跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/29 23:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾紳睿
研究生(外文):Shen Jui Tseng
論文名稱:多功能磁性奈米藥物釋放系統於體外血栓溶解與抗凝血之研究
論文名稱(外文):In vitro thrombolytic and anti-coagulation synergy therapy of multifunctional magnetic nanodrug delivery system
指導教授:華沐怡
指導教授(外文):Mu Yi Hua
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
論文頁數:91
中文關鍵詞:四氧化三鐵Urokinase低分子量肝素 (Enoxaparin)聚苯胺血栓溶解
外文關鍵詞:Fe3O4UrokinaseLow Molecular Weight Heparin (Enoxaparin)polyanilinethrombolytic
相關次數:
  • 被引用被引用:1
  • 點閱點閱:618
  • 評分評分:
  • 下載下載:103
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用具有核殼結構的磁性奈米粒子作為磁性奈米載體(Magnetic Nano Carriers MNCs),再經化學反應與酸摻雜法將血栓溶解與抗凝血二種藥物鍵結在 MNCs上,生成兼具磁導、血栓溶解與抗血液凝結功效的磁性奈米新藥。此新藥的核層材料的製備是在水溶液環境下以共沉澱法合成具有超順磁性奈米級四氧化三鐵;殼層材料以化學法改質聚苯胺使其側鏈具有COONa官能基的導電高分子poly[aniline-co-sodium N-(1-one-butyric acid) aniline] (SPAnNa),在鹽酸水溶液中將SPAnNa包覆在磁性四氧化三鐵表面,成為本論文之MNCs,平均粒徑為22 nm,殼層之-COONa經鹽酸反應成-COOH,-COOH官能基濃度為 15.5×10-5 mmol/mg MNCs。利用化學法將血栓溶解藥物 (尿激酶,Urokinase,UK) 接枝在MNCs上 (UK/MNCs),接枝率為 55,470 U/mg MNCs。由於SPAnNa具有酸摻雜特性,可被H+-型抗凝血藥物 (低分子量肝素,Enoxaparin,Ex) 以酸摻雜的方式與UK/MNCs結合,生成兼具磁導、血栓溶解與抗血液凝結之新型磁性奈米藥物 (UK-Ex/MNCs),由細胞實驗證實MNCs 無明顯的細胞毒性。在體外靜態血栓溶解實驗,血栓溶解的效果依序為藉由磁導標靶之UK/MNCs>無磁導標靶UK/MNCs>無磁導標靶MNCs>磁導標靶MNCs,其中磁導標靶之UK/MNCs比無磁導標靶UK/MNCs的血栓溶解效果快1.62倍。在模擬血液流動的動態血栓溶解實驗,不同的血漿流速以及藥物磁導的位置均會影響血栓溶解效果,而UK/MNCs與單純使用UK的組別比較起來均呈現較佳的血栓溶解效果。在體外的血液抗凝結實驗中,純血液組和血液只添加 MNCs的組別經靜置三分鐘都呈現凝固狀態,而單純使用Ex 或 UK-Ex/MNCs者,兩組靜置八分鐘仍維持血液流動狀態,證明了本論文成功合成的新藥UK-Ex/MNCs兼具磁導、血栓溶解與抗血液凝結功效,未來將利用動物實驗更進一步驗證其在體內之血栓溶解與抗凝血的效果。
In this study, we designed a magnetic nano-carrier (MNC) for drug delivering, which composed of conductive polymer SPAnH as a shell and Fe3O4 as a core to form shell-core structure MNC and exerted superparamagnetic particularity. The average diameter of MNCs was 22 nm. The –COOH groups of MNCs was up to 15.5 × 10-5 mmol per mg of MNCs and the bio-conjugation of urokinase by covalent bonding on MNCs (UK/MNCs) was up to 55,470 U per mg of MNCs. Due to acid doping properties of SPAnH, acid-based enoxaparin was easily and quickly bound on UK/MNCs to form a novel nanomedicine (UK-Ex/MNCs), which containing magnetic targeting, thrombolysis, anti-coagulation and excellent biocompatibility. In vitro thrombolysis of static test, the magnetic targeting thrombolytic efficiency of UK/MNCs was 1.62 fold than that without magnetic targeting. In the dynamic flowing system in glass tube, we found the thrombolysis efficiencies of magnetic guiding UK/MNCs varied with the flow rates and the positions of applied magnetic field. The thrombolysis efficiencies of magnetic guiding UK/MNCs was much better than free urokinase. In vitro anti-coagulation human blood test showed that the coagulation of blood was improved from 1 min to 8 min when UK-Ex/MNCs were added. In summary, we have developed a novel nanomedicine of UK-Ex/MNCs which exhibits magnetic targeting, thrombolysis and anti-coagulation performances. We will further investigate the in vivo thrombolysis efficiencies of UK-Ex/MNCs in rat model in the near future.
