跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/29 01:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳建成
研究生(外文):Chien-Cheng Chen
論文名稱:布拉格光纖光柵振動感測器設計
論文名稱(外文):The Design of Fiber Bragg Grating Vibration Sensors
指導教授:陳茂雄陳茂雄引用關係
指導教授(外文):Mao-Hsiung Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:151
中文關鍵詞:振動感測器解調不平衡式馬赫-詹德干涉儀布拉格光纖光柵
外文關鍵詞:demodulationimbalance Mach-Zehnder interferometerFiber Bragg Gratingvibration sensor
相關次數:
  • 被引用被引用:29
  • 點閱點閱:521
  • 評分評分:
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:3
布拉格光纖光柵的反射波長對應變和溫度變化有敏感的特性,本論文即利用此特性,在恆溫下以布拉格光纖光柵為感測頭,來量測振動頻率,因為物體的振動會使得布拉格光纖光柵產生弦波式的應變,此振動應變會使得光纖中的導光產生些微的相位差,利用干涉儀並經解調系統即可測得此相位差,進而求得振動頻率。本論文使用不平衡式馬赫—詹德干涉儀及布拉格光纖光柵來做為感測的架構,利用不同路徑的兩道光,因經過振動源需不同的時間,造成兩道光的相位差,再經由解調電路解出因振動訊號所造成的相位差,進而求得振動頻率。
本實驗架構為一新構型布拉格光纖光柵振動感測器,與原構型布拉格光纖光柵感測器比較,其訊號強度大於4dB左右,相較於傳統加速規測量振動訊號,其優點為易於實際的佈放,並且為全光路設計,對低頻振動頻率量測準確度可達99.971%,並且系統的動態範圍可達45dB以上,比原構型感測架構大9dB左右,最小可測訊號可達 0.0075rad。
The reflection wavelength of Fiber Bragg Grating is sensitive to the strain and the temperature’s variation. We use Fiber Bragg Grating to be the sensor head and measure the vibration frequency in constant temperature environment. The vibration of object can make the sinusoidal strain to Fiber Bragg Grating, and it will make a little phase difference to the light of the fiber. Using the interferometer and demodulation system, we can measure the phase difference and vibration frequency. Our sensor configuration is made up of imbalance Mach-Zehnder interferometer and Fiber Bragg Grating. The two light of different path need different time to pass through the vibration source, so they make phase difference. We use the demodulation circuit to measure the phase difference causing by vibration and get the vibration frequency.
Our experiment structure is a novel configuration of Fiber Bragg Grating vibration sensor. Its intensity of signal is larger than the intensity of original sensor configuration, about 4dB.The novel sensor configuration is easier spread than traditional accelerometer and it is designed of all fiber. The accuracy for measuring low frequency vibration is 99.971%. The Dynamic range of the system is more than 45dB. It is larger than the dynamic range of original sensor configuration, about 9dB. The smallest signal that can be measured is about 0.0075rad.
