跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 18:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林東宥
研究生(外文):Toung You Lin
論文名稱:微過濾程序中蛋白質結垢行為之探討
論文名稱(外文):Study on Protein Fouling in Microfiltration
指導教授:王大銘
指導教授(外文):Da Ming Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:109
中文關鍵詞:結垢微過濾蛋白質聚集體蛋白質吸附蛋白質沈積
外文關鍵詞:foulingmicrofiltrationprotein aggregatesprotein adsorptionprotein deposition
相關次數:
  • 被引用被引用:5
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
微過濾程序中蛋白質的結垢現象,是限制過濾效率的主要原因,濾膜因為蛋白質的吸附與沈積,不僅造成濾速降低,甚而改變本身的選擇性,為了瞭解此複雜的結垢現象,本研究採用牛血清蛋白(BSA)與孔徑為0.2μm的蝕刻型微孔濾膜(polycarbonate)進行恆壓的濾餅過濾(dead-end),藉以觀察蛋白質的結垢現象。
經由濾速分析的結果發現,結垢產生的過程是由蛋白質聚集體於孔口進行架橋作用產生阻塞,之後轉為外部的濾餅過濾,並引發蛋白質單體進行可逆沈積。因此阻力的來源有兩個部份,一為蛋白質溶液中的微量聚集體以不可逆吸附的方式造成,二為溶液中的蛋白質單體以可逆沈積的方式造成。兩者均隨時間成長,且於過濾初期時由不可逆阻力主導總阻力,到了後期則由可逆阻力主導總阻力,並遠大於不可逆阻力。接著討論操作變數如濃度、壓力與pH值對兩者的影響,發現於低濃度系統(100ppm)中,操作變數可大幅影響可逆與不可逆的結垢行為;至於高濃度系統(2000ppm),則受變數的影響較小。
Protein fouling is one of the critical factors governing the performance and overall effectiveness of microfiltration
processes. The adsorption and deposition of protein on microfiltration membrane would result in decline of filtration rate and alteration of selectivity of membrane as well. Hence, experiments were performed with bovin serum albumin (BSA) and track-etched polycarbonate (PC) membranes to evaluate how fouling phenomena affects the microfiltration process.
The significant flux decline observed in the present work is initiated by the deposition of BSA aggregates near the membrane pores, and, in turn, an external cake composed of BSA aggregates forms which can further increase the irreversible filtration resistance. Then, the reversible BSA deposition on the cake of aggregates occurs which could dominate the filtration resistance in the continuing microfiltration process. The analysis suggests that both the irreversible adsorption of BSA aggregates and the reversible adsorption of monomers are two major mechanisms for the fouling phenomena. In addition, the effects of operation variables, such as BSA concentration, pH of solution and operating pressure, on the reversible and irreversible fouling mechanism are also discussed.
誌 謝
中文摘要 I
英文摘要 II
目 錄 III
圖 目 錄 V
表 目 錄 X
第一章 緒論 1
第二章 文獻回顧 4
2-1 分子間作用力 4
2-1-1 量子力 5
2-1-2 靜電作用力 5
2-1-3 極性力 7
2-2 蛋白質吸附 8
2-2-1 緻密表面的吸附行為 9
2-2-2 濾膜的吸附行為 13
2-3 蛋白質沈積 16
2-3-1 結垢機制 16
2-3-2 操作變數對結垢行為的影響 18
2-3-3 結垢成因---聚集反應 22
第三章 實驗設備及步驟 26
3-1 實驗材料 26
3-2 實驗儀器 27
3-3 實驗裝置 28
3-4 實驗步驟 28
3-4-1 建立蛋白質溶液濃度與紫外線可見光度計之吸收度的檢量線 29
3-4-2 恒壓過濾實驗 29
3-5 實驗數據分析 35
第四章 結果與討論 42
4-1 結垢機制 42
4-1-1 結垢歷程 42
4-1-2 結垢成因 48
4-2 操作變數對結垢行為的影響 58
4-2-1 濃度 58
4-2-2 重力 63
4-2-3 攪拌 66
4-2-4 酸鹼度 68
4-2-5 壓力 73
4-2-6 AFM表面分析 79
4-2-7 總結 88
4-3 UF與MF系統於濾餅過濾時的異同 89
4-3-1 UF操作的濾速衰退現象 89
4-3-2 操作變數對UF阻力的影響 92
4-3-3 總結 97
第五章 結論 98
參考文獻 100
符號說明 105
附 錄 107
A SEM分析照片 107
圖 目 錄
Fig. 2-1 Schematic representation of the interaction energy profile between two solutes. 8
Fig. 2-2 The adsorption of bovine serum albumin from 0.2% solution on ultrafiltration membrane surfaces as a function of time. 13
Fig. 2-3 Schematic drawing of the fouling mechanisms: (A)complete blocking, (B)standard blocking, (C)intermediate blocking and (D)cake filtration. 17
Fig. 2-4 Schematic representation of the thiol-disulfide interchange reaction. 24
Fig. 3-1 Schematic diagram of filtration system. 31
Fig. 3-2 The calibration curve of BSA concentration of 0~2000ppm. 32
Fig. 3-3 The calibration curve of BSA concentration of 0~100ppm. 33
Fig. 3-4 Comparison of pore blockage, pore constriction, and cake formation models. Lower panel shows normalized flux. Upper panel shows the normalized resistance. 40
