跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2025/10/07 08:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝明廷
研究生(外文):Ming-Ting Shieh
論文名稱:邊界爆炸值問題解存在之充分與必要條件
論文名稱(外文):Necessary and Sufficient Conditions for the Existence of Solutions of a Boundary Blow-up Problem
指導教授:王信華
指導教授(外文):Shin-Hwa Wang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:39
中文關鍵詞:邊界爆炸值充分與必要條件
外文關鍵詞:Boundary Blow-up ProblemNecessary and Sufficient Conditions
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們首先研究以下邊界爆炸值問題解存在之充分與必要條件
- u'' =λf(u(x)), 0 < x < 1,
lim u(x) = ∞ as x→0 plus
lim u(x) = ∞ as x→1 minus ,
這裡的λ是一個正的分枝參數.
再來討論 f 是局部Lipschitz連續,除了可能在某一點s滿足f(s) = 0之外, 不失一般性我們取這點s為0來討論(即f(0) = 0), 在 (ρ,λ) - 平面圖形上分析它的分枝曲線的漸近行為, 其中ρ= min u(x), x 屬於 (0,1). 因此我們可以根據λ來判定其邊界爆炸解之存在與否和對映的解之個數.

We investigate the necessary and sufficient conditions for the existence of solutions of the boundary blow-up problem
- u'' =λf(u(x)), 0 < x < 1,
lim u(x) = ∞ as x→0 plus
lim u(x) = ∞ as x→1 minus,
where λ is a positive bifurcation parameter and f is locally Lipschitz continuous at all points in R except possibly at point s = 0 and f is continuous there. We also study asymptotic behaviors of the bifurcation curve on the (ρ,λ) -plane, where
ρ= min u(x), x belong (0,1). Hence we are able to determine the number of solutions for anyλ > 0. Some interesting examples are given.

1 Introduction-------------------------------------------------2
2 Main Results------------------------------------------------5
2.1 Necessary and Sufficient Conditions----------------7
2.2 Asymptotic Behaviors of G(ρ)--------------------12
3 Lemmas----------------------------------------------------13
4 Proofs of Main Results-----------------------------------24
References----------------------------------------------------38

[1] V. Anuradha, C. Brown, and R. Shivaji, Explosive nonnegative solutions to two point boundary value problems, Nonlinear Analysis 26 (1996), 613-630.
[2] C. Bandle and M. Marcus, Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior, J. Analysis Math. 58 (1992), 9-24.
[3] L. Bieberbach, Δu = e^u and die automorphen Funktionen, Math. Annln 77
(1916), 173-212.
[4] K.-S. Cheng and W.-M. Ni, On the structure of the conformal scalar curvature equation on RN , Indiana Univ. Math. J. 41 (1992), 261-278.
[5] G. Di'az and R. Letelier, Explosive solutions of quasilinear elliptic equations: existence and uniqueness, Nonlinear Analysis 20 (1993), 97-125.
[6] J. B. Keller, On solutions of Δu = f(u), Comm. Pure Appl. Math. 10 (1957), 503-510.
[7] V. A Kondrat'ev and V. A Nikishken, Asymptotics, near the boundary, of a singular boundary-value problem for a semilinear elliptic equation, Diff. Urav. 26 (1990), 465-468 (English translation: Diff. Eqns 26 (1990), 345-348).
[8] A. V. Lair and A. W. Wood, Large solutions of semilinear elliptic problems, Nonlinear Analysis 37 (1999), 805-812.
[9] A. C. Lazer and P. J. McKenna, On a problem of Bieberbach and Redermacher, Nonlinear Analysis 21 (1993), 327-335.
[10] C. Loewner and L. Nirenberg, Partial differential equations invariant under conformal or projective transformations, in Contributions to Analysis (A Collection of Paper Dedicated to Lipman Bers), (1974) pp. 245-272, Academic Press, New York.
[11] M. Marcus and L. Ve'ron, Uniqueness of solutions with blow-up at the boundary for a class of nonlinear elliptic equations, C. R. Acad. Sci. Paris 317 (1993), 559-563.
[12] S. L. Pohozaev, The Dirichlet problem for the equation Δu = u^2 , Dokl. Akad. SSSR 134 (1960), 769-772, English translation: Soviet Math. 1 (1960), 1143-1146.
[13] R. Osserman, On the inequalityΔu ≧ f(u) , Pacific J. Math. 7 (1957), 1641-1646
[14] H. Rademacher, Einige besondere problem partieller Differential gleichungen, in Die Differential-and Integralgleichungen, der Mechanik and Physik I, 2nd edition (1943), pp. 838-845, Rosenberg, New York.
[15] S.-H. Wang, Existence and multiplicity of boundary blow-up nonnegative solutions to two point boundary value problems, Nonlinear Analysis 42 (2000), 139-162.
[16] S.-H. Wang and Y.-T. Liu, On the bifurcation curve of boundary blow-up problem, preprint.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top