指導教授推薦書
口試委員審定書
國家圖書館授權書 iii
長庚大學授權書 iv
致謝 v
中文摘要 vi
英文摘要 viii
目錄 x
第一章 緒論 1
前言 1
研究目的 3
第二章 文獻回顧 5
2-1 血栓之簡介 5
2-1-1 動脈血栓 5
2-1-2 靜脈血栓 5
2-1-3 微血管血栓 6
2-2 溶血栓藥物簡介 6
2-2-1組織型纖溶酶原活化劑 (Tissue plasminogen activators,t-PA) 6
2-2-2 鏈激酶 (Streptokinase) 6
2-2-3尿激酶 (Urokinase) 7
2-2-4阿尼普酶 (Anistreplase) 7
2-3 抗凝血藥物簡介 7
2-3-1 肝素 (Heparin) 7
2-3-2 低分子量肝素 (LMWH) 8
2-4 導電高分子簡介 9
2-5 聚苯胺簡介 9
2-6 聚苯胺之合成 10
2-6-1 化學法 10
2-6-2 電化學法 10
2-7 聚苯胺改質在生醫發展及應用 11
2-8 可溶性聚苯胺衍生物 15
2-8-1 環取代聚苯胺 15
2-8-2氮上取代聚苯胺 17
2-9 聚苯胺結構與物性分析 20
2-9-1 聚苯胺之紫外光/可見光 (UV-Vis)可見光譜分析 20
2-9-2 聚苯胺之紅外線 (IR)光譜分析 21
第三章 實驗內容 23
3-1 實驗藥品 23
3-2 藥品純化 24
3-3 材料合成 24
3-3-1 超順磁性奈米粒子 (Fe3O4) 之合成 24
3-3-2 合成Polyaniline (PAn) 25
3-3-3 合成導電高分子SPAnNa 25
3-3-4 製備超順磁性奈米載體 27
3-4 磁性奈米藥物的製備 27
3-4-1 溶血栓藥物與磁性奈米載體的接枝 (UK/MNCs) 27
3-4-2 抗凝血藥物摻雜磁性奈米載體 (Ex/MNCs) 28
3-4-3 製備溶血栓及抗凝血磁性奈米藥物 (UK-Ex/MNCs) 29
3-5 磁性奈米藥物接枝率和活性分析 30
3-5-1 UK接枝率分析方法 30
3-5-2 UK 活性分析方法 30
3-5-3 Ex 摻雜劑量分析 31
3-6 細胞毒性測試 31
3-6-1 XTT細胞毒性分析 31
3-6-2 共聚焦顯微鏡細胞存活分析 32
3-7 磁性奈米藥物體外溶栓及抗凝血方法 32
3-7-1 靜態溶血栓 32
3-7-2 動態溶血栓 33
3-7-3 體外凝血測試 34
3-8 儀器設備 34
第四章 超順磁性奈米藥物載體結構鑑定與體外溶血栓與抗凝血治療之探討 38
4 結構鑑定與物性分析 38
4-1 穿透式電子顯微鏡分析 38
4-2 粒徑分析 39
4-3 超導量子干涉磁化儀分析 40
4-4 X-射線繞射儀分析 41
4-5紅外線光譜儀分析 42
4-6 不同固含量比例導電高分子包覆磁性奈米粒子 44
4-7 Ex 摻雜磁性奈米載體之鑑定 46
4-8 藥物接枝率及活性分析 50
4-9磁性奈米藥物熱穩定性及酵素動力學分析 52
4-10 細胞毒性測試 55
4-11 靜態體外溶血栓測試 57
4-12 動態體外溶血栓測試 59
4-13 體外抗凝血測試 60
第五章 結論 63
參考文獻 66

圖目錄
Fig 3-3-3 Structure of SPAnNa 26
Fig 3-4-1 Illustrate of MNCs and UK/MNCs 28
Fig 3-4-2-1 Structure of enoxaparin 29
Fig 3-4-2-2 Illustrate of MNCs and Ex/MNCs 29
Fig 3-4-3 Illustrate of MNCs, Ex/MNCs and UK-Ex/MNCs 30
Fig 3-7-2 動態體外血栓溶解裝置製圖 34
Fig 4-1 TEM of MNPs and MNCs 39
Fig 4-2 Particle Size of MNPs and MNCs 40
Fig 4-3 SQUID of MNPs and MNCs 41
Fig 4-4 X-ray diffraction of MNPs, MNCs and SPAnNa 42