Fig. 4-1 BSA filtration flux (denoted as ●) and sieving coefficient (denoted as ▲) as functions of time for 2000ppm BSA solution at 1atm and pH=5. 43
Fig. 4-2 Total filtration resistance as a function of time for 2000ppm BSA solution at 1atm and pH=5. 44
Fig. 4-3 Comparison of filtration resistances with respect to total resistance for 2000ppm BSA solution at different periods of filtration time at 1atm and pH=5. 47
Fig. 4-4 Effect of refiltration on flux decline for 2000ppm BSA solution at 1atm and pH=5. 49
Fig. 4-5 Effect of refiltration on total filtration resistance for 2000ppm BSA solution at 1atm and pH=5. 50
Fig. 4-6 SEM graph(magnification 5000×) of a polycarbonate membrane before filtration. 51
Fig. 4-7 SEM graph(magnification 5000×) of a polycarbonate membrane after filtration with 2000ppm BSA solution for 6hrs at 1atm and pH=5. 51
Fig. 4-8 SEM graph(magnification 5000×) of a water-washed polycarbonate membrane after filtration with 2000ppm BSA solution for 6hrs at 1atm and pH=5. 52
Fig. 4-9 SEM graph(magnification 5000×) of a brushed polycarbonate membrane after filtration with 2000ppm BSA solution for 6hrs at 1atm and pH=5. 53
Fig. 4-10 Filtrate volume as a function of total filtration resistance for 2000ppm BSA solution at 1atm and pH=5. 54
Fig. 4-11 Schematic diagram of comprehensible BSA fouling and blocking mechanism on polycarbonate membrane. 57
Fig. 4-12 Effect of BSA concentrations on filtration flux decline at 1atm and pH=5. 59
Fig. 4-13 Effect of BSA concentrations on total filtration resistance at 1atm and pH=5. 59
Fig. 4-14 Comparison of filtration resistances with respect to total resistance for 100ppm BSA solution at different periods of filtration time at 1atm and pH=5. 60
Fig. 4-15 SEM graph(magnification 5000×) of a polycarbonate membrane after filtration with 100ppm BSA solution for 6hrs at 1atm and pH=5. 61
Fig. 4-16 Effect of BSA concentrations on filtration volume with respect to total resistance at 1atm and pH=5. 62
Fig. 4-1 Effect of flow direction on total filtration resistance for 2000ppm BSA solution at 1atm and pH=5.(▲: The direction of flow is the same as gravity.□: The direction of flow is opposite to gravity.) 64
Fig. 4-18 Effect of flow direction on total filtration resistance for 100ppm BSA solution at 1atm and pH=5.(▲:The direction of flow is the same as gravity.□:The direction of flow is opposite to gravity.) 65
Fig. 4-19 Effect of stir on filtration flux decline for 100ppm BSA solution at 1atm and pH=5. 67
Fig. 4-20 Effect of stir on total filtration resistance for 100ppm BSA solution at 1atm and pH=5. 67
Fig. 4-21 Effect of pH on filtration flux decline for 2000ppm BSA solution at 1atm. 70
Fig. 4-22 Effect of pH on total filtration resistance for 2000ppm BSA solution at 1atm. 70
Fig. 4-23 Effect of pH on filtration flux decline for 100ppm BSA solution at 1atm. 72
Fig. 4-24 Effect of pH on total filtration resistance for 100ppm BSA solution at 1atm. 72
Fig. 4-25 Effect of pressure on filtration flux decline for 2000ppm BSA solution at pH=5. 74
Fig. 4-26 Effect of pressure on total filtration resistance for 2000ppm BSA solution at pH=5. 75
Fig. 4-27 Effect of pressure on filtration flux decline for 100ppm BSA solution at pH=5. 77
Fig. 4-28 Effect of pressure on total filtration resistance for 100ppm BSA solution at pH=5. 78
Fig. 4-29. AFM graph of a polycarbonate membrane before filtration. 81
Fig. 4-30. AFM graph of a polycarbonate membrane after filtration with 2000ppm BSA solution for 6hrs at 1atm and pH=5. 82
Fig. 4-31. AFM graph of a water-washed polycarbonate membrane after filtration with 2000ppm BSA solution for 6hrs at 1atm and pH=5. 83
