跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/11 06:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:藍詠譯
研究生(外文):Yong-Yi Lan
論文名稱:混摻奈米碳材膠態電解質應用於染料敏化太陽能電池之研究
論文名稱(外文):Carbon Nanomarterial-Modified Polymer Gel Electrolytes for Dye-sensitized Solar Cells
指導教授:余琬琴
指導教授(外文):Wan-Chin Yu
口試委員:張瑋辰吳仁彰
口試委員(外文):Wei-chen ChangRen-Jangv Wu
口試日期:2016-07-19
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:染料敏化太陽能電池、膠態電解質、奈米碳管、石墨烯
外文關鍵詞:dye-sensitized solar cellsgel electrolyteCNTgraphene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用10 wt% PVDF-HFP (polyvinylidene difluoride)膠化染料敏化太陽能電池的液態電解質,並利用奈米碳材的添加來解決電池效率下降的問題。本研究使用的奈米碳材為經過混酸(硝酸:硫酸= 3:1)改質過的奈米碳管及石墨烯兩種,並探討其混摻比例對離子擴散係數與TiO2染料敏化太陽能電池元件光電轉換效率的影響。結果顯示,使用10 wt% PVDF-HFP膠化電解質會導致電池效率下降,添加適量奈米碳材,無論是奈米碳管或石墨烯,皆對電池效率有明顯的助益,甚至超過液態電池元件之效率。在含碘(I2)的情況下,添加奈米碳管有較好的效果,含有0.5 wt%奈米碳管的半固態電池元件的光電轉換效率為8.15 %,高於液態電池元件之效率7.50 %,而且相較於不含奈米碳管之半固態電池元件效率6.99 %,增加了17%。在無碘(I2-free)的情況下,混摻石墨烯的效果較佳,添加1.0 wt%石墨烯時,電池元件的光電轉換效率達 8.14 %,相較於不含奈米碳材之無碘膠態電池元件效率6.32%,光電轉換效率上升了29%,也比液態電池元件之效率6.61%高出許多。
In this study, acetonitrile-based liquid electrolytes were gelated with 10 wt% PVDF-HFP (polyvinylidene difluoride) for quasi-solid state dye-sensitized solar cells. Two different types of carbon nanomarterials, i.e., multi-walled carbon nanotube (MWCNT) and graphene, were employed to enhance the conductivity and thus the power conversion efficiency of TiO2 DSSCs. Both types of carbon nanomarterials were treated with a mixed acid (nitric acid : sulfuric acid = 3 : 1) before use. The results show that gelling the electrolytes with 10 wt% PVDF-HFP led to a decline in DSSC efficiency, but the problem could be overcome by introducing a suitable amount of carbon nanomarterials into the gel electrolytes, producing cell efficiencies even higher than the liquid state DSSCs. In the presence of iodine, the acid-MWCNTs gave better results. By introducing 0.5 wt% MWCNTs into the I2-contatining gel electrolyte, cell efficiency increased from 6.99 % to 8.15%, which was even higher than the 7.50 % efficiency of the liquid state counterpart. In the absence of iodine, the acid-graphene produced better results. The I2-free quasi-solid state cell with 1.0 wt% graphene reached 8.14 % efficiency, a significant improvement over those of graphene-free cells (6.32% for the gel state cell and 6.61% for the liquid state one).
