跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2025/10/07 21:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳雅琪
研究生(外文):Ya-Chi Wu
論文名稱:中草藥複方降血脂之功能探討及基因安全性評估
論文名稱(外文):Study of a Chinese herbal complex on the hypolipidemic effects in hamsters fed with high fat diet and the genotoxicity evaluation
指導教授:梁有志梁有志引用關係
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:127
中文關鍵詞:高膽固醇血症高血脂動脈粥樣硬化症丹參基因毒性
外文關鍵詞:HypercholesterolemiahyperlipidemiaatherosclerosisSalvia miltiorrhiza bungegenotoxicity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:1
高膽固醇血症(hypercholesterolemia)及高血脂(hyperlipidemia)被認為是影響動脈粥樣硬化症(atherosclerosis)與心血管相關疾病之形成及進展的主因。一些天然植物已被證實可有效降低血清中膽固醇或三酸甘油酯濃度進而延緩心血管疾病的形成或改善。丹參,在傳統醫學中屬於「活血化瘀(blood-quickening, stasis-dispelling )」的藥物並廣泛被使用於改善心血管類疾病(cardiovascular disorders )上,丹參酚酸B(Salvianolic acid B) 是從丹參(salvia miltiorrhiza bunge)根莖中萃取出來的化合物,在許多研究報告中指出其兼具抗氧化能力。近代研究更進一步指出,丹參酚酸B、薑黃素(curcumin)、葛根素(puerarin)及玫瑰花粹取物,皆被證實具有可降低心血管疾病風險因子。
本篇論文與實驗內容主要探討KDS718複方藥材對於餵食高脂肪食物6週或12週後的倉鼠(hamsters),其降低血脂的效能。KDS718複方包含丹參酚酸B、薑黃素、葛根素及玫瑰花,實驗將不同濃度的KDS718與粉狀飼料混合後讓倉鼠自由攝食。實驗進行6週及12週後,採集倉鼠空腹血液並檢測其總膽固醇(total choleasterol)、三酸甘油酯(triglycerides)、低密度脂蛋白(low density lipoprotein,LDL)、極低密度脂蛋白(very low density lipoprotein,VLDL)的濃度以及其低密度脂蛋白的氧化反應(LDL oxidation)。此外,實驗中並進行沙門氏逆突變試驗(Ames revertant mutagenesis assay )、體外鼷鼠淋巴瘤tk分析(in vitro mouse lymphoma tk revertant mutagenesis assay) 及小鼠周邊血液微核試驗(the micronuclei assay in the mice peripheral blood)來測試KDS718是否會造成基因毒性。
實驗結果顯示,KDS718無法改善因餵食高脂肪食物所引發的高血脂,但KDS718並不具有任何基因毒性;此外,高脂肪食物無法誘發實驗的倉鼠形成動脈粥狀硬化斑塊。
綜合上述結果,KDS718無法降低血中脂質的濃度且高脂肪食物無法誘發粥狀硬化斑塊的形成,其可能的原因有以下3點:
(1)KDS718複方具有活性化合物的含量可能不足以改變血液中脂質的代謝機制;
(2)倉鼠選擇性攝取到不含有KDS718的粉狀飼料;
(3)含有膽酸的飼料可能更容易誘發倉鼠粥狀動脈硬化病灶的形成。
The hypercholesterolemia and hyperlipidemia were associated with the high incidence of the formation or development of atherosclerosis and related cardiovascular disorders. Some natural plants have proven they could reduce the concentration of cholesterol or triglycerides in blood serum so that postpone formation or development of cardiovascular disorders. Salvia miltiorrhiza bunge, a traditional Chinese herb which is taken as a blood-quickening, stasis-dispelling medicine, is widely used to improve cardiovascular disorders. Salvianolic acid B is extracted from Salvia miltiorrhiza bunge’s root and exhibites anti-oxidative activity in many assay models. Recent studies demonstrated that salvianolic acid B, curcumin, and the extracts of puerarin and rose had benefit for decreasing the risk factors of cardiovascular disorders.
