[1] 陳錦修,2002,「鎂合金在汽車工業之應用」,工業材料雜誌,第186期,第148-152頁。[2] Dawes, C.J., and Thomas, W.M., 1996, “Friction Stir Process Welds Aluminum Alloys”, Welding Journal, vol. 75, pp. 41-45.
[3] 中國機械工程學會焊接學會,1992,電阻焊理論與實踐,機械工業出版社。
[4] Zhou, Y., Dong, S. J., and Ely, K. J., 2001, “Weldability of Thin Sheet Metals by Small-Scale Resistance Spot Welding using High-Frequency Inverter and Capacitor-Discharge Power Supplies”, Journal of Electronic Materials, Vol. 30, pp. 1012-1020.
[5] 中國機械工程學會銲接學會,2001,銲接手冊,機械工業出版社。
[6] Thomas, W.M., Nicholas, E.D., Needham, J.C., Murch, M.G., TempleSmith, P., and Dawes, C.J., 1991, Friction Welding, U.S. Patent No. 5460317.
[7] Reynolds, A. P., Lockwood, W. D., and Seidel, T. U., 2000, “Processing-Property Correlation in Friction Stir Welds”, Materials Science Forum, vol. 331-337, pp. 1719-1724.
[8] Sanderson, A., Punshon, C S., and Russell, J D., 2000, “Advanced Welding Processes for Fusion Reactor Fabrication”, Fusion Engineering and Design, vol. 49-50, pp. 77-87.
[9] 蔡宗亮,2002,鎂合金焊接,台灣鎂合金協會。
[10] 王木琴,1996,工程材料,復文書局。
[11] Cary, H. B., 1994, Modern Welding Technology, Third Edition, Prentice Hall Inc.
[12] Na, S.J., and Rark, S.W., 1996, “A Theoretical Study on Electrical and Thermal Response in Resistance Spot Welding”, Welding Journal, vol.75, pp.233-241.
[13] Aslanlar, S., 2006, “The Effect of Nucleus Size on Mechanical Properties in Electrical Resistance Spot Welding of Sheets used in Automotive Industry”, Materials and Design, vol. 27 pp. 125-131.
[14] Okamoto, K., Hunt, F., and Hirano, S., 2005, “Development of Friction Stir Welding Technique and Machine for Aluminum Sheet Metal Assembly-Friction Stir Welding of Aluminum for Automotive Applications”, SAE 2005 World Congress & Exhibition, 2005-01-1254.
[15] Pan T., 2004, Friction stir Welding in Automotive Applications – Present and Future, Presentation in Author’s Possession.
[16] Allen, C., and Arbegast, W. J., 2005, “Evaluation of Friction Spot Welds in Aluminum Alloys”, SAE 2005 World Congress & Exhibition, 2005-01-1252.
[17] Muci-Kuchler, K. H., Itapu, S. K., Arbegast, W. J., and Koch, K. J., 2005, “Visualization of Material Flow in Friction Stir Spot Welding”, SAE 2005 World Congress & Exhibition, 2005-01-3323.
[18] Lathabai, S., Painter, M. J., Cantin, G.M.D., and Tyagi, V. K., 2006, “Friction Spot Joining of an Extruded Al-Mg-Si Alloy”, Scripta Materialia, vol. 55, pp. 899-902.
[19] Sato, Y. S, Urata, M., Kokawa, H., and Ikeda, K., 2003, “Hall-Petch Relationship in Friction Stir Welds of Equal Channel Angular-Pressed Aluminum Alloys”, Materials Science and Engineering A, vol. 354, pp. 298-305.
[20] Ditzel, P., and Lippold, J. C., 1999, “Influence on The Tensile Properties of Friction Stir Welding in Alloy 6061-T6, 5454-H34 and 2195-T8”, Mater. Joining Technol., EWI Project no. 012531RP, Report no. MR 019877.
[21] Midling, O. T., Morley, E. J., and Sandvik, A., 1994, Friction Stir Welding, E.P Patent No. 0752926.
[22] Tran, V. X., Lin, P. C., Pan, J., Pan, T. Y. and Tyan, T., 2007, “Failure Loads of Spot Friction Welds in Aluminum 6111-T4 Sheets under Quasi-Static and Dynamic Loading Conditions”, SAE 2007 World Congress & Exhibition, 2007-01-0983.
[23] Mishra, R., Webb, S., Freeney, T., Chen Y. L., Gayden, X. Q., Grant, G., and Herling, D., 2007, “Friction Stir Spot Welding of 6016 Aluminum Alloy”, Friction Stir Welding IV, pp. 341-348.
[24] Bussu, G., and Irving, P. E., 2003, “The Role of Residual Stress and Heat Affected Zone Properties on Fatigue Crack Propagation in Friction Stir Welded 2024-T351 Aluminum Joints”, International Journal of Fatigue, vol. 25, pp. 77-88.
[25] Reynolds, A. P., Tang, W., Gnaupel-Herold, T., and Prask, H., 2003, “Structure, Properties, and Residual Stress of 304L Stainless Steel Friction Stir Welds”, Scripta Materialia, vol. 48, pp. 1289-1294.