Fig 4-5 FT-IR spectra at room temperature of MNPs, SPAnNa, MNCs, UK, UK/MNCs, Ex, Ex/MNCs 44
Fig 4-6-1 Calibration curve of TBO (n=4) 45
Fig 4-6-2 TBO assay -COOH of MNCs (n=4) 46
Fig 4-7-1-1 EPR analysis of SPAnNa mixed with acid-base Ex 48
Fig 4-7-1-2 The relationship between Spin density and ΔHpp 48
Fig 4-7-2 Ultraviolet spectrophotometer analysis of water-undoped SPAnNa, SPAnNa mixed with different dose acid-base Ex 49
Fig 4-8-1 Calibration curve of UK, n=4 51
Fig 4-8-2 Calibration curve of UK activity, n=4 51
Fig 4-8-3 Quantification and activity of UK/MNCs, n=4 52
Fig 4-9-1 Storage stability of free UK (black) and UK/MNCs (red) at 4 °C, free UK (blue) and UK/MNCs (green) at 37 °C 53
Fig 4-9-2 Lineweaver-Burk plots of free UK (black line) and UK/MNCs (red line) at 25 °C 54
Fig 4-10-1 HUVEC proliferation of (A) co-cultured with (I) free urokinase. (II) MNCs. (III) UK/MNCs. (IV) UK/MNCs with external magnetic field 56
Fig 4-10-2 Fluorescence microscopy for HUVEC 57
Fig 4-11-1 Thrombolysis of in vitro for 30 minutes 58
Fig 4-11-2 The thrombolysis efficiency as measurement of hematin by ultraviolet spectrophotometer 59
Fig 4-12 The thrombolysis with flow of different magnetic distance for clot, flow rate of platelet-poor plasma with 0.5 mL/min (left), flow rate with 1.5 mL/min (middle), flow rate with 2.5 mL/min (right) 60
Fig 4-13-1 Calibration curve of enoxaparin inhibition factor Xa, n=4 62
Fig 4-13-2 Test anti-coagulation of fresh blood mixed DI-water (first vial), MNCs (second vial), free Ex (third vial), UK-Ex/MNCs (fourth vial) 62
[1] 黃柏穎,〈另類腦中風-大腦靜脈栓塞〉,《高醫醫訊月刊》,第27卷,第8期,97年。
[2] H. Kempe, M. Kempe, “The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy”, Biomaterials, 31, 9499-9510, (2010).
