|
[1]M. R. Schroeder, Number Theory in Science and communications, 1997, Springer-Verlag, Berlin. [2]van Schyndel, R.G.; Tirkel, A.Z.; Svalbe, I. D., "Key independent watermark detection," Multimedia Computing and Systems, 1999. IEEE International Conference on , vol.1, no., pp.580,585 vol.1, Jul 1999 [3]J. J. Eggers, J. K. Su, “Public key watermarking by eigenectors of linear transforms” EUSIPCO 2000 Tampere, Finland, Sep 5-8 2000 [4]L. G. Hua, Introduction to Number Theory. New York: Springer-Verlag, 1982, p. 572. [5]R. E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley, 1983. [6]I. S. Reed and T. K. Truong, “The use of finite fields to compute convolutions,” IEEE Trans. Information Theory, vol. IT-21, no. 2, pp 208-213, Mar. 1975. [7]D. T. Birtwistle, “The eigenstructure of the number theoretic transforms,” Signal Processing, vol. 4, pp. 287-294, Jul. 1982. [8]Stone, H.S., “Parallel Processing with the Perfect Shuffle, ” Computers, IEEE Transactions on , vol.C-20, no.2, pp. 153- 161, Feb. 1971 [9]J. Ellis, H. Fan, and J. Shallit, “The cycles of the multiway perfect shuffle permutation,” Discrete Mathematics and Theoretical Computer Science, 5(1):169–180, 2002. [10]M. Ma, X. Huang, B. Jiao, and Y. J. Guo, “Optimal orthogonal precoding for power leakage suppression in DFT-based systems,” IEEE Trans. Commun., vol. 59, no. 3, pp. 844-853, Mar. 2011. [11]G. D. Mandyam, "Sinusoidal transforms in OFDM systems," IEEE Trans. Broadcast., vol. 50, no. 2, pp. 172-184, June 2004. [12]R. Tao, X. Y. Meng, and Y. W, "Transform order division multiplexing," IEEE Trans. Signal Processing, vol. 59, no. 2, pp.598-609, Feb. 2011. [13]A. N. Akansu and H. Agirman-Tosun, "Generalized discrete Fourier transform with nonlinear phase," IEEE Trans. Signal Processing, vol. 58, no. 9, pp.4547-4556, Sept. 2010. [14]A. N. Akansu and H. Agirman-Tosun, "Generalized discrete Fourier transform with optimum correlations," IEEE International Conference on Acoustics Speech and Signal Processing, pp. 4054-4057, Mar. 2010. [15]S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, "A novel transform for image compression," IEEE International Midwest Symposium on Circuits and Systems, pp. 509-512, Aug. 2010. [16]S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, "Image encryption using the reciprocal-orthogonal parametric transform," Proceedings of IEEE International Symposium on Circuits and Systems, pp. 2542-2545, May 2010. [17]S. Rahardja and B. J. Falkowski, “Family of unified complex Hadamard transforms,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 46, no. 8, pp. 1094-1100, Aug. 1999. [18]S. Rahardja, W. Ser, and Z. Lin, “UCHT-based complex sequences for asynchronous CDMA system,” IEEE Trans. Commun., vol. 51, no. 4, pp. 618-626, Apr. 2003. [19]A. Aung, B. P. Ng, and S. Rahardja, “Sequency-ordered complex Hadamard transform: Properties, computational complexity and applications,” IEEE Trans. Signal Processing, vol.56, no.8, pp.3562-3571, Aug. 2008. [20]A. Aung, B. P. Ng, and S. Rahardja, “Performance of SCHT sequences in asynchronous CDMA system,” IEEE Communications Letters, vol. 11, no. 8, pp. 641-643, Aug. 2007. [21]A. Aung, B. P. Ng, and S. Rahardja, "Conjugate symmetric sequency-ordered complex Hadamard transform," IEEE Trans. Signal Processing, vol. 57, no. 7, pp. 2582-2593, July 2009. [22]S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “A new class of reciprocal-orthogonal parametric transform,” IEEE Trans. Circuits