跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/19 15:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孫文隆
研究生(外文):Wen-Long Sung
論文名稱:柑橘潰瘍病菌SOSBox序列之確定
論文名稱(外文):Identification of the consensus sequence of the SOS box in Xanthomonas axonopodis pv. citri
指導教授:楊美桂楊美桂引用關係
學位類別:碩士
校院名稱:輔仁大學
系所名稱:生命科學系碩士班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:65
中文關鍵詞:柑橘潰瘍病菌
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
柑橘潰瘍病菌具有二個 lexA 基因,分別合成 LexA1 和 LexA2 蛋白,推測具有抑制蛋白 (repressor) 的功能,調控許多與 DNA 修補相關之基因。分析二 LexA 蛋白胺基酸序列,發現負責與 DNA 結合之相關序列 (α domain) 並不相似,推論二蛋白應與不同之 DNA 片段結合。為了得到進一步的證實,遂利用 Electrophoretic mobility shift assay (EMSA) 分析,結果顯示 LexA1 蛋白可與 lexA1 啟動子 (-40 ~ +155,以轉譯始點為 +1) 結合,卻無法與 lexA2 啟動子 (-71 ~ +134,以轉譯始點為 +1) 結合; 而 LexA2 蛋白則與之相反,只能與此 lexA2 啟動子結合。LexA1 蛋白作用於 lexA1 啟動子之所在,已知為一顛倒重覆序列: 5’-TTAGTAGTAATACTACTAA-3’,為了得知 LexA2 蛋白作用之所在,便將 lexA2 啟動子之縮短片段與 LexA2 蛋白進行 EMSA 分析,結果發現一不同於 LexA1 蛋白結合位置 (TTAG-N8~11-CTAA) 之序列,5’-GGTGTACAAATGTACACC-3’,為其作用所在。為了解此序列之對稱性和序列內核苷酸之必要性,也以 EMSA 測定突變序列與 LexA2 蛋白之作用,目前數據顯示 LexA2 蛋白結合之必要序列,可能為 TGTN8~10ACA。在 lexA2 基因轉譯始點 ATG 上游 115 bp 處,發現一相似於 LexA1 蛋白結合位置 (TTAG-N8~11-CTAA) 之序列: 5’-TTAGTACTAAAGTTATAA-3’,藉由分析發現 LexA1 蛋白可與之結合,但親合性不若 lexA1 啟動子上之LexA1 蛋白結合位置好。此外,已知 LexA1 蛋白可作用於 recA 啟動子,為了知道 LexA2 蛋白是否也可與之作用,便進行 EMSA 分析,結果發現 LexA2 蛋白亦可作用於 recA 啟動子上。
There are two lexA genes in Xanthomonas axonopodis pv. citri. LexA1 and LexA2 proteins, which are supposed to function as a repressor and modulate many DNA repair genes. By analyzing two sequences of LexA proteins, we discover they are not the same as the relative sequences (α domain) that bind to DNA. Therefore, we assume that the two proteins bind to different DNA sequences. In order to get further evidence, Electrophoretic mobility shift assay (EMSA) is adopted. The result shows that LexA1 protein can bind to lexA1 promoter (nucleotides -40 to +155, relative to the translation start site, +1),rather than to lexA2 promoter (nucleotides -71 to +134, relative to the translation start site, +1); on the contrast, LexA2 protein functions reversely, only bind to lexA2 promoter. LexA1 protein functions on where lexA1 promoter locates, which is known as an inverted repeat, 5’-TTAGTAGTAATACTACTAA-3’. In order to know where LexA2 protein functions, we analyze the shorten sequence of lexA2 promoter with LexA2 protein by EMSA. The result indicates that LexA2 protein binds to another sequence, 5’-GGTGTACAAATGTACACC-3’, which is different from the original one (TTAG-N8~11-CTAA). To get a better understanding of the symmetry of the sequence and the necessity of nucleotides in the sequence, EMSA is performed to determine the function of mutated sequence with the LexA2 protein. The data shows that the necessary sequence to which LexA2 protein binds probably is TGTN8~10ACA. We discover that, at the place where 115 bp upstream of the translation start site of the lexA2 gene, a specific sequence (5’-TTAGTACTAAAGTTATAA-3’), which is similar to the sequence (TTAG-N8~11-CTAA), to which LexA1 protein binds. We find that LexA1 protein can bind to this specific sequence, but the affinity is not as well as to the LexA1 protein on lexA1 promoter. Besides LexA1 protein can function on recA promoter, EMSA analysis is conducted to know if it works with LexA2. The result demonstrates LexA2 protein can also function on recA promoter.
目 錄


