ice-nucleating pseudomonad with cultures of the marine dinoflagellate, Heterocapsa niei. J. Mar. Res. 43: 257-265.
Fall, R., and Wolber, P. K. 1995. Biochemistry of bacterial ice nuclei, Ch 4, in Biological Ice Nucleation and Its Applications, R. E. Lee, Jr., G. J. Warren, and L. V. Gusta, p. 69, 72. APS Press.
Franks, F. 1985. Biophysics and Biochemistry at Low Temperatures. Cambridge University Press.
Gao, W., Smith, D. W., and Sego, D. C. 1999. Ice nucleation in industrial wastewater. Cold Regions Sci. Tech. 29: 121-133.
Gehrken, U., and Southon, T. E. 1997. Effect of temperature on cold-hardiness and tissue ice formation in the adult chrysomelid beetle Melasoma collaris L. . J. Insect Physiol. 43(6): 587-593.
Glusker JP. 1991. Structural aspects of metal liganding to functional groups in protein. Adv. Protein Chem. 40: 3-66.
Goodrich-Blair, H., Scarlato, V., Gott, J. M., Xu, M. Q., and Shub, D. A. 1990. A self-splicing group I intron in the DNA polymerase gene of Bacillus subtilis bacteriophage SP1. Cell 63(10): 417-424.
Govindarajan, A. G., and Lindow, S. E. 1988. Size of bacterial ice-nucleation sites measured in situ by radiation inactivation analysis. Proc. Natl. Acad. Sci. USA 85: 1334-1338.
Green, R., and Warren, G. J. 1985. Physical and functional repetition in a bacterial ice nucleation gene. Nature 317(10): 645-648.
Gross, D. C., Cody, Y., Proebsting, E. L., Radamaker, G. K., and Spotts, R. A. 1983. Distribution, population dynamics, and characteristics of ice nucleation-active bacteria in deciduous fruit tree orchards. Appl. Environ. Microbiol. 46(6):1370- 1379.
Gurian-Sherman, D., and Lindow, S. E. 1993. Bacterial ice nucleation: Significance and molecular basis. FASEB J. 7: 1338-1343.
Gurian-Sherman, D., and Lindow, S. E. 1995. Differential effects of growth temperature on ice nuclei active at different temperatures that are produced by cells of Pseudomonas syringae. Cryobiology 32: 129-138.
Hirano, S. S., and Upper, C. D. 1986. Bacterial nucleation of ice in plant leaves. Methods Enzymol. 127: 730-738.
Honma, K., Makino, T., Kumeno, K., and Watanabe, M. 1993. High-pressure sterilization of ice nucleation-active Xanthomonas campestris and its application to egg processing. Biosci. Biotech. Biochem. 57(7):1091-1094.
Jeong, H. S., Yoo, S. K., Kim, E. J. 2001. Cell surface display of salmobin, a thrombin-like enzyme from Agkistrodon halys venom on Escherichia coli using ice nucleating protein. Enzyme and Microbial Technology 28: 155-160.
Jiang, W., Jones, P., and Inouye, M. 1993. Chloramphenicol induces the transcription of the major cold shock gene of Escherichia coli, cspA. J. Bacteriol. 175(18): 5824-5828.
Jia Z, Deluca CI, Chao H, Davies PL. 1996. Structural basis for the binding of a globular antifreeze protein to ice. Nature 384: 285-288.
Jones, P. G., Vanbogelen, R. A., and Neidhardt, F. C. 1987. Induction of proteins in response to low temperature in Escherichia coli. J. Bacteriol. 169(5): 2092-2095.
Jones, P. G., Cashel, M. Glaser, G., and Neidhardt, F. C. 1992. Function of a relaxed-like state following temperature downshifts in Escherichia coli. J. Bacteriol. 174(12): 3903-3914.
Jung, H. C., Park, J. H., Park, S. H., Lebeault, J. M., and Pan J. G. 1998. Expression of carboxymethylcellulase on the surface of Escherichia coli using Pseudomonas syringae ice nucleation protein. Enzyme and Microbial Technology 22: 348-354.
Kajava, A. V., and Lindow, S. E. 1993. A model of the three-dimensional structure of ice nucleation proteins. J. Mol. Biol. 232: 709-717.
Kawahara H, Hayashi Y, Hamada R, and Obata H. 1993a. Effects of polyamines on the ice-nucleating activity of Erwinia uredovora KUIN-3. Biosci. Biotech. Biochem. 57(9): 1424 —1428.