Syst. I, Regul. Pap., vol. 56, no. 4, pp. 795-805, Apr. 2009. [23]S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, "New parametric discrete Fourier and Hartley transforms, and algorithms for fast computation," IEEE Trans. Circuits Syst. I, Regul. Pap., vol. 58, no. 3, pp. 562-575, Mar. 2011. [24]Z. Chen, M. H. Lee, and G. Zeng, "Fast cocyclic Jacket transform," IEEE Trans. Signal Processing, vol. 56, no. 5, pp. 2143-2148, May 2008. [25]M. H. Lee and K. Finlayson, “A simple element inverse Jacket transform coding,” IEEE Signal Process. Lett., vol. 14, no. 5, pp. 325-328, May 2007. [26]Jiasong Wu; Lu Wang; Guanyu Yang; Senhadji, L.; Limin Luo; Huazhong Shu; , "Sliding Conjugate Symmetric Sequency-Ordered Complex Hadamard Transform: Fast Algorithm and Applications," Circuits and Systems I: Regular Papers, IEEE Transactions on , vol.59, no.6, pp.1321-1334, June 2012. [27]J. H. McClellan, “Eigenvalue and eigenvector decomposition of the discrete Fourier transform,” IEEE Trans. Audio Electroacoust., vol. 20, pp. 66-74, 1972. [28]B. W. Dickinson and K. Steiglitz, “Eigenvectors and functions of the discrete Fourier transform,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 30, pp. 25-31, Feb. 1982. [29]C. Candan, M. A. Kutay, and H. M. Ozaktas, “The discrete fractional Fourier transform,” IEEE Trans. Signal Processing, vol. 48, pp. 1329-1337 May 2000. [30]N. M. Atakishiyev, L. E. Vicent, and K. B. Wolf, “Continuous vs. discrete fractional Fourier transforms,” v.107, n.1, pp.73-95, 1999. [31]M. L. Mehta, “Eigenvalues and eigenvectors of the finite Fourier transform,” Journal. Math. Phys. 28, no. 4, pp.781-785 April. 1987 [32]F. A. Grunbaum, “The eigenvectors of the discrete Fourier transform: a version of the Hermite functions,” Journal of Mathematical analysis and applications, vol. 88, p.355-363, 1982 [33]S. Clary and D. H. Mugler, “Shifted Fourier matrices and their tridiagonal commuters”, SIAM J. Matrix Anal. Appl., vol. 24, no. 3, pp. 809-821, March 2003. [34]D. H. Mugler and S. Clary, “Discrete Hermite functions and the fractional Fourier transform”, Proc. International Conferences on Sampling Theory and Applications, pp. 303-308, 2001. [35]Soo-Chang Pei; Wen-Liang Hsue; Jian-Jiun Ding, "Discrete Fractional Fourier Transform Based on New Nearly Tridiagonal Commuting Matrices," Signal Processing, IEEE Transactions on , vol.54, no.10, pp.3815,3828, Oct. 2006 [36]Soo-Chang Pei; Yun-Chiu Lai, "Signal Scaling by Centered Discrete Dilated Hermite Functions," Signal Processing, IEEE Transactions on , vol.60, no.1, pp.498,503, Jan. 2012 [37]Soo-Chang Pei; Wen-Liang Hsue; Jian-Jiun Ding, "DFT-Commuting Matrix With Arbitrary or Infinite Order Second Derivative Approximation," Signal Processing, IEEE Transactions on , vol.57, no.1, pp.390,394, Jan. 2009 [38]T. Erseghe, and G..Cariolaro, “An orthonormal class of exact and simple DFT eigenvectors with a high degree of symmetry,” IEEE Trans. Signal Processing, vol. 51, pp. 2527-2539 Oct. 2003. [39]M. S. Pattichis, A. C. Bovik, J. W. Havlicek, and N. D. Sidiropoulos, “Multidimensional orthogonal FM transforms”, IEEE Trans. Image Processing, vol. 10, no. 3, pp. 448-464, March 2001. [40]S. C. Pei and M. H. Yeh, “Discrete fractional Fourier transform,” in Proc. IEEE Int. Symp. Circuits Syst., May 1996, pp. 536-539. [41]S. C. Pei, M. H. Yeh, and C. C Tseng, “Discrete fractional Fourier transform based on orthogonal projections,” IEEE Trans. Signal Processing, vol. 47, pp. 1335-1348, 