In this study, we used the KDS718 complex to examine the hypolipidemia effects in hamster-fed with high fat diet for 6 or 12 weeks. The KDS718 consists of salvianolic acid B, curcumin, and the crude extract of puerarin and rose, and hamster was free access to powder diet containing various concentrations of powder KDS718. At the 6th weeks and the end, fasting blood was measured the levels of total choleasterol, triglycerides, LDL and VLDL, and the LDL oxidation. In addition, we also examined whether KDS718 had genotoxicity by Ames and mouse lymphoma tk revertant mutagenesis assay, and the micronuclei assay in the mice peripheral blood.
Our results suggest that KDS718 can’t improve the hyperlipidemia in hamster-fed with high fat diet, and it has no any genotoxicity. The high fat diet did not induce fatty streak in artery of high fat-fed hamster. KDS718 failed to reduce the lipid levels and induce fatty streak might result from the following reasons.
1. The amounts of active compounds of KDS718 might be not enough to change the lipid metabolism.
2. The hamster selectively ingested powder diet without KDS718 powder.
3. Atherosclerotic lesion might be easy formation with diets containing cholic acid in hamster.
縮寫表(Abbreviations)IV
第一章 Abstract 7
第二章 中文摘要 9
第三章 緒 論 11
第一節 研究目的 11
第二節 高血脂暨動脈粥狀硬化.13
一、前言 13
二、血漿脂質及脂蛋白 15
三、動脈粥樣硬化症(atherosclerosis) 流行病學 24
四、動脈血管介紹 29
五、動脈粥樣硬化症(atherosclerosis) 病理學 33
六、動脈粥樣硬化症假說(hypotheses of atherogenesis) 36
1.內皮損傷反應(response-to-injury of endothelium) 37
2. 低密度脂蛋白滯留反應(response-to-retention oF LDL) 39
3. 低密度脂蛋白氧化修飾(oxidative LDL modification) 42
七、單核球的遷移(monocyte migration) 44
八、平滑肌細胞的增生 47
第三節?中草藥複方(KDS718)成分介紹 49
一、丹參(Salvia miltiorrhiza bunge) 49
二、薑黃素(curcumin)55
三、葛根素(puerarin) 58
四、玫瑰花(rose rugosa thunb) 61
第四節?基因安全性指標評估 63
一、沙門氏逆突變試驗 63
二、體外鼷鼠淋巴瘤tk分析 65
三、小鼠周邊血液微核試驗 66
第四章 實驗材料與方法 68
第一節 實驗動物之血清生化參數測量 68
一、實驗儀器 68
二、實驗材料與試劑 68
三、實驗動物 69
四、實驗方法 69
第二節 基因安全性評估 75
壹、沙門氏逆突變試驗(AMES revertant mutagenesis test ) 75
一、實驗材料與試劑 75
二、實驗方法 76
三、結果分析與判定 78
貳、鼷鼠淋巴瘤TK分析 78
一、實驗材料與試劑 79
二、實驗方法 81
三、統計分析與結果判定 83
參、小鼠周邊血液微核試驗 83
一、實驗材料與試劑 84
二、實驗方法 84
三、統計分析與結果判定 86
第五章 實驗結果 88
第一節 血清生化參數結果 88
一、預試驗I 88
二、預試驗II 88
三、正式實驗 89
四、附加實驗 90
第二節 基因安全性評估 91
一、沙門氏逆突變試驗(AMES test) 91
二、鼷鼠淋巴瘤TK分析 93
三、小鼠周邊血液微核試驗 94
第六章 討論 96
第七章 圖表 102
FIG.1~ FIG.5 預試驗I:倉鼠餵食高脂肪飼料及KDS718,4 週後血中TG、TC、 HDL、LDL及VLDL的濃度 102
FIG.6~ FIG.10. 預試驗II:倉鼠餵食高脂肪飼料及KDS718,4 週後血中TG、TC、 HDL、LDL及VLDL的濃度 103
圖11~圖18. 正式試驗:倉鼠餵食高脂肪飼料及KDS718,6及12 週後血中TG、TC、GOT及GPT的濃度 104
圖19~圖21. 正式試驗:倉鼠餵食高脂肪飼料及KDS718,1、6及12 週體重的變化 106
FIG. 22~FIG. 23 正式試驗:倉鼠餵食高脂肪飼料及KDS718, 12週試驗之血清LDL OXIDATION結果 107
FIG. 24~FIG. 25 附加試驗: 倉鼠餵食高膽固醇飼料及KDS718,4 週後血中TOTAL CHOLESTEROL及TRIGLYCERIDES的濃度 108