Fig. 4-32. AFM graph of a brushed polycarbonate membrane after filtration with 2000ppm BSA solution for 6hrs at 1atm and pH=5. 84
Fig. 4-33. AFM graph of a polycarbonate membrane after filtration with 2000ppm BSA solution for 6hrs at 1atm and pH=7. 85
Fig. 4-34. AFM graph of a polycarbonate membrane after filtration with 2000ppm BSA solution for 6hrs at 0.2atm and pH=5. 86
Fig. 4-35. AFM graph of a polycarbonate membrane after filtration with 100ppm BSA solution for 6hrs at 1atm and pH=5. 87
Fig. 4-36. Ultrafiltration flux as a function of time for 2000ppm BSA solution at 1atm and pH=5. 90
Fig. 4-37. SEM graph(magnification 5000×) of a regenerated cellulose membrane filtrated with 2000ppm BSA solution at 1atm and pH=5 after a filtration time of 6hrs. 91
Fig. 4-38. Effect of BSA concentrations on total filtration resistance for ultrafiltration at 1atm and pH=5. 91
Fig. 4-39. Effect of BSA concentrations on specific resistance of cake for ultrafiltration at 1atm and pH=5. 93
Fig. 4-40. Effect of pH on specific resistance of cake for ultrafiltration with 2000ppm BSA solution at 1atm. 94
Fig. 4-41. Effect of pH on specific resistance of cake for ultrafiltration with 100ppm BSA solution at 1atm. 95
Fig. 4-42. Effect of pressure on specific resistance of cake for ultrafiltration with 100ppm BSA solution at pH=5. 96
Fig. 4-43. Effect of pressure on specific resistance of cake for ultarfiltration with 2000ppm BSA solution at pH=5. 97
Fig. A-1 SEM graph(magnification 5000×) of a polycarbonate membrane before filtration. 107
Fig. A-2 SEM graph(magnification 5000×) of a polycarbonate membrane after filtration with 2000ppm BSA solution for 6hrs at 1atm and pH=7. 107
Fig. A-3 SEM graph(magnification 5000×) of a polycarbonate membrane after filtration with 2000ppm BSA solution for 6hrs at 0.2atm and pH=5. 108
Fig. A-4 SEM graph(magnification 5000×) of a polycarbonate membrane after filtration with 100ppm BSA solution for 6hrs at 1atm and pH=5. 108
Fig. A-5 SEM graph(magnification 5000×) of a blank regenerated cellulose membrane. 109
Fig. A-6 SEM graph(magnification 5000×) of a regenerated cellulose membrane filtrated with 2000ppm BSA solution at 1atm and pH=5 after a filtration time of 6hrs. 109
表 目 錄
Table 2-1 Isoelectric Points for Selected Membranes 6
Table 2-2 Isoelectric Points of Selected Proteins 6
Table 2-3 Protein Adsorption on Semipermeable Ultrafiltration Membranes 15
Table 4-1 Comparison of filtration resistances for 2000ppm BSA solution at 1atm and pH=5 after a filtration time of 6hrs. 45
Table 4-2 Comparison of filtration resistances for 2000ppm BSA solution after different period of filtration time at 1atm and pH=5. 47
Table 4-3 Comparison of filtration resistances for 100ppm BSA solution at different periods of filtration time at 1atm and pH=5. 61
Table 4-4 Effect of stir on various filtration resistances for 100ppm BSA solution after a filtration time of 6hrs at 1atm and pH=5. 68
Table 4-5 Effect of pH on various filtration resistances for 2000ppm BSA solution after a filtration time of 6hrs at 1atm. 71
Table 4-6 Effect of pH on various filtration resistances for 100ppm BSA solution after a filtration time of 6hrs at 1atm. 73
Table 4-7 Effect of pressure on various filtration resistances for 2000ppm BSA solution after a filtration time of 6hrs at pH=5. 75
Table 4-8 Effect of pressure on various filtration resistances for 100ppm BSA solution at pH=5. 78
Table 4-9 The surface roughness of polycarbonate membranes. 88
1. G. Daufin, J–P. Labbe, A. Quemerais, and F. Michel, “Fouling of an inorganic membrane during ultrafiltration of defatted whey-protein concentrates”, Neth. Milk Dairy J.,45, 259(1991).