目 錄 I
圖目錄 III
表目錄 IV
摘要 1
Abstract 2
前言 3
材料與方法 9
一. 實驗材料 9
1. 菌種與質體及引子 9
2. 實驗藥品 13
3. 培養基與抗生素 14
4. 緩衝液及溶液 14
5. 儀器設備 19
二. 實驗方法 20
1. 細菌之培養與保存 20
2. 質體DNA之抽取 20
3. DNA之限制酶作用   21
4. 洋菜膠電泳法 21
5. 聚合酶鏈反應 22
6. DNA片段之回收 22
7. 大腸桿菌之轉形作用 23
8. 蛋白質之純化 23
9. 蛋白質濃度之測定 24
10. 細胞萃取物之製備 25
11. SDS-Polyacrylamide凝膠電泳分析 25
12. Electrophoretic mobility shift analysis 26
結果 28
一. LexA 兩蛋白胺基酸序列之比對 28
二. LexA 蛋白之純化 30
三. LexA 蛋白與 lexA 啟動子片段之結合 32
1. LexA 蛋白與啟動子之結合情形 32
2. LexA 蛋白結合於啟動子之親和性 33
四. LexA2 蛋白在 lexA2 啟動子結合位置之確認 33
1. LexA2 蛋白之結合位置 33
2. LexA2 蛋白與 lexA2 突變啟動子之結合 36
五. LexA1 蛋白與 lexA2 基因上游區域之結合 38
1. LexA1 蛋白與啟動子之結合情形 38
2. LexA1 蛋白結合於啟動子之親和性 44
六. LexA2 蛋白與 lexA1、recA 啟動子之結合 48
1. LexA2 蛋白與 lexA1 啟動子之結合情形 48
2. LexA2 蛋白與 recA 啟動子之結合情形 48
討 論 53
參考文獻 58
Birnboim, H.C. and Doly, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids Res. 7, 1513-1523.

Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248-254.

Brent, R. and Ptashne, M. (1981) Mechanism of action of the lexA gene product. Proc Natl Acad Sci USA 78, 4204-4208

Brooks, P.C., Movahedzadeh, F. and Davis, E.O. (2001) Identification of some DNA damage-inducible genes of Mycobacterium tuberculosis: apparent lack of correlation with LexA binding. J. Bacteriol. 183, 4459–4467.

Brunings, A.M. and Gabriel, D.W. (2003) Xanthomonas citri: breaking the surface. Mol. Plant Pathol. 4, 141-157.

Campoy, S., Mazon, G., Fernández de Henestrosa, A.R., Llagostera, M., Monteiro, R.B. and Barbe, J. (2002) A new regulatory DNA motif of the gamma subclass Proteobacteria: identification of the LexA binding site of the plant pathogen Xylella fastidiosa. Microbiology. 148, 3583–3597.

Cheo, D.L., Bayles, K.W. and Yasbin, R.E. (1991) Cloning and characterization of DNA damage-inducible promoter regions from Bacillus subtilis. J. Bacteriol. 173, 1696-703.

Cheo, D.L., Bayles, K.W. and Yasbin, R.E. (1993) Elucidation of regulatory elements that control damage induction and competence induction of the Bacillus subtilis SOS system. J. Bacteriol. 175, 5907-5915.

Clark, A.J. and Margulies, A. (1965) Isolation and Characterization of recombination, deficient mutants of Escherichia coli K12. Proc. Natl. Acad. Sci. USA 53, 451-459.

Clark, A.J. Recombination deficient mutants of E. coli and other bacteria. (1973) Ann. Rev. Genet. 7, 67-86.

da Silva, A.C., Ferro, J.A., Reinach, F.C., Farah, C.S., Furlan, L.R., Quaggio, R.B., Monteiro-Vitorello, C.B., Van Sluys, M.A., Almeida, N.F., Alves, L.M., do Amaral, A.M., Bertolini, M.C., Camargo, L.E., Camarotte, G., Cannavan, F., Cardozo, J., Chambergo, F., Ciapina, L.P., Cicarelli, R.M., Coutinho, L.L., Cursino-Santos, J.R., El-Dorry, H., Faria, J.B., Ferreira, A.J., Ferreira, R.C., Ferro, M.I., Formighieri, E.F., Franco, M.C., Greggio, C.C., Gruber, A., Katsuyama, A.M., Kishi, L.T., Leite, R.P., Lemos, E.G., Lemos, M.V., Locali, E.C., Machado, M.A., Madeira, A.M., Martinez-Rossi, N.M., Martins, E.C., Meidanis, J., Menck, C.F., Miyaki, C.Y., Moon, D.H., Moreira, L.M., Novo, M.T., Okura, V.K., Oliveira, M.C., Oliveira, V.R., Pereira, H.A., Rossi, A., Sena, J.A., Silva, C., de Souza, R.F., Spinola, L.A., Takita, M.A., Tamura, R.E., Teixeira, E.C., Tezza, R.I., Trindade dos Santos, M., Truffi, D., Tsai, S.M., White, F.F., Setubal, J.C., and Kitajima, J.P. (2002) Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature. 417, 459-463.