TABLE 1~2. KDS718對於沙門氏菌的基因致突變性影響(AMES TEST)之結果 109
FIG. 26 KDS718濃度影響L5178Y TK+/-細胞存活率的結果 111
TABLE 3. 不同濃度的KDS718在不含S9條件下對於L5178Y TK+/-細胞基因突變的影響 112
TABLE 4. 不同濃度的KDS718在含有S9條件下對於L5178Y TK+/-細胞基因突變的影響 113
FIG. 27. 不同濃度的KDS718對於雄性小鼠周邊血液產生微核的結果 114
TABLE 5. 不同濃度的KDS718對於雄性小鼠周邊血液產生微核的數量 116
TABLE 6. 不同濃度的KDS718對於雄性小鼠周邊血液產生微核及網狀紅血球的百分比 117
第八章 參考文獻 118
[1] Biochemistry 2nd Ed. 1995 Garrett & Grisham.
[2] Wilson PW, D''Agostino RB, Levy D, Belanger AM, Silbershatz H, and Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation 97: 1837–1847, 1998.
[3] Barrett-Connor E and Bush TL. Estrogen and coronary heart disease in women. JAMA 265: 1861–1867, 1991.
[4] Hulley S, Grady D, Bush T, Furberg C, Herrington D, Riggs B, and Vittinghoff E. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA 280: 605–613, 1998.
[5] Wilson PW, Kannel WB, Silbershatz H, and D''Agostino RB. Clustering of metabolic factors and coronary heart disease. Arch Intern Med 159: 1104–1109, 1999.tion, inflammation, and genetics. Circulation 91 (1995) 2488-96.
[6] Doll R and Hill AB. Lung cancer and other causes of death in relation to smoking: a second report on the mortality of British doctors. Br Med J 2: 1071–1081, 1956.
[7] English JP, Willius FA, and Berksa NJ. Tobacco and coronary disease. JAMA 115: 1327–1329, 1940.
[8] Hammond EC and Horn D. Smoking and death rates: report on forty-four months of follow-up of 187,783 men. 2. Death rates by cause. J Am Med Assoc 166: 1294–1308, 1958.
[9] United States Department of Health and Human Services. Reducing the health consequences of smoking: 25 years of progress. Report Surgeon General DHSS CDC 89–8411, 1989.
[10] Gaziano JM. Epidemiology of risk factor reduction. In: Vascular Medicine, edited by Loscalzo J, Creagher M, and Dzau V. Boston, MA: Little Brown, 1996, p. 569–586.
[11] Pressure JNCoDoHB. The fifth report of the Joint National Committee on detection, evaluation, and treatment of high blood pressure (JNC V). Arch Intern Med 153: 154–183, 1993.
[12] MacMahon S, Peto R, Cutler J, Collins R, Sorlie P, Neaton J, Abbott R, Godwin J, Dyer A, and Stamler J. Blood pressure, stroke, and coronary heart disease. Part 1. Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet 335: 765–774, 1990.
[13] He J and Whelton PK. Elevated systolic blood pressure and risk of cardiovascular and renal disease: overview of evidence from observational epidemiologic studies and randomized controlled trials. Am Heart J 138: 211–219, 1999.
[14] Cowie CC, Rust KF, Byrd-Holt D, Eberhardt MS, Saydah S, Geiss LS, Engelgan MM, Ford ES, and Gregg EW. Prevalence of diabetes and impaired fasting glucose in adults—United States, 1999–2000. MMWR 52: 833–837, 2003.
