跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/02 05:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:龔晏嫺
研究生(外文):Yen-Hsien Kung
論文名稱:應用可變比例混合差分進化法 於三相鼠籠型感應電動機的設計
論文名稱(外文):Three-phase squirrel cage rotor induction motor design by variable scaling hybrid differential evolution
指導教授:邱機平邱機平引用關係
指導教授(外文):Ji-Pyng Chiou
口試委員:吳添保楊宗銘
口試委員(外文):Tian-bao WuTsung-Ming Yang
口試日期:2013-07-01
學位類別:碩士
校院名稱:明志科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:107
中文關鍵詞:定點設計可變比例混合差分進化法鼠籠型感應電動機
外文關鍵詞:fix-point designVSHDEsquirrel cage induction motor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:438
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出利用可變比例混合差分進化法進行 3 相、4 極、220 伏特、60赫玆、5馬力單鼠籠型感應電動機的設計,為了讓設計成果更加符合實際的鼠籠型感應電動機,因此,有關感應電動機各部分的電流、轉矩、滑差、磁通密度、功率因數、系統效率以及電動機的尺寸等條件均在本論文中進行探討。除此之外,亦同時探討感應電動機在起動以及運轉時的差異;本論文使用可變比例混合差分進化法來增加感應電動機最佳化設計的成效,為了驗證此感應電動機最佳化設計之成效,同時,與利用定點式(fix-point)設計進行比較。
This thesis uses a novel evolutionary algorithm, called variable scaling hybrid differential evolution (VSHDE) method, for the design of the 3-phase, 4-pole, 220-volt, 60-Hz and 5-hp squirrel cage induction motor. To realize the induction motor design, various constraints including the current, torque, slip, magnetic flux density, power factor, system efficiency, and the size of the induction motor are considered in this thesis. And, the starting and running characteristics are also investigated. To increase the performance of the optimal design, the novel evolutionary algorithm, i.e. VSHDE method, is used in this thesis. To demonstrate the optimal design of the squirrel cage induction motor, the computation results are compared with the fix-point design.
明志科技大學碩士學位論文指導教授推薦書 i
明志科技大學碩士學位論文口試委員會審定書 ii
明志科技大學學位論文授權書 iii
誌謝 iv
摘要 v
Abstract vi
目錄 vii
表目錄 x
圖目錄 xi
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的與方法 3
1.3章節概要 3
第二章 三相感應電動機的定點設計 4
2.1 指定特性規格 5
2.1.1電動機規格 5
2.1.2電動機設計等級 5
2.1.3繞組計算 7
2.2初步設計 9
2.2.1 電流密度 9
2.2.2 電裝載與磁裝載 11
2.2.3 輸出係數 12
2.2.4 佔積率 18
2.3三相鼠籠型感應電動機的設計計算 19
2.3.1 基本磁路分析公式 19
2.3.2 磁路計算 21
2.3.3 等效電路阻抗參數 34
2.4特性計算 43
2.4.1 功率與損失 44
2.4.2 定、轉子額定電流 46
2.4.3 滿載特性分析 48
2.4.4 起動特性分析 51
2.4.5 起動阻抗參數 52
2.4.6 無載特性分析 55
2.4.7 無載阻抗參數 56
第三章 三相鼠籠型感應電動機的設計最佳化 57
3.1感應電動機設計最佳化 58
3.2電磁設計參數 59
3.3分析 60
3.4合成 60
3.5設計變數 61
3.6目標函數 63
3.7限制條件 64
3.7.1最大轉矩 64
3.7.2起動轉矩 64
3.7.3滿載功率因數限制 64
3.7.4滿載效率限制 64
3.7.5起動相電流限制 65
3.7.6輸出係數限制 65
3.7.7槽寬、內徑與積厚限制 65
3.7.8磁通密度限制 66
3.7.9電流密度限制 66
3.7.10銅佔積率限制 66
3.7.11磁通密度波形因數限制 66
3.7.12定、轉子側漏抗分配 66
3.7.13輸出功率誤差率限制 66
3.7.14總磁通量限制 67
3.7.15滿載滑差 67
3.8 結束(特性滿足規格) 67
第四章 可變比例混合差分進化法 68
第五章 結論與展望 73
5.1 結論 73
5.2 展望 74
參考文獻 82
附錄A符號索引 87
附錄B 軛部磁路長度修正係數 102
附錄C 圓底槽槽形因數 104
附錄D 平底槽槽形因數 105
附錄E 閉口槽槽形因數 106
附錄F 相帶漏抗常數 107
附錄G 起動時曲折漏磁電抗校正因數 108

[1]K. Price and R. Storn, “Minimizing the real functions of the ICEC ‘96 contest by differential evolution”, IEEE Conference on Evolutionary Computation, pp. 842–844, Nagoya, 1996.
[2]K. Pravesh, P. Millie and V. P. Singh, “Two Enhanced Differential Evolution Algorithm Variants for Constrained Engineering Design Problems”, IJCA Proceedings on International Conference on Recent Advances and Future Trends in Information Technology, 2012.