摘要 I
ABSTRACT II
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 太陽能電池簡介 3
2.2染料敏化太陽能電池介紹 7
2.3 染料敏化太陽能電池工作原理 8
2.4 染料敏化太陽能電池結構 10
2.4.1 透明導電基板 10
2.4.2 奈米半導體薄膜 10
2.4.3 染料光敏化劑 12
2.4.4 氧化還原對電解質 18
2.4.5 對電極 19
2.5 染料敏化太陽能電池之光電特性 20
2.5.1 太陽能電池效率參數 20
2.5.2 太陽光強度 22
2.5.3 電化學交流阻抗分析圖譜 (Electochemical Impedance Spectroscopy,EIS) 23
2.5.4 入射單色光子-電子轉換效率 (IPCE) 25
2.5.4 循環伏安法 (Cyclic voltammogram,CV) 25
2.6 液態電解質 27
2.6.1 有機溶劑電解質 27
2.6.2 離子液體電解質 27
2.7 膠態電解質 28
2.7.1 奈米粒子型膠態電解質 29
2.7.2 凝膠型膠態電解質 32
2.8 奈米碳管(Carbon nanotubes, CNTs) 33
2.8.1 奈米碳管於DSSC中電解質的應用 33
2.9 石墨烯(Graphene) 34
2.9.1 石墨烯結構特性 34
2.9.2 石墨烯在DSSC中電解質的應用 35
第三章 實驗方法及原理 36
3.1 實驗藥品及耗材 36
3.2 實驗儀器及量測設備 37
3.2.1 實驗儀器 37
3.2.2量測儀器及操作方法 38
3.3 實驗方法 40
3.3.1 實驗架構 40
3.3.2 改質奈米碳材(MWCNTs/Graphene) 41
3.3.3 電解質之製備 41
3.3.4二氧化鈦漿料之製備 42
3.4 染料敏化太陽能電池之元件組裝 45
3.4.1 元件組裝流程 45
3.4.2 透明導電玻璃基板清洗 45
3.4.3製備TiO2薄膜 45
3.4.4 染料製備 45
3.4.5 對電極製備 45
3.4.6 電池元件組裝及封裝 46
第四章 結果與討論 47
4.1 改質奈米碳材(MWCNTs/Graphene)分析鑑定 47
4.1.1 MWCNTs穿透式電子顯微鏡分析(TEM) 47
4.1.2 MWCNTs 紅外線光譜分析(FTIR) 48
4.1.3 Graphene穿透式電子顯微鏡分析(TEM) 50
4.1.4 Graphene紅外線光譜分析(FTIR) 50
4.2添加奈米碳管於膠態電解質之性質分析與元件效率 52
4.2.1 混摻MWCNTs於有碘膠態電解質性質分析與元件效率 52
4.2.2混摻MWCNTs於無碘膠態電解質性質分析與元件效率 58
4.3添加石墨烯於膠態電解質之性質分析與元件效率 63
4.3.1 混摻Graphene於有碘膠態電解質性質分析與元件效率 63
4.3.2 混摻Graphene於無碘膠態電解質性質分析與元件效率 68
4.4長效性測試 73
第五章 結論 80
參考文獻 82
1.B. ORegan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, vol. 353, 1991, pp. 737-740.
2.L. Displaybank Co., Technology Trend and Market Forecast (2009~2013), Korea: 2009.
3.李佳樺, 「染料敏化太陽電池工業化國際會議紀要(上)」,工業材料4月刊,第292卷,1990,第94-99頁。
4.M. A. Green, K. Emery, Y. Hishikawa and W. Warta, "Solar cell efficiency tables (version 37)," Prog. Photovolt: Res. Appl., vol. 19, 2011, pp. 84-92.
5.H. F. Lee, J. J. Kai, P. C. Liu, W. C. Chang, F. Ouyang and H. Chan, "A comparative study of charge transport in quasi-solid state dye-sensitized solar cells using polymer or nanocomposite gel electrolytes," J. Electroanal. Chem., vol. 687, 2012, pp. 45-50.
6.王釿鋊,淺談薄膜式光電池,中技社通訊,2005,第59卷,第6-9頁。
7.“Efficiency_Chart,” Nrel, 2010, from: http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
8.B. P. Rand, J. Genoe, P. Heremans, and J. Poortmans, “Solar Cells Utilizing Small Molecular Weight Organic Semiconductors,” Prog. Photovolt Res. Appl., vol. 15, no. February 2013, 2007, pp.659–676。
9.莊家評,2008,二氧化鈦的表面修飾及其在染料敏化太陽能電池的應用,國立成 功大學化學研究所,碩士論文,臺南。
10.K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. I. Fujisawa and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes," Chem. Commun., vol. 51, 2015, pp. 15894-15897.