[15] Bierman EL. George Lyman Duff Memorial Lecture. Atherogenesis in diabetes. Arterioscler Thromb 12: 647–656, 1992.
[16] Pyorala K, Laakso M, and Uusitupa M. Diabetes and atherosclerosis: an epidemiologic view. Diabetes Metab Rev 3: 463–524, 1987.
[17] Nishigaki I, Hagihara M, Tsunekawa H, Maseki M, and Yagi K. Lipid peroxide levels of serum lipoprotein fractions of diabetic patients. Biochem Med 25: 373–378, 1981.
[18] Gotto AM Jr and Farmer JA. Risk factors for coronary artery disease. In: Heart Disease: A Textbook of Cardiovascular Medicine, edited by Braunwald E. Philadelphia, PA: Saunders, 1988, p. 1153–1190.
[19] Gotto AM Jr and Grundy SM. Lowering LDL cholesterol: questions from recent meta-analyses and subset analyses of clinical trial data. Issues from the Interdisciplinary Council on Reducing the Risk for Coronary Heart Disease, ninth Council meeting. Circulation 99: E1–E7, 1999.
[20] Dinerman TL,Lowenstein CJ,Snyder S H. Molecular mechanisms
of nitric oxide regulation:potential relevance to cardiovascular disease[J].Circ Res 73:217-224, 1993.
[21] Toda N,Okamura T.Mechanism of neurally induced monkey mesenteric artery re laxation and contraction.
Hypertension19:161-173,1992.
[22] Forstermann U,Mugge A,Alheid U,et al.Selective attenuation of endotheliummediated vasodilation in atheroaclerotic human coronary arteries.Circ Res 62:185-197,1988.
[23] Mugge A,Elwell J H,Peterson T E,et al. Chronic treatment with
pol yethylene glycolated surperoxide dismutase partially restores endothelium-dependent vascular relaxation in cholesterol-fed rabbits.Circ Res 69:1293-1301,1991.
[24] Minor R L,Myers P R,Guerra R,et al.Dietinduced atheroaclerosis increases the release of nitrogen oxide from rabbit aorta. J Clin Invest 86:2109-2118,1990.
[25] Böger, R.H., Bode-Böger, S.M., Frölich, J.C., 1996. The L-arginine-nitric oxide pathway: role in atherosclerosis and therapeutic implications. Atherosclerosis 127 (1), 1–11.
[26] Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull WJ, Rosenfeld ME, Schwartz CJ, Wagner WD, and Wissler RW. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol 15: 1512–1531, 1995.
[27] Lendon CL, Davies MJ, Born GV, and Richardson PD. Atherosclerotic plaque caps are locally weakened when macrophages density is increased.Atherosclerosis 87: 87–90, 1991.
[28] Aviram M and Fuhrman B. Wine flavonoids protect against LDL oxidation and atherosclerosis. Ann NY Acad Sci 957: 146-161, 2002.
[29] Proctor SD, Vine DF, and Mamo JC. Arterial retention of
apolipoprotein B48- and B100-containing lipoproteins in atherogenesis.Curr Opin Lipidol 13: 461–470, 2002.
[30] Ross R and Glomset JA. Atherosclerosis and the arterial smooth muscle cell: proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science 180: 1332–1339, 1973.
[31] Jonasson L, Holm J, Skall O, Bondjers G, and Hansson GK. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6: 131–138, 1986
[32] Van der Wal AC, Das PK, Bentz van de Berg D, van der Loos CM, and Becker AE. Atherosclerotic lesions in humans. In situ immunophenotypic analysis suggesting an immune mediated response. Lab Invest 61: 166–170, 1989.
[33] Ross R and Glomset JA. The pathogenesis of atherosclerosis. N Engl J Med 295: 369–377, 1976.
[34] Ross R and Glomset JA. The pathogenesis of atherosclerosis. N Engl J Med 295: 420–425, 1976.