[3]B. Sumer, J. Gao, “Theranostic nanomedicine for cancer”, Nanomedicine, 3, 137-140, (2008).
[4]D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, R Langer, “Nanocarriers as an emerging platform for cancer therapy”, Nature nanotechnology, 2, 751-760, (2007).
[5]B.V.D. Broek, N. Devoogdt, A. D’Hollander, et al, “Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy”, ACS nano, 5, 4319-4328, (2011).
[6]D. Wang, J. Qian, S. He, et al, “Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging”, Biomaterials, 32, 5880-5888 (2011).
[7]N. V. Nukolova, H.S. Oberoi, S.M. Cohen, et al, “Folate-decorated nanogels for targeted therapy of ovarian cancer”, Biomaterials, 32, 5417-5426, (2011).
[8]M. Shahin, S. Ahmed, K. Kaur, A. Lavasanifar, Biomaterials, 32,
5123-5133 (2011).
[9]M. Y. Hua, H. W. Yang, C.K. Chuang, et al, “Magnetic-nanoparticle-modified paclitaxel for targeted therapy for prostate cancer”, Biomaterials, 31, 7355-7363, (2010).
[10]Z. Liu, T. Lammers, J. Ehling, et al, “Iron oxide nanoparticle-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging”, Biomaterials, 32, 6155-6163, (2011).
[11]A. Aqil, S. Vasseur, E. Duguet, et al, “PEO coated magnetic
nanoparticles for biomedical application”, Eur. Polym. J, 44, 3191-3199, (2008).
[12]周志謂,〈神奇的奈米煉丹術〉,《奈米科技與生物醫學》,第43期,43期,11月,2008年。
[13]S. Kumar, C. Ravikumar, R. Bandyopadhyaya, “State of dispersion of magnetic nanoparticles in an aqueous medium: Experiments and monte carlo simulation”, Langmuir, 26, 18320-18330, (2010).
[14]R. Sondjaja, T.A. Hatton, M.K.C. Tam, “Clustering of magnetic nanoparticles using a double hydrophilic block copolymer, poly(ethylene oxide)-b-poly(acrylic acid)”, J. Magn. Magn. Mater, 321, 2393-2397, (2009).
[15]B.T. Raut, M.A. Chougule, S. Sen, R.C. Pawar, C.S. Lee, V.B. Patil, “Novel method of fabrication of polyaniline–CdS nanocomposites: Structural, morphological and optoelectronic properties”, Ceramics Inter., 38, 3999-4007, (2012).
[16]Y. Zhao, G.S. Tang, Z.Z. Yu, J.S. Qi, “The effect of graphite oxide on the thermoelectric properties of polyaniline”, Carbon, 50, 3064-3073, (2012).
[17]R. Singh, R, Verma, G. Sumana, et al, “Nanobiocomposite platform based on polyaniline-iron oxide-carbon nanotubes for bacterial detection”, Bioelectrochem., 86, 30-37, (2012).
[18]R. Valenzuela, M.C. Fuentes, C. Parra, et al, “Influence of stirring velocity on the synthesis of magnetite nanoparticles (Fe3O4) by the co-precipitation method”, J. Alloy Compd, 488, 227-231, (2009).
[18]李端,殷明,〈藥理學〉,《人民衛生出版社》,第六版。
[19]血栓形成〉,《A+醫學百科》。
[20]山東萬杰醫學院,〈藥理學教案〉,第一學期,2009-2010學年。
[21]李端,殷明,〈藥理學〉,,《人民衛生出版社》,第六版。
[22]Greinacher A, Althaus K, Krauel K, Selleng S, “Heparin-induced thrombocytopenia ”, Hamostaseologie, 30, 17-28, (2010).
