跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.102) 您好!臺灣時間:2025/12/04 14:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林建宏
研究生(外文):Chien-Hung Lin
論文名稱:摩擦攪拌點銲於高強度車用AZ80-F鎂合金接合之研究
論文名稱(外文):Study of Friction Stir Spot Welding of High Strength Automotive AZ80-F Magnesium alloy
指導教授:陳永昌陳永昌引用關係曾光宏曾光宏引用關係
指導教授(外文):Young-Chang ChenKuang-Hung Tseng
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:車輛工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:79
中文關鍵詞:摩擦攪拌點銲鎂合金攪拌頭銲接參數顯微組織
外文關鍵詞:FSSWMagnesium AlloyToolWelding ParametersMicrostructure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
輕量化為目前汽車工業發展之主要目標之一,因此鎂合金之應用逐年增加,另外,由於摩擦攪拌銲接具有高品質與固態銲接特性,因此亦備受矚目,本研究主要探討應用摩擦攪拌點銲於高強度車用AZ80-F鎂合金接合之研究,首先利用結構-熱耦合有限元素方法進行實驗參數之模擬分析,探討銲接參數對銲接溫度場之影響;然後使用摩擦攪拌銲接機台進行AZ80-F鎂合金點銲實驗,並利用拉剪與拉伸試驗及奈米壓痕試驗,探討不同銲接參數對於銲點接頭機械性質之影響,最後以金相實驗觀察銲接顯微組織之變化。研究結果顯示,AZ80-F鎂合金摩擦攪拌點銲之銲接溫度場變化對轉速或壓力的敏感性遠超其它銲接參數,AZ80-F鎂合金接觸面之溫度皆呈均勻分佈情況,且可由溫度分佈之曲線分析判斷銲接是否成功。經由金相組織觀察得知,攪拌頭幾何形狀明顯影響銲接區各部位塑性流擾動與晶粒細化程度;其中,雙錐形攪拌頭具有最佳之效果,最後藉由不同銲接參數之機械性質測試結果,發現銲點強度具有隨轉速與壓力增高而增加的趨勢,但可成功銲接之轉速具有一臨界值,若超過此臨界值時,將導致銲點接合不良。
Lightweighting has become a key issue in automotive industries recently. Magnesium alloy, consequently, has become one of the major materials for structures. In addition, the solid-state bonding and other excellent features of the friction stir spot welding (FSSW) makes it inherently attractive for body assembly and other similar applications. This study aims to investigate the welding characteristics of the AZ80-F magnesium alloy of FSSW. A 3D finite element coupling model is employed to investigate the effects of welding parameters on the thermal-mechanical behavior of the welds. Then, the experimental samples are made by using FSSW process and, the tensile-shear test, direct tensile test, nano-indentation test and metallographic test are performed to understand the corresponding characteristics of the spot welds. The results show that the welding parameters of tool rotation speed and pressure are more sensitive to the temperature distribution of the welds. In addition, the temperature distribution curve can be used to evaluate the properties of the welds. The results obtained from microstructure observation reveal that the geometry of the tool has a strong effect on the plastic flow and grain size in the welds during the welding process. The welds with the dual-conical tool have the best microstructure distribution and welding strength. Its welding strength increases with the increase of tool rotation speed and pressure to a critical value.