[3]S. Das, A. Abraham, U. Chakraborty and A. Konar, “Differential evolution using a neighborhood based mutation operator”. IEEE Transaction of Evolutionary Computing, 2009.
[4]A. Abraham, “Hybrid differential artificial bee colony algorithm”, Journal of Computational and Theoretical Nanoscience, vol. 9, pp1–9, 2012.
[5]V.P. Sakthivel and S. Subramanian, “Using MPSO algorithm to optimize three-phase squirrel cage induction motor design”, Emerging Trends in Electrical and Computer Technology (ICETECT), International Conference on Digital Object Identifier, 2011.
[6]J. Vesterstrom and R. Thomson, “A Comparative Study of Differential Evolution, Particle Swarm Optimization, and evolutionary algorithms on numerical benchmark problems”, Proceeding of the 6th Congress Evol. Comput, Piscataway, IEEE Press, vol. 2, pp. 1980–1987, 2004.
[7]J. P. Chiou and F. S. Wang, “Hybrid method of evolutionary algorithms for static and dynamic optimization problems with application to a fed-batch fermentation process,”Computers and Chemical Engineering vol.23, 1999.
[8]M. Andrew and L. Sutton, “Differential Evolution and Non-separability: Using selective pressure to focus search”, GECCO, London, England, 2007.
[9]A. K. Qin, V. L. Huang and P. N. Suganthan, “Differential evolution algorithm with strategy adaptation for global numerical optimization”, IEEE Trans. Evol. Comput, vol. 13, no. 2, pp. 398–417, 2009.
[10]T. Wild, “Constrainedoptimizationbased on modified differential evolution algorithm,” Intelligent Knowledge-Based Models and Methodologies for Complex Information Systems, vol. 194, pp171–208, 2012.
[11]M. Omran, ”CODEQ: an efficient meta-heuristic for continuous global optimization. Journal, International Journal of Metaheuristics archive”, vol. 1 Issue 2, pp. 108-131, 2010.
[12]J. P. Chiou, C. W. Lo and C. F. Chang, “Variable Scaling Hybrid Differential Evolution for Power System Applications”, International Conference on Innovation and Management, Sapporo, Japan, 2013.
[13]J. P. Wieczorek, O. Gol and Z. Michalewicz, “An evolutionary algorithm for the optimal design of induction motors”, IEEE transactions on magnetics, vol. 34, no. 6, 1998.
[14]J. Faiza and M. Sharifian, “Optimal design of three phase induction motors and their comparison with a typical industrial motor Original Research Article”, University of Tabriz, Tabriz, Iran.
[15]J. Appelbaum, I. A. Khan, E. F. Fuchs and J. C. White, “Optimization of Three-Phase Induction Motor Design Part I: Formulation of the Optimization Technique”, IEEE Transactions on Energy Conversion, vol. EC-2, no. 3, 1987
[16]R. Fri, E. F. Fuchs and H. Huang, “Comparison of two optimization techniques as applied to three-phase induction motor design”, no. 4, December 1989. IEEE Power Engineering Society for presentation at the IEEE/PES Winter Meeting, 1989.
[17]J. Appelbaum, I.A. Khan, E.F. Fuchs and J.C. White, “Optimization of Three-Phase Induction Motor Design Part II: The Efficiency and Cost of an Optimal Design”, IEEE Transactions on Energy Conversion, vol. EC-2, no. 3, 1987
[18]M. Poloujadoff, E. Christaki and C. Bergmann, “An opportunity to identify and solve conflict problems in optimization”, IEEE Transactions on Energy Conversion, vol. 9, no. 4, 1994.
[19]C. Mehmet and A. Ramazan, “Design optimication of induction motor by genetic algorithm and comparision with existing motor”, Mathematical and Computational Applications, vol. 11, no. 3, pp. 193-203, 2006.
[20]Z. Zhang, F. Profumo and A. Tenconi, “Improved design for electric vehicles induction motors using optimization procedure”, Electrical Machines and Drives, Conference Publication , no. 4 12, 7 1-13 , 1995.
[21]A. Krishnamoorthy and K. Dharmalingam, “Multi-objective design optimization of three phase induction motor using Hooke and Jeeves method &GA”, Recent Advances in Space Technology Services and Climate Change (RSTSCC), 2010.
[22]Y. D. Chun, P. W. Han, J. H. Choi and D. H. Koo, “Multiobjective Optimization of Three-Phase Induction Motor Design Based on Genetic Algorithm”, IEEE Proceedings of the International Conference on Electrical Machines, 2008.
[23]L. Han, H. Li, J. Li and J. Zhu, “Optimization for induction motor design by genetic algorithm”. Australasian Universities Power Engineering Conference (AUPEC 2004) 26-29, Brisbane, Australia, 2004.
[24]G. T. Bellarmine, R. Bhuvaneswari and S. Subramanian, “Radial Basis Function Network based Design Optimization of Induction Motor”, SoutheastCon, Proceedings of the IEEE, 2005.
[25]J. Holland, “Adaptation in Natural and Artifical Systems”, University of Michigan Press, 1975.
[26]I. Boldea and S. Nasar, “The Induction Machines Design Handbook”, Second Edition, chapter 8, 2013.