目 錄
頁次
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
符號表 xii
第一章 簡介
1.1研究背景與文獻回顧 1
1.2研究動機 3
1.3 論文結構 4
第二章 光纖暨光柵基本介紹及感測原理分析
2.1光纖基本介紹 5
2.1.1結構 5
2.1.2傳遞原理 5
2.1.3傳遞損失 6
2.1.4分類 7
2.2光纖感測原理分析 8
2.2.1感測因子 8
2.2.2干涉現象 9
2.3光纖光柵基本介紹 10
2.3.1光纖光柵種類 10
2.3.2光纖光柵製作 12
2.3.3布拉格光纖光柵 13
2.3.4光纖光柵多工感測器 15
第三章 布拉格光纖光柵振動感測系統
3.1振動感測分析 18
3.1.1 振動介紹 18
3.1.2 振動感測器 19
3.2 布拉格光纖光柵振動感測系統探討 21
3.2.1 新構型布拉格光纖光柵振動感測器架構 22
3.2.2 實驗架構之數學分析 26
3.2.3 訊號處理系統 29
3.2.4 系統訊號強度分析 35
3.2.5 系統瓊斯矩陣光路分析 38
3.3 實際振動感測系統 39
3.3.1 實際振動感測器架構-直流(DC)小馬達 39
3.3.2 實際振動感測器架構-直流按摩器 40
3.4 多工感測系統 40
3.4.1 同時感測兩個振動源 40
3.4.2 同時感測三個以上振動源 46
第四章 實驗與結果討論
4.1 平板型PZT模擬振動源的量測 50
4.1.1 新構型振動感測架構之量測 50
4.1.2 原構型振動感測架構之量測 52
4.1.3 新構型和原構型振動感測架構之比較 53
4.2 實際振動源的量測 57
4.2.1 DC-3V小馬達振動量測 57
4.2.2 傳統加速規振動量測 59
4.2.3 FBG振動感測架構和傳統加速規之比較 60
4.2.4 DC-1.5V按摩器振動量測 61
4.3 多工量測 62
4.3.1 同時量測兩個振動源-模擬的振動源 62
4.3.2 同時量測兩個振動源-實際的振動源 63
4.3.3 新構型多工感測系統和其他多工感測系統之比較 65
4.4 影響訊號強度的變因 67
4.4.1 模擬振動訊號的電壓強度 67
4.4.2 FBG反射光的訊號強度 68
4.4.3 PZT相位調變器的調變頻率和相位振幅 69
第五章 結論與未來展望
5.1 結論 71
5.1.1 新構型和原構型架構量測之比較 71
5.1.2 新構型感測架構和傳統加速規量測之比較 71
5.1.3 新構型多工感測架構 72
5.2 未來展望 73
5.2.1 系統性能的改善 73
5.2.2 未來期許 74
參考文獻 76
附圖 79
附表 124
附錄 138
中英文對照表 148
作者簡介 151
參考文獻
1.曾冠樺,光纖分佈式偵漏系統之液體管線洩漏量測,pp.27-29,國立中山大學,電機工程學 系碩士論文,高雄市,2002.
2.A. D. Kersey, “A Review of Recent Developments in Fiber Optic Sensor Technology, ” Optical fiber Technology, Vol. 2, pp.291-317, 1996.
3.Ashish. M. Vengsarkar, Kent A. Murphy, Tuan A. Tran, and Richard O. Claus,“ Novel Fiber Optic Hydrophone for Ultrasonic Measurements, ” IEEE Ultrasonics Sympostum, pp.603-606, 1988.
4.Fco Javier Madruga, Daniel González, Victor Álvarez, Juan Echevarria, Olga M. Conde, José Miguel, “ Field Test of Non Contact High Temperature Fiber Optic Transducer in Asteel Production Plant, ” IEEE, pp.483-486, 2002.
5.J. Chen, and W. J. Bock, “A Novel Fiber-optic Pressure Sensor Using 1300nm Optical Components, ” IEEE Instrumentation and Measurement Technology Conference, pp.1743-1746, 2002.
6.J. Mora, A. Diez, J. L. and M. V. Andrés, “A Magnetostrictive Sensor Interrogated by Fiber Gratings for DC-Current and Temperature Discrimination, ” IEEE Photonics Technology Letters, Vol. 12, No. 12, 2000.
7.Horatio Lamela Rivera, Jose A. Garcia-Souto, and J. Sanz, “Measurement of Mechanical Vibrations at Magnetic Cores of Power Transformers with Fiber-Optic Interferometric Intrinsic Sensor, ” IEEE Journal on Selected Topics in Quantum Ectronics , Vol. 6, No. 5, 2000.
8.Wei He, Hongbo Cheng, Jiachun Mei, and Desheng Jiang, “Direct Measurement of Strain-Optic Effect, ” IEEE, pp.171-173, 2002.
9.Gang-Chih Lin, Likam Wang, C. C. Yang, M. C. Shih, and T. J. Chung, “Thermal Performance of Metal-Clad Fiber Bragg Grating Sensors, ” IEEE Photonics Technology Letters, Vol. 10, No. 3, pp.406-408, 1998.