[26] Liu, G., Murr, L.E., Niou, C-S., McClure, J.C., and Vega, E.R., 1997, “Microstructural Aspects of The Friction-Stir Welding of 6061-T6 Aluminum”, Scripta Materialia, vol. 37, pp.355-361.
[27] Saito, N., and Shigematsu, I., 2001, “Grain refinement of 1015 Aluminum Alloy by Friction Stir Processing”, Journal of Materials Science Letters, vol. 20, pp. 1913-1915.
[28] Fonda, R.W., and Bingert, J.F., 2004, “Microstructural Evolution in The Heat-Affected Zone of A Friction Stir Welding”, Metallurgical and Materials Transaction A, vol. 35, pp.1487-1499.
[29] Prangnell, P.B., and Heason, C.P., 2005, “Grain Structure Formation during Friction Stir Welding Observed by The Stop Action Technique”, Acta Materialia, vol. 53, pp. 3179-3192.
[30] Su, J. Q., Nelson, T. W., and Sterling, C. J., 2005, “Microstructure Evolution during FSW/FSP of High Strength Aluminum Alloys”, Materials Science and Engineering: A, vol. 405, pp.277-286.
[31] Khandkar, M.Z.H., Khan, J.A., and Reynolds, A.P., 2003, “Prediction of Temperature Distribution and Thermal History during Friction Stir Welding input Torque Based Model”, Science and Technology of Welding & Joining, vol. 8, pp.165-174.
[32] Song, M., and Kovacevic, R., 2003, “Thermal Modeling of Friction Stir Welding in A Moving Coordinate System and Its Validation”, International Journal of Machine Tools and Manufacture, vol. 43, pp.605-615.
[33] Awang, M., Mucino, V. H., Feng, Z., and David, S. A., 2005, “Thermo-Mechanical Modeling of Friction Stir Spot Welding (FSSW) Process: Use of an Explicit Adaptive Meshing Scheme”, SAE 2005 World Congress & Exhibition, 2005-01-1251.
[34] Santiago, D. H., Lombera, G., Urquiza, S., Cassanelli, A., and de Vedia, L. A., 2004, “Numerical Modeling of Welded Joints by the Friction Stir Welding Process”, Material Research, vol. 7, No. 4, pp. 569 - 574.
[35] Frigaard, F., Grong, F., and Midling, O. T., 1998, “Modeling of The Heat Follow Phenomena in Friction Stir Welding of Aluminum Alloys”, Proceedings of the Seven International Conference Joints, Cambridge, pp. 15-17.
[36] Chen, C.M., and Kovacevic, R., 2003, “Finite Element Modeling of Friction Stir Welding- Thermal and Thermomechanical Analysis”, International Journal of Machine Tools and Manufacture, vol. 43, pp. 1319-1326.
[37] Muci-Kuchler, K. H., Kakarla, S.S.T., Arbegast, W. J., and Allen, C. D., 2005, “Numerical Simulation of The Friction Stir Spot Welding Process”, SAE 2005 World Congress & Exhibition, 2005-01-1260.
[38] Schmidt, H., Hattel, J., and Wert, J., 2004, “An analytical Model for The Heat Generation in Friction Stir Welding”, Modelling and Simulation in Materials Science and Engineering, vol. 12, pp. 143-157.
[39] Kalpakjian S., 1985, Manufacturing Processes for Engineering Materials, Addison-Wesley Publishing Company.
[40] MatWeb.com, 1996, “Magnesium alloy AZ80-F”, www.matweb.com.
[41] Badarinarayan, H., Yang, Q., and Hunt, F., 2008, “Effect of Pin Geometry on Static Strength of Friction Stir Spot Welds”, SAE 2008 World Congress Detroit, 2008-01-0147.
[42] 梁志鴻,2001,「鎂合金在自行車產業之應用」,工業材料雜誌,第174期,第149-160頁。
[43] 陳錦修,2002,「鎂合金在汽車工業之應用」,工業材料雜誌,第186期,第148-152頁。[44] Mitlin, D., Radmilovic, V., Panc, T., Chen, J., Feng, Z., and Santella, M.L., 2006, “Structure–Properties Relations in Spot Friction Welded (also known as Friction Stir Spot Welded) 6111 Aluminum”, Materials Science and Engineering A, pp. 79-96.
[45] LS-DYNA, 2001, LS-DYNA Keyword User’s Manual Version 960, LS-DYNA Inc.
[46] 國家標準檢索系統,1993,「點熔接接合之拉剪試驗法」,中國民國,經濟部標準檢驗局,www.cnsonline.com.tw,2009。
[47] 國家標準檢索系統,1993,「點熔接接合之拉伸試驗法」,中國民國,經濟部標準檢驗局,www.cnsonline.com.tw,2009。
[48] Weisman, C., and Kearns, W. H., 1986, Welding Handbook: Fundamentals of Welding, American Welding Society, vol. 1, 7th, pp. 154-169.