[35] Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med 340: 115–126, 1999.
[36] Nievelstein PFEM, Fogelman AM, Mottino G, and Frank JS. Lipid accumulation in rabbit aortic intima 2 hours after bolus infusion of low density lipoprotein. A deep-etch and immunolocalization study of ultrarapidly frozen tissue. Arterioscl Thromb 11: 1795–1805, 1991.
[37] Zilversmit DB. A proposal linking atherogenesis to the interaction of endothelial lipoprotein lipase with triglyceride-rich lipoproteins. Circ Res 33: 633–638, 1973.
[38] Camejo G, Fager G, Rosengren B, Hurt-Camejo E, and Bondjers G. Binding of low density lipoproteins by proteoglycans synthesized by proliferating and quiescent human arterial smooth muscle cells. J Biol Chem 268: 14131–14137, 1993.
[39] Ylä-Herttuala S, Solakivi T, Hirvonen J, Laaksonen H, Möttönen M, Pesonen E, Raekallio J, kerblom HK, and Nikkari T. Glycosaminoglycans and apolipoproteins B and A-I in human aortas. Chemical and immunological analysis of lesion-free aortas from children and adults. Arteriosclerosis 7: 333–340, 1987.
[40] Borén J, Olin K, Lee I, Chait A, Wight TN, and Innerarity TL. Identification of the principal proteoglycan-binding site in LDL. A single-point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding. J Clin Invest 101: 2658–2664, 1998.
[41] Skalen K, Gustafsson M, Rydberg EK, Hulten LM, Wiklund O, Innerarity TL, and Borén J. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417: 750–754, 2002.
[42] Veniant MM, Pierotti V, Newland D, Cham CM, Sanan DA, Walzem RL, and Young SG. Susceptibility to atherosclerosis in mice expressing exclusively apolipoprotein B48 or apolipoprotein B100. J Clin Invest 100: 180–188, 1997.
[43] Flood C, Gustafsson M, Richardson PE, Harvey SC, Segrest JP, and Borén J. Identification of the proteoglycan binding site in apolipoprotein B48. J Biol Chem 277: 32228–32233, 2002.
[44] Williams KJ, Petrie KA, Brocia RW, and Swenson TL. Lipoprotein lipase modulates net secretory output of apolipoprotein B in vitro. A possible pathophysiologic explanation for familial combined hyperlipidemia. J Clin Invest 88: 1300–1306, 1991.
[45] Williams KJ, Fless GM, Petrie KA, Snyder ML, Brocia RW, and Swenson TL. Mechanisms by which lipoprotein lipase alters cellular metabolism of lipoprotein(a), low density lipoprotein, and nascent lipoproteins. Roles for low density lipoprotein receptors and heparan sulfate proteoglycans. J Biol Chem 267: 13284–13292, 1992.
[46] Nievelstein PFEM, Fogelman AM, Mottino G, and Frank JS. Lipid accumulation in rabbit aortic intima 2 hours after bolus infusion of low density lipoprotein. A deep-etch and immunolocalization study of ultrarapidly frozen tissue. Arterioscl Thromb 11: 1795–1805, 1991.
[47] Tamminen M, Mottino G, Qiao JH, Breslow JL, and Frank JS. Ultrastructure of early lipid accumulation in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 19: 847–853, 1999.
[48] Hannun YA. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 269: 3125–3128, 1994.
[49] Joseph CK, Wright SD, Bornmann WG, Randolph JT, Kumar ER, Bittman R, Liu J, and Kolesnick RN. Bacterial lipopolysaccharide has structural similarity to ceramide and stimulates ceramide-activated protein kinase in myeloid cells. J Biol Chem 269: 17606–17610, 1994.
[50] Hakala JK, Oksjoki R, Laine P, Du H, Grabowski GA, Kovanen PT, and Pentikäinen MO. Lysosomal enzymes are released from cultured human macrophages, hydrolyze LDL in vitro, and are present extracellularly in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol 23: 1430–1436, 2003.