1999. [42]J. G. Vargas-Rubio and B. Santhanam, “On the multiangle centered discrete fractional Fourier transform”, IEEE Signal Processing Letters, vol. 12, no. 4, pp. 273-276, Apr. 2005. [43]J. G. Vargas-Rubio and B. Santhanam, “An improved spectrogram using the multiangle centered discrete fractional Fourier transform”, vol. 4, pp. 505-508, ICASSP, 2005. [44]S. C. Pei, C. C. Wen, and J. J. Ding, “Closed-form orthogonal DFT eigenvectors generated by complete generalized Legendre sequence,” IEEE Trans. Circuits Syst. I, vol. 55, no. 17, pp. 3469-3479, Dec. 2008. [45]C. Candan, "On higher order approximations for Hermite - Gaussian functions and discrete fractional Fourier transforms", IEEE Signal Process. Lett., vol. 14, no. 10, pp. 699-702, 2007. [46]S. Boussakta and A. G. J. Holt, “New transform using the Mersenne numbers,” IEE Proc. Vis. Image Signal Process., vol. 142, no. 6, pp. 381-388, Dec 1995. [47]Y. Jakop, A, S, Madhukumar, and A. B. Premkumar, “A robust symmetrical number system based parallel communication system with inherent error detection and correction,” IEEE Trans. Wireless Communication, vol. 8, no. 6, pp. 2742-2747, June 2009. [48]D. A. Hejhal, Emerging Applications of Number Theory, Springer, New York, 1999. [49]Stone, H.S., “Parallel Processing with the Perfect Shuffle, ” Computers, IEEE Transactions on , vol.C-20, no.2, pp. 153- 161, Feb. 1971 [50]J. Ellis, H. Fan, and J. Shallit, “The cycles of the multiway perfect shuffle permutation,” Discrete Mathematics and Theoretical Computer Science, 5(1):169–180, 2002. [51]Hluchyj, M.G.; Karol, M.J.; , "ShuffleNet: an application of generalized perfect shuffles to multihop lightwave networks," INFOCOM ''88. Networks: Evolution or Revolution, Proceedings. Seventh Annual Joint Conference of the IEEE Computer and Communcations Societies, IEEE , vol., no., pp.379-390, 27-31 Mar 1988 [52]Ben-Asher, Y.; Egozi, D.; Schuster, A.; , "2-D SIMD Algorithms In The Perfect Shuffle Networks," Computer Architecture, 1989. The 16th Annual International Symposium on , vol., no., pp.88-95, 28 May-1 Jun 1989 [53]Godwin, D.P.; Carey, C.D.; Song, S.H.; Selviah, D.R.; Midwinter, J.E.; , "Perfect shuffle interconnections using Fresnel computer generated holograms in a planar-optic configuration," Holographic Systems, Components and Applications, 1993., Fourth International Conference on , vol., no., pp.15-20, 13-15 Sep 1993 [54]Corinthios, M.J.; , "Optimal parallel and pipelined processing through a new class of matrices with application to generalized spectral analysis," Computers, IEEE Transactions on , vol.43, no.4, pp.443-459, Apr 1994 [55]Jarvinen, T.S.; Takala, J.H.; Akopian, D.A.; Saarinen, J.P.P.; , "Register-based multi-port perfect shuffle networks," Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE International Symposium on , vol.4, no., pp.306-309 vol. 4, 6-9 May 2001 [56]J. C. Lin; M. Hsieh; M. J. F. Chiang; S. Y. Mao; C. Yu; S. J. Chen; Y. H. Hu; , "Perfect shuffling for cycle efficient puncturer and interleaver for software defined radio," Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on , vol., no., pp.3965-3968, May 30 2010-June 2 2010 [57]Schiano, L.; Lombardi, F.; , "On the test and diagnosis of the perfect shuffle," Defect and Fault Tolerance in VLSI Systems, 2003. Proceedings. 