Kawahara, H., Mano, Y., and Obata, H. 1993b. Purification and characterization of extracellular ice-nucleating matter from Erwinia uredovora KUIN-3. Biosci. Biotech. Biochem. 57(9):1429-1432.
Kawahara H, Mano Y, Hamada R, and Obata H. 1994. Role of spermidine in the ice-nucleating activity of the EIM from Erwinia uredovora KUIN-3. Biosci. Biotech. Biochem. 58(12): 2201-2206.
Kawahara, H., Tanaka, Y., and Obata, H. 1995. Isolation and characterization of a novel ice-nucleating bacterium, Pseudomonas sp. KUIN-4, which has stable activity in acidic solution. Biosci. Biotech. Biochem. 59(8):1528-1532.
Kawahara, H., Ikugawa, H., and Obata, H. 1996. Isolation and characterization of a marine ice-nucleating bacterium, Pseudomonas sp. KUIN-5, which produces cellulose and secretes it in the culture broth. Biosci. Biotech. Biochem. 60(9):1474-1478.
Kazuoka, T., and Oeda, K., 1992. Heat-stable COR (cold-regulated) proteins associated with freezing tolerance in Spinach. Plant Cell Physiol. 33(8): 1107-1114.
Kieft, T. L. 1988. Ice nucleation activity in lichens. Appl. Environ. Microbiol. 54(7) : 1678- 1681.
Kieft, T. L., and Ruscetti, T. 1990. Characterization of biological ice nuclei from a lichen. J. Bacteriol. 172(6): 3519-3523.
Klee CB. Interaction of calmodulin with Ca2+ and target proteins. In Molecular Aspects of Cellular Regulations, Vol. 5, Calmodulin; Cohen, P., Ed.; Elserier: Amsterdam, 1988; 35-56.
Koda, N., Aoki, M., Kawahara, H., Yamade, K., and Obata, H. 2000. Characterization and properties of intracellular proteins after cold acclimation of the ice-nucleating bacterium Pantoea agglomerans (Erwinia herbicola) IFO12686. Cryobiology 41: 195-203.
Kozloff, L. M., Schofield, M. A., and Lute, M. 1983. Ice-nucleating activity of Pseudomonas syringae and Erwinia herbicola. J. Bacteriol. 153:222-231.
Kozloff, L. M., Lute, M., and Westaway, D. 1984. Phosphatidylinositol as a component of the ice nucleating site of Pseudomonas syringae and Erwinia herbicola. Science 226: 845-846.
Kozloff, L. M., Turner, M. A., and Arellano, F. 1991a. Formation of bacterial membrane ice-nucleating lipoglycoprotein complexes. J. Bacteriol. 173(20): 6528-6536.
Kozloff, L. M., Turner, M. A., Arellano, F., and Lute, M. 1991b. Phosphatidylinositol, a phospholipid of ice-nucleating bacteria. J. Bacteriol. 173:2053-2060.
LaDuca, R. J., Rice, A. F., and Ward, P. J. 1995. Applications of biological ice nucleators in spray-ice technology. Ch 19, in Biological Ice Nucleation and Its Applications, R. E. Lee, Jr., G. J. Warren, and L. V. Gusta, p. 343. APS Press.
Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 277: 680-685.
Langham, E.J., and Mason, B. J. 1958. The heterogeneous and homogeneous nucleation of supercooled water. Proc. R. Soc. A 247: 493-504.
Lee Jr, R. E., Strong-Gunderson, J. M., Lee, M. R., Grove, K. S., and Riga, T. J. 1991. Isolation of ice nucleating active bacteria from insects. J. Experimental Zoology 257: 124-127.
Lee, M. R., Lee, R. E., Strong-Gunderson, J. M., and Minges, S. R. 1995a. Isolation of ice-nucleating active bacteria from the freeze-tolerant frog, Rana sylvatica. Cryobiology 32: 358-365.
Lee, Jr R. E., Lee, M. R., Strong-Gunderson, J. M. 1995b. Biological control of insect pests using ice-nucleating microorganisms. Ch 14, in Biological Ice Nucleation and Its Applications, R. E. Lee, Jr., G. J. Warren, and L. V. Gusta, p. 257. APS Press.
Li, J. Izquierdo, M. P. and Lee, T. C. 1997. Effect of ice-nucleation active bacteria on the freezing of some model food systems. Int. J. Food Sci. Technol. 32:41-49.