[23]楊雨哲,〈肝素 (Heparin)造成的血小板數量低下症 (thrombocytopenia)〉
[24]楊閎蔚,〈水可溶自身酸摻雜聚苯胺衍生物之新型製造方法〉,長庚大學,碩士論文,民國95年。
[25]H. Letheby, “On the production of a blue substance by the electrolysis of sulphate of aniline”, J. Chem. Soc., 15, 161-163, (1862).
[26]A. G. Green, A. E. Woodhead, “Aniline-black and allied compounds. Part I”, J. Chem. Soc. Trans., 97, 2388-2403, (1910).
[27]J. Langer, “Unusual properties of the aniline black: Does the superconductivity exist at room temperature”, Solid State Commun., 26, 839-844, (1978).
[28]A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasir, “Polyaniline”: Interconversion of Metallic and Insulating Forms”, Mol. Cryst. Liq. Cryst., 121, 173-180, (1985).
[29]M. Inoue, R. E. Navarro, M. B. Inoue , “New soluble polyaniline: Synthesis, electrical properties and solution electronic spectrum”, Synth. Met., 30, 199-207, (1989).
[30]S.A. Chen and G.-W. Hwang, “Structure Characterization of Self-Acid-Doped Sulfonic Acid Ring-Substituted Polyaniline in Its Aqueous Solutions and as Solid Film”, Macromolecules, 29, 3950-3955, (1996).
[31]D. M. Mohilner, R. N. Adams, W. J. Argersinger, “Investigation of the Kinetics and Mechanism of the Anodic Oxidation of Aniline in Aqueous Sulfuric Acid Solution at a Platinum Electrode”, J. Am. Chem. Soc., 84, 3618-3622, (1962).
[32]Jiaxing Huang and Richard B. Kaner, “A General Chemical Route to Polyaniline Nanofibers”, J. Am. Chem. Soc., 126, 851-855, (2004).
[33]E. Kim, K. Y. Lee, M. H. Lee, J. S. Shin, S. B. Rhee, “All solid-state electrochromic window based on poly(aniline N-butylsulfonate)s”, Synth. Met., 85, 1367-1368, (1997).
[34]丁英益,〈水可溶自身酸摻雜(1-酮基-丁醯酸)苯胺之合成、結構鑑定及生物相容性〉,長庚大學,碩士論文,民國96年。
[35]L. C. Clark, C. Lyones, “Electrode systems for continuous monitoring in cardiovascular surgery”, Ann. NY Acad. Sci., 102, 29-45, (1962).
[36]Tetsu Tatsuma, Takashi Ogawa, Ryota Sato, Noboru Oyama, “Peroxidase-incorporated sulfonated polyaniline–polycation complexes for electrochemical sensing of H2O2”, J Electroanaly. Chem., 501, 180-185, (2001).
[37]M. M. Castillo-Ortega, D. E. Rodeiguez, J. C. Encinas, M. Plascencia, F. A. Mendez-Velarde, R. Olayo, “Conductometric uric acid and urea biosensor prepared from electroconductive polyaniline–poly(n-butyl methacrylate) composites”, Sen. &; Actu. B, 85, 19-25, (2002).
[38]O. Ngamna, A. Morrin, S. E. Multon, A. J. Killard, M. R. Symth, Gordon G. Wallace, “An HRP based biosensor using sulphonated polyaniline”, Synthetic Metals., 153, 185-188, (2005).
[39]Xianhua Pan, Jinqing Kana, Limin Yuan, “Polyaniline glucose oxidase biosensor prepared with template process”, Sen. &; Actu. B., 102, 325-330, (2004).
[40]Jinqing Kan, Xianhua Pan, Cheng Chen, “Polyaniline–uricase biosensor prepared with template process”, Biosen. and Bioelec., 19, 1635-1640, (2004).
[41]Ying Ma, Nan Li, Cheng Yang, Xiurong Yang, ” One-step synthesis of water-soluble gold nanoparticles/polyaniline composite and its application in glucose sensing”, Colloids and Surfaces A: Physicochem. Eng. Aspects., 269, 1-6, (2005).