[51] Esterbauer H, Dieber-Rotheneder M, Striegl G, and Waeg G. Role of vitamin E in preventing the oxidation of low-density lipoprotein. Am J Clin Nutr 53: 314S-321S, 1991.
[52] Diaz M, Frei B, Vita JA, and Keaney JF Jr. Antioxidants and
atherosclerotic heart disease. N Engl J Med 337: 408–416, 1997
[53] Haberland ME, Fogelman AM, and Edwards PA. Specificity of receptor-mediated recognition of malonydialdehyde-modified low density lipoproteins. Proc Natl Acad Sci USA 79: 1712–1716, 1982.
[54] Johan Thyberga, Karin Blomgrena, Joy Royb, Phan Kiet Tranb, and Ulf Hedinb .Phenotypic Modulation of Smooth Muscle Cells after Arterial Injury Is Associated with Changes in the Distribution of Laminin and Fibronectin. Journal of Histochemistry and Cytochemistry, Vol. 45, 837-846.1997.
[55] Ji XY, Tan BK, Zhu YZ. Salvia miltiorrhiza and ischemic diseases.
Acta Pharmacol Sin 2000;21:1089–94.
[56] Cheng TO. Danshen: a versatile Chinese herbal drug for the treatment of coronary heart disease. Int J Cardiol 2006;113:437–8.
[57] Cheng TO. The international textbook of cardiology. New York:
Pergamon Press; 1987. p. 1067–71.
[58] Chen KJ. Certain progress in the treatment of coronary heart disease with traditional medicinal plants in China. Am J Chin Med1981;9:193–6.
[59] Ji XY, Tan BKH, Zhu YC, Linz W, Zhu YZ. Comparison of cardioprotective effects using ramipril and DanShen for the treatment of acute myocardial infarction in rats. Life Sci 2003;73:1413–26.
[60] Ji XY, Tan BKH, Zhu YC, Linz W, Zhu YZ. Comparison of
cardioprotective effects using ramipril and DanShen for the treatment of acute myocardial infarction in rats. Life Sci 2003;73:1413–26.
[61] O.K., Lynn EG, Vazhappilly R, Au-Yeung KK, Zhu DY, Siow YL.
Magnesium tanshinoate B (MTB) inhibits low density lipoprotein
oxidation. Life Sci 2001;68:903–12.
[62] Gao XP, Xu DY, Deng YL, Zhang Y. Screening of angiotensin converting enzyme inhibitors from Salvia miltirrhizae. Zhongguo Zhong Yao Za Zhi 2004;29:359–62.
[63] Li S, Wan L. Experimental study on the preventive mechanism of
Salviae miltiorrhizae against atherosclerosis in rabbits models.
J Huazhong Univ Sci Technolog Med Sci 2004;24:233–5.
[64] Chan K, Chui SH,Wong DY, HaWY, Chan CL,Wong RN. Protective effects of danshensu from the aqueous extract of Salvia miltiorrhiza (Danshen) against homocysteine-induced endothelial dysfunction. Life Sci 2004;75:3157–71.
[65] Cheng WL, Qian ZF, Su J. Effect of huoxue tablet on the rheology of erythrocyte in primary hypertension. Zhongguo Zhong Xi Yi Jie He Za Zhi 1997;17:718–20.
[66] Qiu ZX,MaHJ,WangDF. Observation on effect of compoundDanshen droplet-pill combined with trimetazidine in treating senile unstable angina pectoris. Zhongguo Zhong Xi Yi Jie He Za Zhi 2005;25:787–9.
[67] Wojcikowski K, Johnson DW, Gobe G. Medicinal herbal extracts—renal friend or foe? Part two: herbal extracts with potential renal benefits. Nephrology 2004;9:400–5.
[68] Yokozawa T, Zhou JJ, Hattori M, et al. Effects of a Dan Shen
component, magnesium lithospermate B, in nephrectomized rats.
Nippon Jinzo Gakkai Shi 1995;37:105–11.