摘要 I
Abstract III
謝誌 V
表目錄 X
圖目錄 XI
符號索引 XV
第1章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 文獻回顧 2
1.4 摩擦攪拌點銲特性與原理 7
1.4.1 熱產生模型(Thermal Process Models) 8
1.4.2 動態再結晶機制 9
1.5 研究目的 10
1.6 本文架構 10
第2章 研究方法與流程 17
2.1 實驗規劃 17
2.2 試片與攪拌頭 17
2.2.1 試片 17
2.2.2 摩擦攪拌點銲攪拌頭 17
2.2.3 摩擦攪拌點銲銲接參數 18
2.3 摩擦攪拌點銲溫度場模擬分析 18
2.3.1分析流程與元素型式 19
2.3.2幾何模型 19
2.3.3邊界條件 20
2.3.4模擬參數 20
2.4 摩擦攪拌點銲應力場模擬分析 20
2.4.1分析流程與元素型式 20
2.4.2幾何模型與邊界條件 21
2.4.3模擬參數 21
2.5 摩擦攪拌銲接機台與量測系統 21
2.5.1 摩擦攪拌銲接製程設備 21
2.5.2 壓力量測系統 22
2.5.3 溫度量測系統 22
2.6 後處理製程分析設備 22
2.6.1 金相觀察 22
2.6.2 奈米壓痕試驗(Micro-Hardness Test) 23
2.6.3 拉伸-剪力強度實驗(Lap Shear Test) 24
2.6.4 直拉伸強度實驗(Direct Tension Test) 24
第3章 摩擦攪拌點銲模擬分析 38
3.1 攪拌頭幾何形狀與銲件溫度分佈之關係 38
3.2 攪拌頭轉速與銲件溫度分佈之關係 39
3.3 銲接壓力與銲件溫度分佈之關係 40
3.4 銲接停滯時間與銲件溫度分佈之關係 41
3.5 銲件變形與銲接應力分析 41
第4章 摩擦攪拌點銲之接頭顯微組織觀察與機械性質分析 54
4.1 摩擦攪拌點銲點溫度量測 54
4.2 摩擦攪拌點銲接頭之表面巨觀與金相顯微組織 56
4.2.1 表面巨觀 56
4.2.2 熱機影響區 56
4.2.3 銲件接觸面 57
4.2.4 攪拌頭端部接觸面 57
4.3 奈米壓痕試驗 58
4.4 銲點拉剪強度試驗與直拉伸強度試驗 58
第5章 結論 73
參考文獻 74
作者簡介 79

[1] 陳錦修,2002,「鎂合金在汽車工業之應用」,工業材料雜誌,第186期,第148-152頁。
[2] Dawes, C.J., and Thomas, W.M., 1996, “Friction Stir Process Welds Aluminum Alloys”, Welding Journal, vol. 75, pp. 41-45.
[3] 中國機械工程學會焊接學會,1992,電阻焊理論與實踐,機械工業出版社。
[4] Zhou, Y., Dong, S. J., and Ely, K. J., 2001, “Weldability of Thin Sheet Metals by Small-Scale Resistance Spot Welding using High-Frequency Inverter and Capacitor-Discharge Power Supplies”, Journal of Electronic Materials, Vol. 30, pp. 1012-1020.
[5] 中國機械工程學會銲接學會,2001,銲接手冊,機械工業出版社。
[6] Thomas, W.M., Nicholas, E.D., Needham, J.C., Murch, M.G., TempleSmith, P., and Dawes, C.J., 1991, Friction Welding, U.S. Patent No. 5460317.
[7] Reynolds, A. P., Lockwood, W. D., and Seidel, T. U., 2000, “Processing-Property Correlation in Friction Stir Welds”, Materials Science Forum, vol. 331-337, pp. 1719-1724.
[8] Sanderson, A., Punshon, C S., and Russell, J D., 2000, “Advanced Welding Processes for Fusion Reactor Fabrication”, Fusion Engineering and Design, vol. 49-50, pp. 77-87.
[9] 蔡宗亮,2002,鎂合金焊接,台灣鎂合金協會。
[10] 王木琴,1996,工程材料,復文書局。
[11] Cary, H. B., 1994, Modern Welding Technology, Third Edition, Prentice Hall Inc.
[12] Na, S.J., and Rark, S.W., 1996, “A Theoretical Study on Electrical and Thermal Response in Resistance Spot Welding”, Welding Journal, vol.75, pp.233-241.
[13] Aslanlar, S., 2006, “The Effect of Nucleus Size on Mechanical Properties in Electrical Resistance Spot Welding of Sheets used in Automotive Industry”, Materials and Design, vol. 27 pp. 125-131.