18th IEEE International Symposium on , vol., no., pp. 97- 104, 3-5 Nov. 2003 [58]Davio, M.; , "Kronecker products and shuffle algebra," Computers, IEEE Transactions on , vol.C-30, no.2, pp.116-125, Feb. 1981 [59]Suleiman, A.; Hussein, A.; Bataineh, K.; Akopian, D.; , "Scalable FFT architecture vs. multiple pipeline FFT architectures — Hardware implementation and cost," Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on , vol., no., pp.3792-3796, 11-14 Oct. 2009 [60]Takala, J.; Akopian, D.; Astola, J.; Saarinen, J.; , "Scalable interconnection networks for partial column array processor architectures," Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on , vol.4, no., pp.513-516 vol.4, 2000 [61]Hussein, A.; Suleiman, A.; Kerkiz, N.; Akopian, D.; , "Implementation of scalable interconnect networks for data reordering used in Discrete Trigonometric Transforms (DTT)," IC Design and Technology, 2009. ICICDT ''09. IEEE International Conference on , vol., no., pp.139-142, 18-20 May 2009 [62]Ray, G.A.; , "VLSI architectures for Dirichlet arithmetic," Acoustics, Speech, and Signal Processing, 1992. ICASSP-92., 1992 IEEE International Conference on , vol.4, no., pp.589-592 vol.4, 23-26 Mar 1992 [63]M. Ma, X. Huang, B. Jiao, and Y. J. Guo, “Optimal orthogonal precoding for power leakage suppression in DFT-based systems,” IEEE Trans. Commun., vol. 59, no. 3, pp. 844-853, Mar. 2011. [64]G. D. Mandyam, "Sinusoidal transforms in OFDM systems," IEEE Trans. Broadcast., vol. 50, no. 2, pp. 172-184, June 2004. [65]R. Tao, X. Y. Meng, and Y. W, "Transform order division multiplexing," IEEE Trans. Signal Processing, vol. 59, no. 2, pp.598-609, Feb. 2011. [66]A. N. Akansu and H. Agirman-Tosun, "Generalized discrete Fourier transform with nonlinear phase," IEEE Trans. Signal Processing, vol. 58, no. 9, pp.4547-4556, Sept. 2010. [67]A. N. Akansu and H. Agirman-Tosun, "Generalized discrete Fourier transform with optimum correlations," IEEE International Conference on Acoustics Speech and Signal Processing, pp. 4054-4057, Mar. 2010. [68]S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, "A novel transform for image compression," IEEE International Midwest Symposium on Circuits and Systems, pp. 509-512, Aug. 2010. [69]S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, "Image encryption using the reciprocal-orthogonal parametric transform," Proceedings of IEEE International Symposium on Circuits and Systems, pp. 2542-2545, May 2010. [70]S. Rahardja and B. J. Falkowski, “Family of unified complex Hadamard transforms,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 46, no. 8, pp. 1094-1100, Aug. 1999. [71]S. Rahardja, W. Ser, and Z. Lin, “UCHT-based complex sequences for asynchronous CDMA system,” IEEE Trans. Commun., vol. 51, no. 4, pp. 618-626, Apr. 2003. [72]A. Aung, B. P. Ng, and S. Rahardja, “Sequency-ordered complex Hadamard transform: Properties, computational complexity and applications,” IEEE Trans. Signal Processing, vol.56, no.8, pp.3562-3571, Aug. 2008. [73]A. Aung, B. P. Ng, and S. Rahardja, “Performance of SCHT sequences in asynchronous CDMA system,” IEEE Communications Letters, vol. 11, no. 8, pp. 641-643, Aug. 2007. [74]A. Aung, B. P. Ng, and S. Rahardja, "Conjugate symmetric sequency-ordered complex Hadamard transform," IEEE Trans. Signal Processing, vol. 57, no. 7, pp. 2582-2593, July 2009. [75]F. Schipp, W. R. Wade, P. Simon, and J. Pal., Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger Ltd., Bristol, 1990. [76]F. Schipp and W. R. Wade, Norm convergence and summability of Fourier series with respect to certain product systems. in: Approximation Theory. New York: Pure Appl Math Dekker, vol. 138, 1992, pp. 