10.Xiangkai Zeng, Yunjiang Rao, Yiping Wang, Zenpling Ran and Tao Zhu, “Transverse Load, Static Strain, Temperature and Vibration Measurement, ” IEEE, pp.199-202, 2002.

11.Andrea Melloni, Marco Chinello, and Mario Martinelli, “All-Optical Switching in Phase-Shifted Fiber Bragg Grating, ” IEEE Photonics Technology Letters, Vol. 12, No. 1, pp.42-44, 2000
12.Alan D. Kersey, Michael A. Davis, Heather J. Patrick, Michel LeBlanc, K. P. Koo, C. G. Askin, M. A. Putnam, and E. Joseph Friebele, “Fiber Grating Sensors, ” Journal of Lightwave Technology, Vol. 15, No. 8, 1997.
13.Erric Udd, Fiber Optical Sensors, pp.273-274, John Wiley and Sons, Inc., New York, 1991.
14.K. O. Hill, Y. Fujii, D. C. Johnson, and B, Kawasaki, “Photosensitivity in Optical Fiber Waveguides : Application to Reflection Fiber Fabrication,” Appl. Phys. Lett. 32(10), p647, 1978.
15.K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson and J. Albert, “Bragg Gratings Fabricated in Monomode Photosensitive Optical Fiber by UV Exposure Though a Phase Mask, ” Appl. Phys. Lett. 62(10), p1035, 1993.
16.W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber Bragg Grating Sensor, ” in Proc. SPIE Fiber Optic & Laser Sensors VII, Vol. 1169, p98, 1989.
17.林詠彬,光纖光柵感測器於土木結構應用之研究,pp.49-58,國立台灣大學土木工程研究所碩士論文, 2000.
18.邱宗炫、黃裕文、夏中和, “光纖光柵應變感測器之溫度與膠合效應之研究, ”科儀新知第19卷1期, pp.21-23, 1997.
19.Ying Zhang, Dejun Feng, Zhiguo Liu, Zhuanyun Guo, Xiaoyi Dong, K. S. Chiang, and Beatrice C. B. Chu, “High-Sensitivity Pressure Sensor Using a Shielded Poymer-Coated Fiber Bragg Grating, ” IEEE Photonology Letters, Vol. 13, No. 6, 2001.
20.Jaehoon Jung, Hui Nam, Byoungho Lee, Jae Oh Byun, and Nam Seong Kim, “ Fiber Bragg Grating Temperature Sensor with Controllable Sensitivity, ” Applied Optics, Vol. 38, No. 13, 1999.
21.Eric Udd, Fiber Optical Sensors, pp.445-449, John Wiley and Sons, Inc., New York, 1991.
22.William T. Thomson, Theory of Vibration with Application, Prentice Hall, 1998.
23.劉承揚,小波理論應用於結構自然頻率與阻尼比分析之研究, pp.59-65,國立成功大學造船暨船舶機械工程研究所碩士論文, 2001.
24.Joseph T. V. , Laser Electronics, Prentice-Hall International Inc., pp.207-223, 1995.
25.Erric Udd, Fiber Optical Sensors, pp.277-278, John Wiley and Sons, Inc., New York, 1991.
26.Wuu-Wen Lin, Sung-Tsun Shih, Mao-Hsiung Chen, and Shih-Chu Huang, “The Transfer Functions of PZT Phase Modulators in Optical Fiber Sensors, ”Proc. Natl. Sci. Counc. ROC(A)., Vol. 18, No. 6, pp.570-575, 1994.
27.施敏升,壓電致動器與感測器之分析與研究,pp.16-40, 私立中原大學,機械工程學系碩士論文,台北市, 2002.
28.謝彥吏,馬克-詹德與桑克干涉儀混合式光纖偵漏系統之性能提昇,pp.21-22,國立中山大學,電機工程學系碩士論文,高雄市, 2001.
29.謝志文,壓電陶瓷最大輸入電壓,寰辰科技股份有限公司,桃園縣, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top