11.林建翰,2014,「進化後的敏化染料電池-鈣鈦礦太陽能電池」,光連雙月刊,第一百一十四卷,第11–15頁。
12.F. Hurd and R. Livingston, "The quantum yields of some dye-sensitized photooxidations," J. Phys. Chem. C, vol. 44, 1940, pp. 865.
13.S. Chaberek, A. Shepp and R. J. Allen, "Dye-sensitized photopolymerization processes. 1a I. The thionine-nitrilotripropionamide-acrylamide system lb," J. Phys. Chem. C, vol. 69, 1965, pp. 641.
14.S. Chaberek, A. Shepp and R. J. Allen, "Dye-sensitized photopolymerization processes.la III .the photoreducing activity of some dicarbonyl compound," J. Phys. Chem. C, vol. 69, 1965, pp. 2834.
15.D. R. Kearns, R. A. Hollins, A. U. Khan and P. Radlick, "Evidence for the participation of lΣg+ and 1△g oxygen in dye-sensitized photooxygenation reactions. II1," J. Phys. Chem. C, vol. 89, 1967, pp. 5456.
16.H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, "Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell," Nature, vol. 261, 1976, pp. 402.
17.M. Grätzel, "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells.," J. Photochem. Photobiol. A: Chem., vol. 164, 2004, pp. 3-14.
18.C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngocle, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin and M. Grätzel, "Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells," ACS Nano, vol. 3, 2009, pp. 3103-3109.
19.A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Gratzel, "Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency," Science, vol. 334, 2011, pp. 629-34.
20.D. Matthews, P. Infelta and M. Grätzel, "Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes," Sol. Energy Mater. Sol. Cells, vol. 44, 1996, pp. 119-155.
21.G. P. Smestad and M. Grätzel, "Demonstrating electron transfer and nanotechnology: a nature dye-sensitized nanocrystalline energy converter," J. Chem. Educ., vol. 75, 1998, pp. 752-756.
22.M. Grätzel, "Applied physics: solar cells to dye for," Nature, vol. 421, 2003, pp. 586-587.
23.A. Kay and M. Grätzel, "Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins," J. Phys. Chem. C, vol. 97, 1993, pp. 6272-6277.
24.M. K. Nazeeruddin, l. R. A. Kay, R. Humpbry-Baker, P. L. E. Miiller, N. Vlachopoulos and M. Grätzel, "Conversion of Light to electricity by cis-XzBis (2,2-bipyridyl-4,4’-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes," J. Am. Chem. Soc., vol. 115, 1993, pp.
25.J. Nelson,The Physics of Solar Cells, Imperial College Press, London: World Scientific Pub. Co., 2003.
26.Q. Zhang, C. S. Dandeneau, X. Zhou and G. Cao, "ZnO nanostructures for dye-sensitized solar cells," Adv. Mater., vol. 21, 2009, pp. 4087-4108.
27.H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, "Dye sensitized zinc oxide: aqueous electrolyte: platinum photocell," Nature, vol. 261, 1976, pp. 402-403.
28.A. Turkovic and Z. O. Crnjak, "Dye-sensitized solar cell with CeO2 and mixed CeO2SnO2 photoanodes," Sol. Energy Mater. Sol. Cells, vol. 45, 1997, pp. 275.
29.C. Cheng, J. Wu, Y. Xiao, Y. Chen, L. Fan, M. Huang, J. Ling, J. Wang, Z. Tang and G. Yue, "Polyvinyl pyrrolidone aided preparation of TiO2 films used in flexible dye-sensitized solar cells," Electrochim. Acta, vol. 56, 2011, pp. 7256-7260.
30.Y. Xiao, J. Wu, G. Yue, G. Xie, J. Lin and M. Huang, "The preparation of titania nanotubes and its application in flexible dye-sensitized solar cells," Electrochim. Acta, vol. 55, 2010, pp. 4573-4578.
31.K. Kim, G. W. Lee, K. Yoo, D. Y. Kim, J. K. Kim and N. G. Park, "Improvement of electron transport by low-temperature chemically assisted sintering in dye-sensitized solar cell," J. Photochem. Photobiol. A: Chem., vol. 204, 2009, pp. 144-147.