[42]X. Pan, Su Zhou, Cheng Chen, J. Kan, ” Preparation and properties of an uricase biosensor based on copolymer of o-aminophenol-aniline”, Sen. &; Actu. B., 113, 329-334, (2006).
[43]Kathleen Grennan, Anthony J. Killard, Claire J. Hanson, Attilio A.
Caffola, Malcolm R. Smyth,” Optimisation and characterisation of biosensors based on polyaniline”, Talanta, 68, 1591-1660, (2006).
[44]Kanungo M, Kumar A, Contractor A.Q., “Microtubule Sensors and Sensor Array Based on Polyaniline Synthesized in the Presence of Poly(styrene sulfonate)”, Anal. Chem., 75, 5673-5679, (2003).
[45]Fabre B, Taillebois L, “Poly(aniline boronic acid)-based conductimetric sensor of dopamine”, Chem, Commun., 24, 2982-2983, (2003).
[46]Janata J., Josowicz M., “Conducting polymers in electronic chemical sensors”, Nat. Mater., 2, 19-24, (2003).
[47]Zarini Muhammad Tahir, Evangelyn C. Alocilja, “A conductometric biosensor for biosecurity”, Biosen. and Bioelec., 18, 813-819, (2003).
[48]Zarini Muhammad Tahir, Evangelyn C. Alocilja, “Fabrication of a Disposable Biosensor for Escherichia coli O157:H7 Detection”, IEEE Sensors J., 3, 345-351, (2003).
[49]Eran Granot, Eugenii Katz, Bernhard Basnar, Itamar Willner, “Enhanced Bioelectrocatalysis Using Au-Nanoparticle/Polyaniline Hybrid Systems in Thin Films and Microstructured Rods Assembled on Electrodes”, Chem. Mater., 17, 4600-1609, (2005).
[50]李冠瑢,〈電磁場與超音波刺激對骨母細胞生長影響之比較〉,中原大學,博士論文,民國92年。
[51]L. S. Lavine and A. J. Grodzinsky, “Electrical stimulation of repair of bone”, J. Bone Jt. Surg., 69, 626-630, (1987).
[52]R. Karba, D. Semrov, L. Vodovnik, H. Benko, and R. Savrin, “DC electrical stimulation for chronic wound healing enhancement Part 1. Clinical study and determination of electrical field distribution in the numerical wound model”, Bioelectrochem. Bioenerg., 43, 265-270, (1997).
[53]J. M. Kerns, A. J. Fakhouri, H. P. Weinrib, and J. A. Freeman, “Electrical stimulation of nerve regeneration in the rat: The early effects evaluated by a vibrating probe and electron microscopy”, Neuroscience, 40, 93-107, (1991).
[54]嚴勝裕,〈奈米級聚苯胺/鐵磁礦複合物之合成、結構及物性之研究〉,長庚大學,碩士論文,民國93年。
[55]M. Y. Hua, H. W. Yang, C. K. Chuang, R. Y. Tsai, W. J. Chen, K. L. Chuang, Y. H. Chang, H. C. Chuang, S. T. Pang, “Magnetic-nanoparticle-modified paclitaxel for targeted therapy for prostate cancer”, Biomaterials, 31, 7355-7363 (2010).
[56]H. W. Yang, M. Y. Hua, H. L. Liu, C. Y. Huang, R. Y. Tsai, Y. J. Lu, J. Y. Chen, H. J. Tang, H. Y. Hsien, Y. S. Chang, T. C. Yen, P. Y. Chen, K. C. Wei, “Self-protecting core-shell magnetic nanoparticles for targeted, traceable, long half-life delivery of BCNU to gliomas”, Biomaterials, 32, 6523-6532 (2011).
[57]M. Leclerc, J. Guay and L. H. Dao, “Synthesis and characterization of poly(alkylanilines)”, Maceomolecules, 22, 649-653, (1989).