Li, J., and Lee, T. C. 1998. Bacterial extracellular ice nucleator effects on freezing of foods. J. Food Sci. 63(3):375-381.
Li, J., and Lee, T. C. 1995. Bacterial ice nucleation and its potential application in the food industry. Trends. Food Sci. Tech. 6:259-265.
Lindow, S. E., Arny, D. C., and Upper, C. D. 1978. Erwinia herbicola: A bacterial ice nucleus active in increasing frost injury to corn. Phytopathology 68: 523-527.
Lindow, S. E., Arny, D. C., and Upper, C. D. 1982. Bacterial ice nucleation: A factor in frost injury to plants. Plant Physiol. 70: 1084-1089.
Lindow, S. E. 1983. The role of bacterial ice nucleation in frost injury to plants. Annu. Rev. Phytopathol. 21:363-384.
Lindow, S. E. 1987. Competitive exclusion of epiphytic bacteria by ice‾ Pseudomonas syringae mutants. Appl. Environ. Microbiol. 53(10): 2520-2527.
Lindow, S. E., Lahue, E., Govindarajan, A. G., Panopoulos, N. J., and Gies, D. 1989. Localization of ice nucleation activity and the iceC gene product in Pseudomonas syringae and Escherichia coli. Molecular Plant-Microbe Interactions 2(5): 262-272.
Loomis SH, Zinser M. 2001. Isolation and identification of an ice-nucleating bacterium from the gills of the intertidal bivalve mollusk Geukensia demissa. J. Experimental Marine Biology and Ecology 261: 225-235.
Maki, L. R., and Willoughby, K. J.1978. Bacteria as biogenic sources of freezing nuclei. J. Appl. Microbiol. 17: 1049-1053.
Glusker JP. 1991. Structural aspects of metal liganding to functional groups in protein. Adv. Protein Chem. 40: 3-66.
McBride, J. M. 1992. Crystal polarity: A window on ice nucleation. Science 256(5): 814-818
Mignon, J., Haubruge, E., and Gaspar, C. 1991. Effect of ice-nucleating bacteria (Pseudomonas syringae Van Hall) on insect susceptibility to sub-zero temperatures. J. Stored Res. 34(1): 81-86.
Morreale AP, Murphy KP, Cera ED, Fall R, DeVries AL, Gill SJ. 1988. Inhibition of bacterial ice nucleators by fish antifreeze glycoproteins. Nature 333: 782-783.
Nemecek-Marshall, M., Laduca, R., and Fall, R. 1993. High-level expression of ice nuclei in a Pseudomonas syringae strain is induced by nutrient limitation and low temperature. J. Bacteriol. 175(13): 4062-4070.
Neuhoff, V., Arold, N., Taube, D., and Ehrhardt, W. 1988. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using coomassie brilliant blue G-250 and R-250. Electrophoresis 9: 255-262.
Neven, L. G., Duman, J. G., Low, M. G., Sehl, L. C., and Castellino, F. J. 1989. Purification and characterization of an insect hemolymph lipoprotein ice nucleator : evidence for the importance of phosphatidylinositol and apolipoprotein in the ice nucleator activity. J. Comp. Physiol. B. 159: 71-82.
Obata, H., Muryoi, N., Kawahara, H., Yamade, K., and Nishikawa, J. 1999. Identification of a navel ice-nucleating bacterium of antarctic origin and its ice nucleation properties. Cryobiology 38:131-139.
Obata, H., Saeki, Y., Tanishita, J., Tokuyama, T., Hori, H., and Higashi, Y. 1987. Identification of an ice-nucleating bacterium KUIN-1 as Pseudomonas fluorescens and its ice nucleation properties. Agric. Biol. Chem. 51(7):1761-1766.
Obata, H., Takinami, K., Tanishita, J. J., Hasegawa, y., Kawate, S., Tokuyama, T., and ueno, T. 1990. Identification of a new ice-nucleating bacterium and its ice nucleation properties. Agric. Biol. Chem. 54(3):725-730.
Obata, H., Ishigaki, H., Kawahara, H., and Yamade, K. 1998. Purification and characterization of a novel cold-regulated protein from an ice-nucleating bacterium, Pseudomonas fluorescens KUIN-1. Biosci. Biotechnol. Biochem. 62(11): 2091-2097.
Ozilgen, S., and Reld, D. S. 1993. The use of DSC to study the effects of solutes on hetero- geneous ice nucleation kinetics in model food emulsions. Lebersm. Wiss. U. Technol. 26: 116-120.