32.H. W. Chen, C. Y. Hsu, J. G. Chen, K. M. Lee, C. C. Wang, K. C. Huang and K. C. Ho, "Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods," J. Power Sources, vol. 195, 2011, pp. 6225-6231.
33.T. Miyasaka, M. Ikegami and Y. Kijitori, "Photovoltaic performance of plastic dye-sensitized electrodes prepared by low-temperature binder-free coating of mesoscopic titania.," J. Electrochem. Soc., vol. 154, 2007, pp. A455-A461.
34.F. Xu, M. Dai, Y. Lu and L. Sun, "Hierarchical ZnO nanowire-nanosheet architectures for high power conversion efficiency in dye-sensitized solar cells," J. Phy. Chem. C, vol. 114, 2010, pp. 2776-2782.
35.劉茂煌,奈米光電池,工業材料雜誌,第203期,2003,第93頁。
36.T. Horiuchi, H. Miuraa, and S. Uchida, "Highly-efficient metal-free organic dyes for dye-sensitized solar cells," Chem. Commun., 2003, pp.3036.
37.K. Hara, K. miyamoto, Y. Abe and M. Yanagida, "Electron transport in coumarin-dye-sensitized nanocrystalline TiO2 electrodes," J. Phy. Chem. C, vol. 109, 2005, pp. 23776.
38.S. Hwang, J. H. Lee, C. park, H. Lee, C. Kim, C. Park, M. H. Lee, W. Lee, J. Park, K. Kim, N. G. Park, and C. Kim, "A highly efficient organic sensitizer for dye-sensitized solar cells," Chem. Commun., 2007, pp.4887., pp.
39.A. Kay and M. Gratzel, "Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins," J. Phy. Chem., vol. 97, 1993, pp. 6272.
40.J. Ferber, M. Hilgendorff, A. P. Yartsev and V. Sundstrom, "Modeling of photovoltage and photocurrent in dye-sensitized titanium dioxide solar cells," J. Phy. Chem. B, vol. 105, 2001, pp. 4895.
41.M. Grätzel, "The story of solar electricity," Nature, vol. 403, 2000, pp. 363.
42.G.Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane, "A channel flow cell system specifically designed to test the effciency of redox shuttles in dye sensitized solar cells," Sol. Energy Mater. Sol. Cells, vol. 70, 2001, pp. 85-101.
43.林俊民,電化學沉積氧化鋅薄膜應用於可撓式染料敏化太陽能電池之研究,碩士論文,台北科技大學有機高分子研究所,台北,2012。.
44.S. O. Kasap, Optoelectronics and photonics: principles and practices, United Stated of America: pearson education inc, 2001.
45.E. Warburg, "Polarization capacity of platinum," Annalen der Physik, vol. 6, 1901, pp. 125-135.
46.J. E. B. Randles, "Kinetics of rapid electrode reactions," Discuss Faraday Soc., vol. 1, 1947, pp. 11.
47.劉邦淳,高效率半固態染料敏化太陽能電池之研究,碩士論文,國立清華大學工程與系統學研究所,2012。.
48.M. Zistler, P. Wachter, P. Wasserscheid, D. Gerhard, A. Hinsch, R. Sastrawan and H. J. Gores, "Comparison of electrochemical methods for triiodide diffusion coefficient measurements and observation of non-Stokesian diffusion behaviour in binary mixtures of two ionic liquids," Electrochim. Acta, vol. 52, 2006, pp. 161-169.
49.N. Papageorgiou, W. F. Maier and M. Grätzel, "An Iodine/Triiodide reduction electrocatalyst for aqueous and organic media," J. Electrochem. Soc., vol. 144, 1997, pp. 876-884.
50.Z. S. Wang, K. Sayama and H. Sugihara, "Efficient Eosin Y Dye-Sensitized Solar Cell Containing Br-/Br3-," J. Phy. Chem. B, vol. 109, 2005, pp. 22449-22455.