[58]V. Prevost, A. Petit, F. Pla, “Studies on chemical oxidative copolymerization of aniline and o-alkoxysulfonated anilines:: I. Synthesis and characterization of novel self-doped polyanilines”, Synth. Met., 104, 79-87, (1999).
[59]J. W. Chevalier, J. Y. Bergeron, L. H. Dao, “Synthesis, characterization, and properties of poly(N-alkylanilines)”, Macromolecules, 25, 3325-3331, (1992).
[60]S. A. Chen and G.-W. Hwang, “Water-Soluble Self-Acid-Doped Conducting Polyaniline: Structure and Properties”, J. Am. Chem. Soc., 117, 10055-10062, (1995).
[61]G. W. Hwang, K.-Y. Wu, M.-Y. Hua, H.-T. Lee, S.-A. Chen, “Structures and properties of the soluble polyanilines, N-alkylated emeraldine bases”, Synth. Met., 92, 39-46, (1998).
[62]Y. H. Geng, Z. C. Sun, J. Li, X.B. Jing, X.H. Wang, F.S. Wang, “Water soluble polyaniline and its blend films prepared by aqueous solution casting”, Polymer, 40, 5723-5727, (1999).
[63]M. Y. Hua, Y.-N. Su, S.-A. Chen, “Water-soluble self-acid-doped conducting polyaniline: poly(aniline-co-N-propylbenzenesulfonic acid-aniline)”, Polymer, 41, 813-815, (2000).
[64]W. Yin, E. Ruckenstein, “Water-Soluble Self-Doped Conducting Polyaniline Copolymer”, Macromolecules, 33, 1129-1131, (2000).
[65]J. Laska, J. Widlarz, “Water soluble polyaniline”, Synth. Met., 135, 261-262, (2003).
[66]F. Hua, E. Ruckenstein, “Synthesis of a water-soluble diblock copolymer of polysulfonic diphenyl aniline and poly(ethylene oxide)”, polym. Chem., 42, 2179-2191, (2004).
[67]F. L. Lu, F. Wudl, M. Nowak, A. J. Heeger, “Phenyl-capped octaaniline (COA): an excellent model for polyaniline”, j. Am. Chem. Soc., 108, 8311-8313, (1986).
[68]S. Stafstrom, J. L. Bredas, A. J. Epstein, H. S. Woo, D. B. Tanner, W. S. Huang, A. G. MacDiarmid, “Polaron lattice in highly conducting polyaniline: Theoretical and optical studies”, Phys. Rev. Lett., 59, 1464-1467, (1987).
[69]Y. Cao, P. Smith, A. J. Heeger, “Spectroscopic studies of polyaniline in solution and in spin-cast films”., Synth. Met., 32, 263-281, (1989).
[70]A. P. Monkamn, D. Bloor, G. C. Stevens, J. C. H. Stevens, “Electronic energy levels of polyaniline”, J. Phys D: Appl. Phys., 20, 1337-1347, (1987).
[71]R. Jiang and S. Dong, “Electrochemical behaviour of soluble polyaniline and its chromatic reaction in solutions”, Synth. Met., 24, 255-265, (1988).
[72]S. C. Yang, R. J. Cushman and D. Zhang, “Experimentally determined PH-potential phase diagram for polyaniline; clues for optically distinguishable sub-phase in the conductor form”, Synth. Met., 29, 401-408, (1989).
[73]J. Tang, X. Jing, B. Wang, F. Wang, “Infrared spectra of soluble polyaniline”, Synth. Met., 24, 231-238, (1988).
[74]X. H. Wang, J. Li, X. Wang, X. B. Jing, F. S. Wang, “Structure and properties of self-doped polyaniline”, Synth. Met., 69, 147-148, (1995).
[75]A. G. MacDiarmid, J. C. Chiang, W. Huang, B. D. Humphery, N. L. D. Somasir, “Polyaniline: Protonic Acid Doping to the Metallic Regime”, Mol. Cryst. Liq. Cryst., 125, 309-318, (1985).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