Palaiomylitou, M.A., Kalimanis, A., Koukkou, A. I., Drainas, C., Anastassopoulos, E., Panopoulos, N. j., Ekateriniadou, L. V., and Kyriakidis, D. A. 1998. Phospholipid analysis and fractional reconstitution of the ice nucleation protein activity purified from Escherichia coli overexpressing the inaZ gene of pseudomonas syringae. Cryobiology 37:67-76.
Pearce, R. S. 2001. Plant freezing and damage. Amnals of Botany 87: 417-424.
Phelps, P., Gidding, T. H., Prochoda, M., and Fall, R. 1986. Release of cell-free ice nuclei by Erwinia herbicola. J. Bacteriol. 167(2):496-502.
Pouleur, S., richard, C., Martin, J. G., and Antoun H. 1992. Ice nucleation activity in Fusarium acuminatum and Fusarium avenaceum. Appl. Environ. Microbiol. 58(9): 2960-2964.
Rogers, J. S., Stall, R. E., and Burke, M. J. 1987. Low temperature conditioning of the ice nucleation active bacterium, Erwinia herbicola. Cryobiology 24: 270-279.
Rosinski, J., Nagamoto, C. T., and Zhou, M. Y. 1995. Ice-forming nuclei over the east china sea. Atmospheric Research 36: 95-105.
Ruggles, J.A., Nemecek-Marshall, M., and Fall, R. 1993. Kinetics of appearance and disappearance of classes of bacterial ice nuclei support an aggregation model for ice nucleus assembly. J. Bacteriol. 175(22): 7216-7221.
Schmid D, Pridmore D, Capitani G, Battistutta R, Neeser JR, and Jann A. 1997. Molecular organisation of the ice nucleation protein InaV from Pseudomonas syringae. FEBS Letters 414: 590-594.
SAS Institute, 1987. SAS/STAT User’s Guide, Version 6. SAS Institute, Cary, NC, USA.
Skirvin, R. M., Kohler, E., Steiner, H., Ayers, D., laughnan, A., Norton, M. A., and Warmund, M. 2000. The use of genetically engineered bacteria to control frost on strawberries and potatoes. Waterever happened to all of that reseach? Scientia Horticulturae 84:179-189.
Southworth, M. W., Wolber, P. K., and Warren, G. J. 1988. Nonliner relationship between concentration and activity of a bacterial ice nucleation protein. J. Biol. Chem. 263(29):15211-15216.
Strong-Gunderson, J. M., Lee Jr, R. E., Lee, M. R., and Riga, T. J. 1990. Ingestion of ice-nucleating active bacteria increases the supercooling point of the lady beetle Hippodamia convergens. J. Insect Physiol. 36(3): 153-157.
Strong-Gunderson, J. M., and Palumbo, A. V. 1997. Laboratory studies identify a colloidal groundwater tracer: Implications for bioremediation. FEMS Microbiol. Letters 148: 131-135.
Subramanian Srinivasan and Herbert O. Hultin, 1995. Hydroxyl radical modification of fish muscle proteins. J. Food Biochem. 18:405-425.
Tegos G, Vargas C, Vartholomatos G, Perysinakis A, Nieto JJ, Ventosa A, and Drainas C. 1997. Identification of a promoter region on the Halomonas elongata cryptic plasmid pHE1 employing the inaZ reporter gene of Pseudomonas syringae. FEMS Microbiology Letters. 154:45-51.
Torreggiani D, Forni E, Guercilena I, Maestrelli A, Bertolo G, Archer G. P., Kennedy C. J., Bone S, Blond G, Contreras-Lopez E, and Champion D. 1999. Modification of glass transition temperature through carbohydrates additions: effect upon colour and anthocyanin pigment stability in frozen strawberry juices. Food Research International.32:441-446.
Trudinger PA. Thiol reagents. 1986. In Data for Biochemical Research, 3rd Edition. Dawson RMC, Elliott WH, Jones KM eds. Oxford University Press, New York. 312—335.
Tsuda, S., Ito, A., and Matsushima, N. 1997. A hairpin-loop conformation in tandem repeat sequence of the ice nucleation protein revealed by NMR spectroscopy. FEBS Letters 409: 227-231.
Turner, M. A., Arellano, F., and Kozloff, L. M. 1990. Three separate classes of bacterial ice nucleation structures. J. Bacteriol. 172(19): 2521-2526.