51.B. V. Bergeron, A. Marton, G. Oskam and G. J. Meyer, "Dye-Sensitized SnO2 Electrodes with Iodide and Pseudohalide Redox Mediators," J. Phy. Chem. B, vol. 109, 2005, pp. 937-943.
52.P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram and M. Grätzel, "Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts," Inorg. Chem., vol. 35, 1996, pp. 1168-1178.
53.M.Grätzel, "A Quasi-Solid-State Dye-Sensitized Solar Cell Based on a Sol-Gel Nanocomposite Electrolyte Containing Ionic Liquid," Chem. Mater., vol. 15, 2003, pp. 1825.
54.M.Grätzel, "A New Ionic Liquid Electrolyte Enhances the Conversion Efficiency of Dye-Sensitized Solar Cells," J. Phy. Chem. B, vol. 107, 2003, pp. 13280-13285.
55.M. W. S. Yanagida, H. Matsui, K. Okada, H. Usui, T. Ezure and N. Tanabe, "Dye-sensitized Solar Cells Using Nanocomposite Ion-gel," Fujikura Technical Review, 2005.
56.崔孟晉, "染料敏化太陽能電池電解質概述, " 工業材料雜誌, 2008, vol. 257, p.184。
57.P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar and M. Grätzel, "Gelation of Ionic Liquid-Based Electrolytes with Silica Nanoparticles for Quasi-Solid-State Dye-Sensitized Solar Cells," J. Am. Chem. Soc., vol. 123, 2003, pp. 1166-1167.
58.H. Usui, H. Matsui, N. Tanabe and S. Yanagida, "Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes," J. Photochem. Photobiol. A: Chem., vol. 164, 2004, pp. 97-101.
59.S. P. Mohanty and P. Bhargava, "Impact of isoelectric points of nanopowders in electrolytes on electrochemical characteristics of dye sensitized solar cells," J. Power Sources, vol. 218, 2012, pp. 174-180.
60.X. Wang, S. A. Kulkarni, B. I. Ito, S. K. Batabyal, K. Nonomura, C. C. Wong, M. Grätzel, S. G. Mhaisalkar, and S. Uchida, “Nanoclay gelation approach toward improved dye-sensitized solar cell efficiencies: An investigation of charge transport and shift in the TiO2 conduction band,” ACS Appl. Mater. Interfaces, vol. 5, no. 2, 2013, pp.444–450
61.S. J. Lue, Y. L. Wu, Y. L. Tung, C. M. Shih, Y. C. Wang, and J. R. Li, “Functional titanium oxide nano-particles as electron lifetime, electrical conductance enhancer, and long-term performance booster in quasi-solid-state electrolyte for dye-sensitized solar cells,” J. Power Sources, vol. 274, 2015, pp.1283–1291.
62.F. Cao, G. Oskam and C. Searson, "A Solid State, Dye Sensitized Photoelectrochemical Cell," J. Phy. Chem., vol. 99, 1995, pp. 17071-17073.
63.O. A. Ileperuma, M. A. K. L. Dissanayake and S. Somasundaram, "Dye-sensitised photoelectrochemical solar cells with polyacrylonitrilebased solid polymer electrolytes," Electrochim. Acta, vol. 47, 2002, pp. 2801-2807.
64.L. Weiying, K. Junjie, L. Xueping, F. Shibi, L. Yuan, W. Guiqiang and X. Xurui, "Quasi-solid-state nanocrystalline TiO2 solar cells using gel network polymer electrolytes based on polysiloxanes," Chin. Sci. Bull., vol. 48, 2003, pp. 646-648.
65.J. Wu, Z. Lan, D. Wang, S. Hao, J. Lin, Y. Huanga, S. Yin and T. Sato, "Gel polymer electrolyte based on poly(acrylonitrile-co-styrene) and a novel organic iodide salt for quasi-solid state dye-sensitized solar cell," Electrochim. Acta, vol. 51, 2006, pp. 4243-4249.
66.M. Li, S. Feng, S. Fang, X. Xiao, X. Li, X. Zhou and Y. Lin, "The use of poly(vinylpyridine-co-acrylonitrile) in polymer electrolytesfor quasi-solid dye-sensitized solar cells," Electrochim. Acta, vol. 52, 2007, pp. 4858-4863.