2. P. A. Kralchevsky, K. D. Danov, and N. D. Denkov, “Chemical physics of colloid systems and interface”, Handbook of Surface and Colloid Chenistry:chapter11, p333(1997).
3. T. A. Horbett, “Protein adsorption on biomaterials”, Biomaterials:Interfacial Phenomena and Applications (S.L. Copper and N.A. Peppas, eds.), Advances in Chemistry Series,199, American Chemical Society, Washington, D.C., 233(1982).
4. W. Norde, F. MacRitchie, F. G. Nowicka, and J. Lyklema, “Protein adsorption at solid-liquid interfaces: reversibility and conformation aspects”, J. Colloid Interface Sci.,112, 447(1986).
5. S. H. Lee and E. Ruckenstein, “Adsorption of proteins onto polymeric surfaces of different hydrophilicities-a case study with bovine serum albumin”, J. Colloid Interface Sci.,125, 365(1988).
6. H. Shirahama, K. Takeda and T. Suzawa, “Adsorption of bovin serum albumin onto polystyrene latex: effect of coexistent electrolyte anions”, J. Colloid Interface Sci.,109, 552(1986).
7. J. T. Allert, R. D. Harfer, , “Adsorption of lysozyme and ovalbumin by clay: effect of clay suspension pH and clay mineral type.”, Soil.Sci.,115, 130(1973).
8. A. Kondo, S. Oku and K. Higashitani, “Structural changes in protein molecules adsorbed on ultrafine silica particles”, J. Colloid Interface Sci.,143, 214(1991).
9. W. Norde,J. Lyklema, “The adsorption of human plasma albumin and bovin pancreas ribonuclease at negatively charged polystyrene surfaces”, J .Colloid Interface Sci.,66, 257(1978).
10. H. Vladimir, H. F. Milhofer, “Adsorption of human serum albumin on precipitated hydroxyapatite”, J. Colloid Interface Sci.,69, 460(1979).
11. B.W. Morrissey, Ann. New York Academy Sci.,288, 50(1977).
12. E. Matthiasson, “The role of macromolecular adsorption in fouling of ultrafiltration membranes”, J. Mem. Sci.,16, 23(1983).
13. G. Belfort, R. H. Davis, and A. L. Zydney, “The behavior of suspensions and macromolecular solutions in crossflow microfiltration”, J. Mem. Sci.,96, 1(1994).
14. K. M. Persson, G. Capannelli, A. Bottino, and G.Tragardh, “Porosity and protein adsorption of four polymeric microfiltration membranes”, J. Mem. Sci.,76, 61(1993).
15. M. Turker and J. Hubble, “Membrane fouling in a constant-flux ultrafiltration cell”, J. Mem. Sci.,34, 267(1987).
16. M. S. Le and J. A. Howell, in: C. Cantarelli and C. Peri (Eds.), Progress in Food Engineering, Forster-Verlag, Kusnacht, 321(1983).
17. W. R. Bowen and D. T. Hughes, “Properties of microfiltration membranes. Adsorption of bovine serum albumin at aluminum oxide membranes”, J. Mem. Sci.,51, 189(1990).
18. A. Pitt, “The nonspecific protein binding of polymeric microporous membranes”, J. Parenteral Sci.Technol.,41, 110(1987).
19. B. C. Robertson and A. L. Zydney, “Protein adsorption in asymmetric ultrafiltration membranes with highly constricted pores”, J .Colloid Interface Sci.,134, 563(1990).
20. S. Mochizuki and A. L. Zydney, “Effect of proteins adsorption on the transport characteristics of asymmetric ultrafiltration membranes “, Biotechnol.Prog.,8, 553(1992).
21. R. Boyd, L. J. Langsdorf, and A. L. Zydney, “A two-layer model for the effects of blood contact on membrane transport in artificial organs”, Trans. Am. Soc. Artif. Intern. Organs,40, 864(1994).
22. L. J. Langsdorf and A. L. Zydney, “Effect of blood contact on the transport properties of hemodialysis membranes: A two-layer membrane model”, Blood Purification,12, 292(1994).
23. P. H. Hermans, H. L. Bredee and Zur Kenntnis der Filtrationsgesetze, Rec. Trav. Chim. des Pays-Bas,54, 680(1935).
24. A. Pihlajamaki, P. Vaisanen, M. Nystrom, “Characterization of clean and fouled polymeric ultrafiltration membranes by Fourier transform IR spectroscopy-attenuated total reflection”, Colloids and Surfaces A: Physicochemical and Eng. Aspects,138, 323(1998).