437–452. [77]G. Gat, On (C,1) summability for Vilenkin-like systems, Stud. Math., vol. 144, 2001, pp. 101-120. [78]G. Gat, On (C, 1) summability of integrable functions with respect to theWalsh-Kaczmarz system, Stud. Math., vol. 130 1998, pp. 135-148. [79]G. Gat and K. Nagy, Cesaro summability of the character system of the p-series field in the Kaczmarz rearrangement, Anal. Math., vol. 28, 2002, pp. 1-36. [80]U. Goginava, The maximal operator of the Fejer means of the character system of the p-series field in the Kaczmarz rearrangement, Publ. Math., vol. 71, 2007, pp. 43-55. [81]Z. Chuanzhou and Z. Xueying, On the Fejer kernel functions of two-dimensional Walsh systems by Kaczmarz rearrangement, Proceedings of the 2nd International Conference on Modelling and Simulation, vol. 5, 2009, pp. 421-424. [82]I. V. Polyakov, (C; 1)-Summation of Fourier series over rearranged Vilenkin system, Moscow University Mathematics Bulletin vol. 65, 2010, pp. 140-147. [83]F. Schipp and W. R. Wade, Fast Fourier transforms on binary fields, Approximation Theory and Its Applications, vol. 14, 1998, pp. 91-100. [84]S.C. Pei, C.C. Wen, and J.J. Ding, “Sequency-ordered generalized Walsh–Fourier transform”, Signal Processing, vol. 93, Issue 4, pp. 828-841, Apr. 2013 [85]S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “A new class of reciprocal-orthogonal parametric transform,” IEEE Trans. Circuits Syst. I, Regul. Pap., vol. 56, no. 4, pp. 795-805, Apr. 2009. [86]S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, "New parametric discrete Fourier and Hartley transforms, and algorithms for fast computation," IEEE Trans. Circuits Syst. I, Regul. Pap., vol. 58, no. 3, pp. 562-575, Mar. 2011. [87]Z. Chen, M. H. Lee, and G. Zeng, "Fast cocyclic Jacket transform," IEEE Trans. Signal Processing, vol. 56, no. 5, pp. 2143-2148, May 2008. [88]M. H. Lee and K. Finlayson, “A simple element inverse Jacket transform coding,” IEEE Signal Process. Lett., vol. 14, no. 5, pp. 325-328, May 2007. [89]S. H. Tsai, Y. P. Lin, and C. C. J. Kuo, “MAI-free MC-CDMA systems based on Hadamard-Walsh codes,” IEEE Trans. Signal Processing, vol. 54, no. 8, pp. 3166-3179, Aug. 2006. [90]C. S. Burrus and T. W. Parks, DFT/FFT and Convolution Algorithms: Theory and Implementation, John Wiley &; Sons, New York, 1985. [91]D. V. Sarwate and M. B. Pursley, “Cross correlation properties of pseudorandom and related sequences,” Proc. IEEE, vol. 68, no. 5, pp. 593-619, May 1980. [92]N. Tayem, H. M. Kwon, M. Seunghyun, and H. K. Dong, "Covariance matrix differencing for coherent source DOA estimation under unknown noise field," Vehicular Technology Conference, pp. 1-5, Sept. 2006. [93]K. Wang, Y. Zhang, and D. Shi, “Novel algorithm on DOA estimation for correlated sources under complex symmetric Toeplitz noise,” Journal of Systems Engineering and Electronics, vol. 19, no. 5, pp. 902-906, Aug. 2008. [94]D. R. Fuhrmann and T. A. Barton, "New results in the existence of complex covariance estimates," Conference Record of the 26th Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 187-191, Oct. 1992. [95]D. R. Fuhrmann and M. I. Miller, "On the existence of positive-definite maximum-likelihood estimates of structured covariance matrices," IEEE Trans. Inf. Theory, vol. 34, no. 4, pp. 722-729, Jul. 1988. [96]M. J. Turmon and M. I. Miller, "Maximum-likelihood estimation of complex sinusoids and Toeplitz covariances," IEEE Trans. Signal Processing, vol. 42, no. 5, pp. 1074-1086, May 1994.
|