[27]何清佳,”電機設計”,全華圖書公司,台北,1984年。
[28]梁明祥,”電機設計”,文笙圖書公司,台北,1997年。
[29]楊育昇,”三相鼠籠型感應電動機之設計實例與全盤量測的分析研究”,明志科技大學電機工程研究所碩士論文, 2010年。
[30]吳添保,”三相感應電動機之設計實例與全盤量測的分析研究”,台灣科技大學電機工程研究所碩士論文,1986年。
[31]呂理雄、何文德,”電機設計(上)”,全華圖書公司,台北,1987年。
[32]傅豐禮、唐孝鎬,”異步電動機設計手冊 第二版”,機械工業出版社,北京,2007年。
[33]吳添保,”三相雙鼠籠型感應電動機的設計與數學模式”,馬達科技數位學習網,馬達電子報(ISSN 1990-4266)、第263期技術專欄,97年01月09日。
[34]吳添保,”三相雙鼠籠型感應電動機的數學模式與設計實例”,馬達科技數位學習網,馬達電子報(ISSN 1990-4266)、第370期技術專欄,第1~14頁,99年02月10日。
[35]C. G. Veinott, “Theory and design of small induction motors”, McGraw-Hill, New York, pp. 328~343, 1959.
[36] M. Liwschitz著,程福秀譯,“電機設計與計算”,五洲出版社,1976年。
[37]劉昌煥,張憲中,“計算機輔助三相感應電動機設計與分析”,中國工程學刊第八卷第一期, 1985年。
[38]中國國家標準(CNS),“CNS 2934 C4088 “低壓三相鼠籠型感應電動機(一般用)”, 92年09月09日修訂。
[39]T. Efraim and A. JAYE, “Decision support systems and intelligent systems”, Prenticehall, 2005.
[40]H. Mayr, J. Lazansky, G. Quirchmayr and P. Vogel, “Database and expert systems applications: 12th international conference”, Springer, 2001.
[41]林書延,”應用調整型比例分配機制於多目標差分演算法”,國立東華大學電機工程研究所碩士論文,2012年。
[42]T. Back and H. Schwefel, “An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation”, 1993.
[43]T. Back, F. Hoffmeister and H. Schwefel, “A survey of evolution strategies. Proceedings of the Fourth International Conference on Genetic Algorithms”, 1991.
[44]P. H. Chen and H. C. Chang, “Large-scale economic dispatch by genetic algorithm”. IEEE Trans. on Power Systems, 1995.
[45]J. P. Chiou and F. S. Wang, ”Estimation of monod parameters by hybrid differential evolution. Bioprocess and Biosystems Engineering”, 1995.
[46]J. P. Chiou, C. F. Chang and C. T. Su, “Variable scaling hybrid differential evolution for solving network reconfiguration of distribution systems” IEEE Trans. Power Syst, 2005.
[47]J. Y. Fan and J. D. McDonald, “A practical approach to real time economic dispatch considering unit’s prohibited operating zones”. IEEE Trans. on Power systems, 2005.
[48]Z. L. Gaing, “Particle swarm optimization to solving the economic dispatch considering the generator constraints”. IEEE Trans. on Power Systems, 2003.
[49]F. N. Lee and A. M. Breiohi, “Reserve constrained economic dispatch with prohibited operating zones”. IEEE Trans. on Power Systems, 1993.
[50]W. M. Lin and C. C. Fung, “An improved tabu search for economic dispatch with multiple minima”. IEEE Trans. on Power Systems, 2002.
[51]W. M. Lin, F. S. Cheng and M. T. Tsay, “Nonconvex economic dispatch by integrated artificial intelligence”. IEEE Trans. on Power Systems, 2001.
[52]Y. C. Lin, K. S. Hwang, F. S. Wang, ”Plant scheduling and planning using mixed-integer hybrid differential evolution with multiplier updating. Congress on Evolutionary Computation”, San Dego, 2000.
[53]Z. Michalewicz, “Genetic algorithms + data structures = evolution programs”. 3rd ed., Springer, New York, 1999.
[54]J. B. Park, Y. W. Jeong and J. R. Shin, “An improved particle Swarm Optimization for nonconvex economic dispatch problems”, IEEE Trans. on Power Systems, 2010.
[55]K. V. Price, ”Differential evolution vs. functions of the 2nd ICEC”. IEEE Conference on Evolutionary Computation, 153-157, Indianapolis. 2009.
[56]K. Y. Lee and F. F. Yang, “Optimal Reactive Power Planning Using Evolutionalry Algorithms: A Comparative Study for Evolutionary Programming, Evolutionary”, IEEE Trans. on Power Systems, vol. 13, no. 1, 1998.
[57]D. Toro著,吳榮隆等編譯,“電機機械”,高立出版社,1996年。
[58]J. H. Kuhlmann著,張健民等編譯,“電機設計”,復漢出版社,1986年。
[59]林義讓,“電機機械”,文笙圖書公司,台北,1997年。
[60]S. Das and P. Nagaratnam, “Differential evolution using a neighborhood based mutation operator”, IEEE Transactions on Evolutionary Computation, vol. 15, no. 1, 2011.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top