[69] Cao Y. Clinical observation on acupoint-injection of Chinese drugs
for treatment of hypertensive renal lesion. Zhongguo ZhenJiu
2005;25:21–3.
[70] Zhang M, Li X, Jiu G, Liu Y. Effect of Danshen injection on
expression of platelet membrane glycoproteins in patients with
type II diabetes mellitus. Zhong Yao Cai 2003;26:738–40.
[71] Zhou L, Zuo Z, Chow MSS. Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 2005;45:1345–59.
[72] Sreejayan, Rao MN. Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol 1997;49:105–7.
[73] Srivastava R, Dikshit M, Srimal RC, Dhawan BN. Antithrombotic
effect of curcumin. Thromb Res 1985;40:413–7.
[74] Nirmala C, Puvanakrishnan R. Protective role of curcumin against isoproterenol induced myocardial infarction in rats. Mol Cell Biochem 1996;159:85–93.
[75] Venkatesan N. Curcumin attenuation of acute adriamycin myocardial toxicity in rats. Br J Pharmacol 1998;124:425–7.
[76] Soni KB, Kuttan R. Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian J Physiol Pharmacol 1992;36:273–5.
[77] Ramirez Bosca A, Soler A, Carrion-Gutierrez MA, Pamies Mira D, Pardo Zapata J, Diaz-Alperi J, et al. An hydroalcoholic extract of Curcuma longa lowers the abnormally high values of human-plasma fibrinogen. Mech Ageing Dev 2000;114:207–10.
[78] Soni KB, Kuttan R. Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian J Physiol Pharmacol. 1992;36:273-5.
[79] Jovanovic SV, Boone CW, Steenken S, Trinoga M, Kaskey RB. How curcuminworks preferentially with water soluble antioxidants. J Am Chem Soc.2001;123:3064-8.
[80] Shankar TN, Shantha NV, Ramesh HP, Murthy IA, Murthy VS. Toxicity studies on turmeric (Curcuma longa): acute toxicity studies in rats, guineapigs & monkeys. Indian J Exp Biol 1980;18:73–5.
[81] Lao CD, Ruffin MTt, Normolle D, Heath DD, Murray SI,Bailey JM, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med 2006;6:10.
[82] Li-Ping Yan , Shun-Wan Chan , Albert Sun-Chi Chan and Shi-Lin Chen. Puerarin decreases serum total cholesterol and enhances thoracic aorta endothelial nitric oxide synthase expression in diet-induced hypercholesterolemic rats. Life Sciences 79324–330, 2006.
[83] 宋紅普、貫釗:葛根的藥學研究及其臨床應用概況。上海中醫藥雜誌1999;4:47-9。
[84] 季宇彬主編:中藥有效成分藥理與應用,黑龍江科學技術出版社,哈爾濱 1994; pp.360-4。
[85] Ma LJ, Zhang XZ, Zhang HP, Gan YR. Development of a fingerprint of Salvia miltiorrhiza Bunge by high-performance liquid chromatography with a coulometric electrode array system. J Chromatogr B 2007;846:139–46.
[86] J. Heddle, A rapid in vivo test for chromosome damage, Mutat. Res. 18 (1973) 187–190.
[87] W. Schmid, The micronucleus test, Mutat. Res. 31 (1975) 9–15.
[88] M. Hayashi, J.T. MacGregor, D.G. Gatehouse, I.-D. Adler, D.H. Blakey, S.D. Dertinger, G. Krishna, T. Morita, A. Russo, S. Sutou, In vivo rodent erythrocyte micronucleus assay: aspects of protocol design including repeated treatments, integration with toxicity testing, and automated scoring. A report from the International Workshop on Genotoxicity Test Procedures (IWGTP), Environ. Mol. Mutagen. 35 (2000) 234–252.
[89] D.K. Torous, S.D. Dertinger, N.E. Hall, C.R. Tometsko, Enumeration of micronucleated erythrocytes in rat peripheral blood: a flow cytometric study, Mutat. Res. 465 (2000) 91–99.