25. K. J. Kim, V. Chen, and A. G. Fane, “Some factors determining protein aggregation during ultrafiltration”, Biotechnol. Bioeng.,42, 260(1993).
26. A. K. Fritzsche, A. R. Arevalo, M. D. Moore, V. B. Elings, K. Kjoller and C. M. Wu, “The surface structure and morphology of polyvinylidene fluoride microfiltration membranes by atomic force microscopy”, J.Mem.Sci.,68, 65(1992).
27. T. J. Su, J. R. Lu, Z. F. Cui, B. J. Bellhouse, R. K. Thomas and R. K. Heenan, “Identification of the location of protein fouling on ceramic membranes under dynamic filtration conditions”, J.Mem.Sci.,163, 265(1999).
28. W. R. Bowen, J. I. Calvo and A. Hernandez, “Steps of membrane blocking in flux decline during protein microfiltration”, J.Mem.Sci.,101, 153(1995).
29. J. Hermia, “Constant pressure blocking filtration laws- Application to power-law non-newtonian fluids”, Trans. Inst. Chem. Engrs.,60, 183(1982).
30. E. Iritani, Y. Mukai, Y. Tanaka and T. Murase, “Flux decline behavior in dead-end microfiltration of protein solutions”, J.Mem.Sci.,103, 181(1995).
31. E. M. Tracey and R. H. Davis, “Protein fouling of track-etched polycarbonate microfiltration membranes”, J .Colloid Interface Sci.,167, 104(1994).
32. J. Jacob, P. Pradanos, J. I. Calvo, A. Hernandez and G. Jonsson, “Fouling kinetics and associated dynamics of structural modifications”, Colloids and Surfaces A:Physicochemical and Eng. Aspects,138, 173(1998).
33. P. Blanpain, J. Hermia and M. Lenoel, “Mechanisms governing permeate flux and protein rejection in the microfiltration of beer with a Cyclopore membrane”, J. Mem. Sci.,84, 37(1993).
34. K. Nakamura and K. Matsumoto, “Adsorption behavior of BSA in microfiltration with porous glass membrane”, J. Mem. Sci.,145, 119(1998).
35. K. Nakamura and K. Matsumoto, “A Mathematical model of internal fouling in protein microfiltration”, J. Chem. Eng. Jan.,31, 536(1998).
36. S. P. Palecek and A. L. Zydney, “Intermolecular electrostatic interactions and their effect on flux and protein deposition during protein filtration”, Biotechnol. Prog.,10, 207(1994).
37. S. P. Palecek and A. L. Zydney, “Hydraulic permeability of protein deposits formed during microfiltration: Effect of solution pH and ionic strength”, J. Mem. Sci., 95, 71(1994).
38. W. R. Bowen and Q. Gan, “Properties of microfiltration membranes: Flux loss during constant pressure permeation of bovine serum albumin”, Biotechnol. Bioeng.,38, 688(1991).
39. S. T. Kelly, W. S. Opong and A. L. Zydney, “The influence of protein aggregates on the fouling of microfiltration membranes during stirred cell filtration”, J. Mem. Sci.,80, 175(1993).
40. S. T. Kelly and A. L. Zydney, “Effects of intermolecular thiol-disulfide interchange reaction on BSA fouling during microfiltration”, Biotechnol. Bioeng.,44, 972(1994).
41. S. T. Kelly and A. L. Zydney, “Mechanisms for BSA fouling during micro- filtration”, J. Mem. Sci.,107, 115(1995).
42. S. T. Kelly and A. L. Zydney, “Protein fouling during microfiltration: Comparative behavior of different model proteins”, Biotechnol. Bioeng.,55, 91(1997).
43. L. J. Zeman and A. L. Zydney, Microfiltration and Ultrafiltration,: Principle and application, Marcel Dekker, New York(1996).
44. M. Meireles, P. Aimar, and V. Sanchez, “Albumin denaturation during ultrafiltration: Effects of operating conditions and consequences on membrane fouling”, Biotechnol. Bioeng.,38, 528(1991).
45. 呂維明和呂文芳, 過濾技術, 高立圖書, 台北(1994).
46. M. Shirato, M. Sambuichi, H. Kato and T. Aragaki, AIChE Journal,15, 405(1969).
47. E. Iritani and Y. Mukai, “Approach from physicochemical aspects in membrane filtration”, Korean J. of Chem. Eng.,14, 347(1997).
48. M. W. Chudacek and A. G. Fane, “The dynamics of polarisation in unstirred and stirred ultrafiltration”, J. Mem. Sci.,21, 145(1984).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