Turner, M. A., Arellano, F., and Kozloff, L. M. 1991. Components of ice nucleation structures of bacteria. J. Bacteriol. 173(20): 6515-6527.
Vali, G., and Stansbury, E. J. 1966. Time-dependent characteristics of the heterogeneous nucleation of ice. Cam. J. Phys. 44:477-502.
Vali, G. 1971. Quantitative evaluation of experimental results on the heterogeneous freezing nucleation of supercooled liquids. J. Atmos. Sci. 28:402-409.
Vonnegut B. 1947. The nucleation of ice formation by silver iodide. J. Appl. Phys. 18:593-595.
Warren, G, and Corotto, L. 1989. The consensus sequence of icenucleation proteins from Erwinia herbicola, Pseudomonas fluorescens and Pseudomonas syringae. Gene 85:239-242.
Warren, J. G. 1995. Identification and analysis of ina gene and proteins, Ch 5, in Biological Ice Nucleation and Its Applications, R. E. Lee, Jr., G. J. Warren, and L. V. Gusta, p. 91. APS Press.
Watabe, S., Abe, K., Hirata, A., Emori, Y., Watanabe. M., and Arai, Soichi. 1993. Large-scale production and purification of an Erwinia ananas ice nucleation protein and evaluation of its ice nucleation activity. Biosci. Biotech. Biochem. 57(4): 603-606.
Watanabe, M., Watabe, S., and Arai, S. 1988. Interaction of an antinucleating chemical and an ice nucleation active bacterium: A case study with an n-octylbenzyldimethyl-ammonium salt and Erwinia ananas. Agric. Biol. Chem. 52(7): 1869-1871.
Watanabe, M., Watanabe, J., Kumeno, k., Nakahama, N., and Arai, S. 1989. Freeze concentration of some foodstuffs using ice nucleation-active bacterial cells entrapped in calcium alginate gel. Biol. Chem. 53(10):2731-2735.
Watanabe, M., makino, T., Kumeno, K., and Arai, S. 1991. High- pressure sterilization of ice nucleation-active bacterial cells. Agric. Biol. Chem. 55(1): 291-292.
Watanabe, M., Watanabe, J., Makino, T., Honma, K., Kumeno, K., and Arai, S. 1993. Isolation and cultivation of a novel ice nucleation-active strain of Xanthomonas campestris. Biosci. Biotech. Biochem. 57(6):994-995.
Watanabe, M. and Watanabe, J. 1994. Screening, isolation, and identification of food-originated compounds enhancing the ice-nucleation activity of Xanthomonas campestris. Biosci. Biotech. Biochem. 58(1):64- 66.
Watanabe, M., and Arai, S. 1994. Bacterial ice-nucleation activity and its application to freeze concentration of fresh foods for modification of their properties. J. Food Engineering 22: 453-473.
Watanabe, M., Watatanabe, J., and Michigami, Y. 1994. Enhancing effect of 4-hydroxy-3-nitrophenylacetic acid on transcription of the ice nucleation-active gene of Xanthomonas campestris. Biosci. Biotech. Biochem. 58(12): 2269-2270.
Westh, P., Kristiansen, J., and Hvidt, A. 1991. Ice-nucleating activity in the freeze-toilerant tardigrade Adorybiotus coronifer. Comp. Biochem. Physiol. 99A(3):401-404.
Wharton, D. A., and Worland, M. R. 1998. Ice nucleation activity in the freezing-tolerant antarctic nematode Panagrolaimus davidi. Cryobiology 36: 279-286.
Wilson, P., and Ramlov, H. 1995. Hemolymph ice nucleating proteins from the new Zealand alpine weta Hemideina maori (Orthoptera: Stenopelmatidae). Comp. Biochem. Physiol. 112B (3): 535-542.
Wolber, P. K., Deininger, C. A., Southworth, M. W., Vandekerckhove, J., Montagu, M. V., and Warren, G. 1986. Identification and purification of a bacterial ice-nucleation protein. Proc. Natl. Acad. Sci. USA. 83(10):7256-7260.
Wolber, P., and Warren, G.. 1989. Bacterial ice-nucleation proteins. TIBS.14(5): 179-182.
Zachariassen, K. E., and Kristiansen, E. 2000. Ice nucleation and antinucleation in nature. Cryobiology 41: 257-279.
Zasypkin, D. V., and Lee, T. C., 1999. Extracellular ice nucleators from Pantoea ananas: effects on freezing of model foods. J. Food Sci. 64(3):473-478.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top