67.J. Wu, S. Hao, Z. Lan, J. Lin, M. Huang, Y.Huang, L. Fang, S. Yin and T. Sato, "A Thermoplastic Gel Electrolyte for Stable Quasi-Solid-StateDye-Sensitized Solar Cells," Adv. Funct. Mater., vol. 17, 2007, pp. 2645-2652.
68.Zhipeng Huo, Songyuan Dai, Kongjia Wang, Fantai Kong,Changneng Zhang, Xu Pan, Xiaqin Fang, "Nanocomposite gel electrolyte with large enhanced charge transport properties of an I3-/I- redox couple for quasi-solid-state dye-sensitized solar cells," Solar Energy Materials & Solar Cells vol. 91, 2007, p. 1959–1965.
69.Xing Guan Zhao, En Mei Jin, Hal-Bon Gu, "Increased charge transfer of PVDF-HFP based electrolyte by addition of graphite nanofiber and its application in dye-sensitized solar cells," Applied Surface Science, vol. 287, 15 December 2013, Pages 8-12.
70.P.A. Martins-Júnior,, C.E. Alcântara, R.R. Resende, and A.J. Ferreira, "Carbon Nanotubes: Directions and Perspectives in Oral Regenerative Medicine, "JOURNAL OF DENTAL RESEARCH, vol. 92, July 2013, pp. 575-583.
71.Ruxandra Vidu, Masoud Rahman, Morteza Mahmoudi, Marius Enachescu, Teodor D. Poteca and Ioan Opris, "Nanostructures: a platform for brain repair and augmentation," frontiers in SYSTEMS NEUROSCIENCE, vol. 8, 2014, pp.1-8.
72.Chin Yong Neo, Jianyong Ouyang, "Functionalized carbon nanotube-induced viscosity reduction of an ionic liquid and performance improvement of dye-sensitized solar cells," Electrochimica Acta, vol. 85, 2012, Pages 1–8.
73.Jian-Ging Chena, R. Vittala, Min-Hsin Yeha, Chia-Yuan Chenb, Chun-Guey Wub, Kuo-Chuan Ho, " Carbonaceous allotropes modified ionic liquid electrolytes forefficient quasi-solid-state dye-sensitized solar cells," Electrochimica Acta, vol. 130, 2014, Pages 587–593.
74.A. K. Geim and K. S. Novoselov, “The rise of grapheme,” Nature Materials, vol. 6, 2007, pp. 183-191.
75.B. Z. Jang and A. Zhamu, “Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review,” Journal of Material Science, vol. 43, 2008, pp. 5092-5101
76.Bencai Lin, Hui Shang, Fuqiang Chu, Yurong Ren, Ningyi Yuan, Baoping Jia, Shuai Zhang, Xiaomin Yu, Yingqiang Wei, Jianning Ding, "Ionic liquid-tethered Graphene Oxide/Ionic Liquid Electrolytes forHighly Efficient Dye Sensitized Solar Cells," Electrochimica Acta, vol. 134, 2014, Pages 209–214.
77.曾亭詔,石墨稀/氧化鋅奈米顆粒複合薄膜應用於染料敏化太陽能電池之研究,碩士論文,國立台北科技大學有機高分子所,2014。
78.喻映蓉,混摻奈米顆粒半固態電解質應用於長效型染料敏化太陽能電池之研究,碩士論文,國立台北科技大學有機高分子所,2014。
79.何偲瑜,一維二氧化鈦奈米結構之製備及染料敏化太陽能電池應用,博士論文,國立台北科技大學有機高分子所,2013。
80.D. P. MacWan, P. N. Dave, S. Chaturvedi, “A review on nano-TiO2 sol-gel type syntheses and its applications”, J. Mater. Sci. 46 (2011) 3669.
81.L.-H. Kao, T.-C. Hsu, H.-Y. Lu, “Sol–gel synthesis and morphological control of nanocrystalline TiO2 via urea treatment”, J. Colloid Interface Sci. 316 (2007) 160.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top