[14] Okamoto, K., Hunt, F., and Hirano, S., 2005, “Development of Friction Stir Welding Technique and Machine for Aluminum Sheet Metal Assembly-Friction Stir Welding of Aluminum for Automotive Applications”, SAE 2005 World Congress & Exhibition, 2005-01-1254.
[15] Pan T., 2004, Friction stir Welding in Automotive Applications – Present and Future, Presentation in Author’s Possession.
[16] Allen, C., and Arbegast, W. J., 2005, “Evaluation of Friction Spot Welds in Aluminum Alloys”, SAE 2005 World Congress & Exhibition, 2005-01-1252.
[17] Muci-Kuchler, K. H., Itapu, S. K., Arbegast, W. J., and Koch, K. J., 2005, “Visualization of Material Flow in Friction Stir Spot Welding”, SAE 2005 World Congress & Exhibition, 2005-01-3323.
[18] Lathabai, S., Painter, M. J., Cantin, G.M.D., and Tyagi, V. K., 2006, “Friction Spot Joining of an Extruded Al-Mg-Si Alloy”, Scripta Materialia, vol. 55, pp. 899-902.
[19] Sato, Y. S, Urata, M., Kokawa, H., and Ikeda, K., 2003, “Hall-Petch Relationship in Friction Stir Welds of Equal Channel Angular-Pressed Aluminum Alloys”, Materials Science and Engineering A, vol. 354, pp. 298-305.
[20] Ditzel, P., and Lippold, J. C., 1999, “Influence on The Tensile Properties of Friction Stir Welding in Alloy 6061-T6, 5454-H34 and 2195-T8”, Mater. Joining Technol., EWI Project no. 012531RP, Report no. MR 019877.
[21] Midling, O. T., Morley, E. J., and Sandvik, A., 1994, Friction Stir Welding, E.P Patent No. 0752926.
[22] Tran, V. X., Lin, P. C., Pan, J., Pan, T. Y. and Tyan, T., 2007, “Failure Loads of Spot Friction Welds in Aluminum 6111-T4 Sheets under Quasi-Static and Dynamic Loading Conditions”, SAE 2007 World Congress & Exhibition, 2007-01-0983.
[23] Mishra, R., Webb, S., Freeney, T., Chen Y. L., Gayden, X. Q., Grant, G., and Herling, D., 2007, “Friction Stir Spot Welding of 6016 Aluminum Alloy”, Friction Stir Welding IV, pp. 341-348.
[24] Bussu, G., and Irving, P. E., 2003, “The Role of Residual Stress and Heat Affected Zone Properties on Fatigue Crack Propagation in Friction Stir Welded 2024-T351 Aluminum Joints”, International Journal of Fatigue, vol. 25, pp. 77-88.
[25] Reynolds, A. P., Tang, W., Gnaupel-Herold, T., and Prask, H., 2003, “Structure, Properties, and Residual Stress of 304L Stainless Steel Friction Stir Welds”, Scripta Materialia, vol. 48, pp. 1289-1294.
[26] Liu, G., Murr, L.E., Niou, C-S., McClure, J.C., and Vega, E.R., 1997, “Microstructural Aspects of The Friction-Stir Welding of 6061-T6 Aluminum”, Scripta Materialia, vol. 37, pp.355-361.
[27] Saito, N., and Shigematsu, I., 2001, “Grain refinement of 1015 Aluminum Alloy by Friction Stir Processing”, Journal of Materials Science Letters, vol. 20, pp. 1913-1915.
[28] Fonda, R.W., and Bingert, J.F., 2004, “Microstructural Evolution in The Heat-Affected Zone of A Friction Stir Welding”, Metallurgical and Materials Transaction A, vol. 35, pp.1487-1499.
[29] Prangnell, P.B., and Heason, C.P., 2005, “Grain Structure Formation during Friction Stir Welding Observed by The Stop Action Technique”, Acta Materialia, vol. 53, pp. 3179-3192.
