|
[1] V. Anuradha, C. Brown, and R. Shivaji, Explosive nonnegative solutions to two point boundary value problems, Nonlinear Analysis 26 (1996), 613-630. [2] C. Bandle and M. Marcus, Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior, J. Analysis Math. 58 (1992), 9-24. [3] L. Bieberbach, Δu = e^u and die automorphen Funktionen, Math. Annln 77 (1916), 173-212. [4] K.-S. Cheng and W.-M. Ni, On the structure of the conformal scalar curvature equation on RN , Indiana Univ. Math. J. 41 (1992), 261-278. [5] G. Di'az and R. Letelier, Explosive solutions of quasilinear elliptic equations: existence and uniqueness, Nonlinear Analysis 20 (1993), 97-125. [6] J. B. Keller, On solutions of Δu = f(u), Comm. Pure Appl. Math. 10 (1957), 503-510. [7] V. A Kondrat'ev and V. A Nikishken, Asymptotics, near the boundary, of a singular boundary-value problem for a semilinear elliptic equation, Diff. Urav. 26 (1990), 465-468 (English translation: Diff. Eqns 26 (1990), 345-348). [8] A. V. Lair and A. W. Wood, Large solutions of semilinear elliptic problems, Nonlinear Analysis 37 (1999), 805-812. [9] A. C. Lazer and P. J. McKenna, On a problem of Bieberbach and Redermacher, Nonlinear Analysis 21 (1993), 327-335. [10] C. Loewner and L. Nirenberg, Partial differential equations invariant under conformal or projective transformations, in Contributions to Analysis (A Collection of Paper Dedicated to Lipman Bers), (1974) pp. 245-272, Academic Press, New York. [11] M. Marcus and L. Ve'ron, Uniqueness of solutions with blow-up at the boundary for a class of nonlinear elliptic equations, C. R. Acad. Sci. Paris 317 (1993), 559-563. [12] S. L. Pohozaev, The Dirichlet problem for the equation Δu = u^2 , Dokl. Akad. SSSR 134 (1960), 769-772, English translation: Soviet Math. 1 (1960), 1143-1146. [13] R. Osserman, On the inequalityΔu ≧ f(u) , Pacific J. Math. 7 (1957), 1641-1646 [14] H. Rademacher, Einige besondere problem partieller Differential gleichungen, in Die Differential-and Integralgleichungen, der Mechanik and Physik I, 2nd edition (1943), pp. 838-845, Rosenberg, New York. [15] S.-H. Wang, Existence and multiplicity of boundary blow-up nonnegative solutions to two point boundary value problems, Nonlinear Analysis 42 (2000), 139-162. [16] S.-H. Wang and Y.-T. Liu, On the bifurcation curve of boundary blow-up problem, preprint.
|