Davis, E.O., Sedwick, S.G. and Colston, J.M. (1991) Novel structure of the recA locus of Mycobacterium tuberculosis implies processing of the gene product. J. Bacteriol. 173, 5653-5662.

Davis, E.O., Dullaghan, E.M. and Rand, L. (2002) Definition of the Mycobacterial SOS box and use to identify LexA-regulated genes in Mycobacterium tuberculosis. J. Bacteriol. 184, 3287-3295.

Davis, E.O., Springer, B., Gopaul, K.K., Papavinasasundaram, K.G., Sander, P. and Bottger, E.C. (2002) DNA damage induction of recA in Mycobacterium tuberculosis independently of RecA and LexA. Mol. Microbiol. 46, 791-800.

De Feyter, R., Yang, Y. and Gabriel, D.W. (1993) Gene-for-genes interaction between cotton R genes and Xanthomonas campestris pv. malvacearum avr genes. Mol. Plant-Microbe Interact. 6, 225-237.

del Rey, A., Diestra, J., Fernández de Henestrosa, A.R. and Barbe, J. (1999) Determination of the Paracoccus denitrificans SOS box. Microbiology. 145, 577–584.

Dower, W.J., Miller, J.F. and Ragsdale, C.W. (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acid Res. 16, 6127-6145.

Dybving, K., Kollingshead, S.K., Heath, D.B. Sun, F. and Woodard, A.W. (1992) Degenerate oliginucleotide primers for enzymatic amplification of recA sequences from gram-positive bacteria and mycoplasmal. J. Bacteriol. 174, 2729-2732.

Eisen, J.A. (1995) The RecA protein as a model molecular for Molecular Systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J. Mol. Evol. 41, 1105-1123.

Eisen, J.A., and Hanawalt, P.C. (1999) A phylogenomic study of DNA repair genes, proteins, and processes. Mutat. Res. 435, 171–213.

Fernández de Henestrosa, A.R., Rivera, E., Tapias, A. and Barbe, J. (1998) Identification of the Rhodobacter sphaeroides SOS box. Mol. Microbiol. 28, 991–1003.

Fernández de Henestrosa, A.R., Ogi, T., Aoyagi, S., Chafin, D., Hayes, J.J., Ohmori, H. and Woodgate, R. (2000) Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol. Microbiol. 35, 1560–1572.

Fernández de Henestrosa, A.R., Cune, J., Erill, I., Magnuson, J.K. and Barbe, J. (2002) A green nonsulfur bacterium, Dehalococcoides ethenogenes, with the LexA binding sequence found in gram-positive organisms. J. Bacteriol. 184, 6073–6080.

Fernández de Henestrosa, A.R., Cune, J., Mazon, G., Dubbels, B.L., Bazylinski, D.A. and Barbe, J. (2003) Characterization of a new LexA binding motif in the marine magnetotactic bacterium strain MC-1. J. Bacteriol.185, 4471-4482.

Fitzpatrick, R., O’Donohue, M.J., Joy, D., Herry, C. and Dunican, K. (1994) Construction and characterization of recA Mutant strains of Corynebacterium glutamicum and Brevibacterium lactofermentum. Appl. Microbiol. Biotechnol. 42, 575-580.

Friedberg, E.C., Walker, G.C. and Siede, W. (1995) DNA repair and mutagenesis. American Society for Microbiology, Washington, D.C.

Garriga, X., Calero, S. and Barbe, J. (1992) Nucleotide sequence analysis and comparison of the lexA genes from Salmonella typhimurium, Erwinia carotovora, Pseudomonas aeruginosa and Pseudomonas putida. Mol. Gen. Genet. 236, 125–134.

Horii, T., Ogawa, T. and Ogawa, H. (1980) Organization of the recA gene of Escherichia coli. Proc. Natl. Acad. Sci. USA 77, 313-317.

Janion, C. (2001) Some aspects of the SOS response system - A critical survey. Acta Biochimica Polonica. 48, 599-610.

Jara, M., Núñuz, C., Campoy, S., Fernández de Henestrosa, A.R., Lovley, D.R. and Barbé, J. (2003) Geobacter sulfurreducens has two autoregulated lexA genes whose products do not bind the recA promoter: differing responses of lexA and recA to DNA damage. J. Bacteriol. 185, 2493-2502.

Karlin, S. and Brocchieri, L. (1996) Evolutionary conservation of recA genes in relation to protein structure and function. J. Bacteriol. 178, 1881-1894.
Kearney, B. and Staskawicz, J. (1990) Widespread distribution and fitness contribution of Xanthomonas Campestris avirulence gene avrBs2. Nature. 346, 385-386.