[30] Su, J. Q., Nelson, T. W., and Sterling, C. J., 2005, “Microstructure Evolution during FSW/FSP of High Strength Aluminum Alloys”, Materials Science and Engineering: A, vol. 405, pp.277-286.
[31] Khandkar, M.Z.H., Khan, J.A., and Reynolds, A.P., 2003, “Prediction of Temperature Distribution and Thermal History during Friction Stir Welding input Torque Based Model”, Science and Technology of Welding & Joining, vol. 8, pp.165-174.
[32] Song, M., and Kovacevic, R., 2003, “Thermal Modeling of Friction Stir Welding in A Moving Coordinate System and Its Validation”, International Journal of Machine Tools and Manufacture, vol. 43, pp.605-615.
[33] Awang, M., Mucino, V. H., Feng, Z., and David, S. A., 2005, “Thermo-Mechanical Modeling of Friction Stir Spot Welding (FSSW) Process: Use of an Explicit Adaptive Meshing Scheme”, SAE 2005 World Congress & Exhibition, 2005-01-1251.
[34] Santiago, D. H., Lombera, G., Urquiza, S., Cassanelli, A., and de Vedia, L. A., 2004, “Numerical Modeling of Welded Joints by the Friction Stir Welding Process”, Material Research, vol. 7, No. 4, pp. 569 - 574.
[35] Frigaard, F., Grong, F., and Midling, O. T., 1998, “Modeling of The Heat Follow Phenomena in Friction Stir Welding of Aluminum Alloys”, Proceedings of the Seven International Conference Joints, Cambridge, pp. 15-17.
[36] Chen, C.M., and Kovacevic, R., 2003, “Finite Element Modeling of Friction Stir Welding- Thermal and Thermomechanical Analysis”, International Journal of Machine Tools and Manufacture, vol. 43, pp. 1319-1326.
[37] Muci-Kuchler, K. H., Kakarla, S.S.T., Arbegast, W. J., and Allen, C. D., 2005, “Numerical Simulation of The Friction Stir Spot Welding Process”, SAE 2005 World Congress & Exhibition, 2005-01-1260.
[38] Schmidt, H., Hattel, J., and Wert, J., 2004, “An analytical Model for The Heat Generation in Friction Stir Welding”, Modelling and Simulation in Materials Science and Engineering, vol. 12, pp. 143-157.
[39] Kalpakjian S., 1985, Manufacturing Processes for Engineering Materials, Addison-Wesley Publishing Company.
[40] MatWeb.com, 1996, “Magnesium alloy AZ80-F”, www.matweb.com.
[41] Badarinarayan, H., Yang, Q., and Hunt, F., 2008, “Effect of Pin Geometry on Static Strength of Friction Stir Spot Welds”, SAE 2008 World Congress Detroit, 2008-01-0147.
[42] 梁志鴻,2001,「鎂合金在自行車產業之應用」,工業材料雜誌,第174期,第149-160頁。
[43] 陳錦修,2002,「鎂合金在汽車工業之應用」,工業材料雜誌,第186期,第148-152頁。
[44] Mitlin, D., Radmilovic, V., Panc, T., Chen, J., Feng, Z., and Santella, M.L., 2006, “Structure–Properties Relations in Spot Friction Welded (also known as Friction Stir Spot Welded) 6111 Aluminum”, Materials Science and Engineering A, pp. 79-96.
[45] LS-DYNA, 2001, LS-DYNA Keyword User’s Manual Version 960, LS-DYNA Inc.
[46] 國家標準檢索系統,1993,「點熔接接合之拉剪試驗法」,中國民國,經濟部標準檢驗局,www.cnsonline.com.tw,2009。
[47] 國家標準檢索系統,1993,「點熔接接合之拉伸試驗法」,中國民國,經濟部標準檢驗局,www.cnsonline.com.tw,2009。
[48] Weisman, C., and Kearns, W. H., 1986, Welding Handbook: Fundamentals of Welding, American Welding Society, vol. 1, 7th, pp. 154-169.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top