[90] Yuh-Lien Chen, Sung-Pao Yang, Ming-Shi Shiao, Jaw-Wen Chen, and Shing-Jong Lin .Salvia miltiorrhiza Inhibits Intimal Hyperplasia and Monocyte Chemotactic Protein-1 Expression After Balloon Injury in Cholesterol-Fed Rabbits. Journal of Cellular Biochemistry 83:484±493 (2001).
[91] Yih-Jer Wu, Chuang-Ye Hong, Shing-Jong Lin, Paulin Wu, Ming-Shi Shiao. Increase of Vitamin E Content in LDL and Reduction of Atherosclerosis in Cholesterol-Fed Rabbits by a Water-Soluble Antioxidant-Rich Fraction of Salvia miltiorrhiza. Arterioscler. Thromb. Vasc. Biol. 1998;18;481-486
[92] W. Ji 1, B.Q. Gong. Hypolipidemic activity and mechanism of purified herbal extract of Salvia miltiorrhiza in hyperlipidemic rats. Journal of Ethnopharmacology 119 (2008) 291–298.
[93] Effects of various western and herbal medicines on the study of the rabbit model in atherosclerosis.China Medical University Hospital,Graduate Institute of Medical Master Thesis.July 2003.
[94] Shanhong Ling, MD, PhD,* Aozhi Dai, MD,* Zhixin Guo, PhD, and Paul A. Komesaroff, MD, PhD*. A Preparation of Herbal Medicine Salvia miltiorrhiza Reduces Expression of Intercellular Adhesion Molecule-1 and Development of Atherosclerosis?in Apolipoprotein E–Deficient Mice. J Cardiovasc Pharmacol, Volume 51, Number 1, January 2008.
[95] Teng, C. M., Kang, K. F., Chang, Y. L., Ko, F. N., Yang, S. C., Hsu, F. L. (1997) ADP-mimicking platelet aggregation caused by rugosin E, an ellagitannin isolated from Rosa rugosa Thumb. Thromb. Haemost. 77: 55-561
[96] Winslow LC, Kroll DJ. Herbs as medicines. Arch Intern Med 1998;158:2192–9.
[97] Hsu, H. Y., Chen, Y. P., Shen, S. J., Hsu, C. S., Chen, C. C.,Chang, H. S. (1986) Oriental materia medica. A concise guide.
[98] Kleszczynska, H., Oswiecmska, H., Sarapuk, J., Witek, S.,Przestalski, S. (1999) Protective effect of quaternary piperidinium salts on lipid oxidation in the erythrocyte membrane. Z. Naturforsch. 54: 424- 428
[99] Lee SY, Kim JD, Lee YH, Rhee H, Choi YS.Influence of extract of Rosa rugosa roots on lipid levels in serum and liver of rats. Life Sci. 1991;49(13):947-51.
[100] Ng TB, He JS, Niu SM, Zhao L, Pi ZF, Shao W, Liu F.A gallic acid derivative and polysaccharides with antioxidative activity from rose (Rosa rugosa) flowers.Journal of Pharmacy and Pharmacology, Volume 56, Number 4, 1 April 2004 , pp. 537-545(9).
[101] Ng TB, Gao W, Li L, Niu SM, Zhao L, Liu J, Shi LS, Fu M, Liu F.Rose (Rosa rugosa)-flower extract increases the activities of antioxidant enzymes and their gene expression and reduces lipid peroxidation.Biochem Cell Biol. 2005 Feb;83(1):78-85.
[102] Yoshizawa, Y., Kawaii, S., Urashima, M., Fukase, T., Sato, T., Tanaka, R., Murofushi, N., Nishimura, H. (2000a) Antiproliferative effects of small fruit juices on several cancer cell lines. Anticancer Res. 20: 4280-4289
[103] Yoshizawa, Y., Kawaii, S., Urashima, M., Fukase, T., Sato, T., Murofushi, N., Nishimura, H. (2000b) Differentiation inducing effects of small fruit juices on HL-60 leukemic cells. J. Agric. Food Chem. 48: 3177-3182
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