Kowalczykowski, S.C., Dixon, D.A., Eggleston, A.K., Lauder, S.D. and Rehrauer, W.M. (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58, 401-465.

Little, J.W., Edmiston, S.H., Pacelli, L.Z. and Mount, D.W. (1980) Cleavage of the Escherichia coli LexA protein by the RecA protease. Proc. Natl. Acad. Sci. USA 77, 3225–3229.

Little, J.W., Mount, D.W. and Yanisch-Perron, C.R. (1981) Purified LexA protein is a repressor of the recA and lexA genes. Proc. Natl. Acad. Sci. USA 78, 4199-4203.

Little, J.W. and Mount, D.W. (1982) The SOS regulatory system of Escherichia coli. Cell 29, 11-22.
Little, J.W. (1991) Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie. 73, 411-422.

Little, J.W. (1993) LexA cleavage and other self-processing reactions. J. Bacteriol. 175, 4943–4950.

Liu, C.C., Huhne, R., Tu, J., Lorbach, E. and Droge, P. (1998) The resolvase encoded by Xanthomonas campestris transposable element ISXC5 constitutes a new subfamily closely related to DNA invertases. Genes Cells. 3, 221-233.

Luo, Y., Pfuetzner, R.A., Mosimann, S., Paetzel, M., Frey, E.A., Cherney, M., Kim, B., Little, J.W. and Strynadka, N.C. (2001) Crystal structure of LexA: a conformational switch for regulation of self-cleavage. Cell. 106, 585–594.

Maniatis, T., Fritsch, E.F. and Sambrook, J. (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor laboratory, Cold Spring Harbor, N.Y.

Mazon, G., Lucena, J.M., Campoy, S., Fernández de Henestrosa, A.R., Candau, P. and Barbé, J. (2004) LexA-binding sequences in gram-positive and cyanobacteria are closely related. Mol. Gen. Genomics. 271, 40-49.

Marois, E., van den Ackerveken, G. and Bonas, U. (2002) The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. Mol. Plant-Microbe Interact. 15, 637-646.

Mount, D.W., Ennis, D.G. and Little, J.W. (1993) Novel mechanism for UV sensitivity and apparent UV nonmutability of recA432 mutants: persistent LexA cleavage following SOS induction. J. Bacteriol. 175, 7373-7382.

Narumi, I., Satoh, K., Kikuchi, M., Funayama, T., Yanagisawa, T., Kobayashi, Y., Watanabe, H. and Yamamoto, K. (2001) The LexA protein from Deinococcus radiodurans is not involved in RecA induction following γ irradiation J. Bacteriol. 183, 6951-6956.

Nicholas, K.B., Nicholas, H.B., Jr., and Deerfield II.D. W. (1997) GeneDoc: analysis and visualization of genetic variation. EMBNEW. NEWS. 4, 14.

Radman, M. (1974) Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis. In Molecular and Environmental Aspects of Mutagenesis. Prakash, L., Sherman, F., Miller, M., Lawrence, C.W., and Tabor, H.W. (eds). Springfield, IL: Charles C. Thomas, pp. 128-142.

Raymond-Denise, A. and Guillen, N. (1991) Identification of dinR, a DNA damage-inducible regulator gene of Bacillus subtilis. J. Bacteriol. 173, 7084–7091.

Riera, J. and Barbe, J. (1995) Cloning, sequence and regulation of expression of the lexA gene of Aeromonas hydrophila. Gene. 154, 71–75.

Roca, A.I. and Cox, M.M. (1990) The RecA protein: structure and function. Crit. Rev. Biochem. Mol. Biol. 25, 415-456

Saiki, R.K., Gelfand, D.H., Stoffel. S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B. and Erlich, H.A. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 239, 487-491.

Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular cloning: a Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

Swarup, S., Yang, Y., Kingsley, M.T. and Gabriel, D.W. (1992) An Xanthomonas citri pathogenicity gene, pthA, pleiotropically encodes gratuitous avirulence on nonhosts. Mol. Plant-Microbe Interact. 5, 204-13.

Szurek, B., Rossier, O., Hause, G. and Bonas, U. (2002) Type III-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell. Mol. Microbiol. 46, 13-23.

Tapias, A. and Barbe, J. (1999) Regulation of divergent transcription from the uvrA-ssb promoters in Sinorhizobium meliloti. Mol. Gen. Genet. 262, 121–130.

Thompson, D.K., Beliaev, A.S., Giometti, C.S., Tollaksen, S.L., Khare, T., Lies, D.P., Nealson, K.H., Lim, H. Yates III, J., Brandt,C.C. Tiedje, J.M. and Zhou, J. (2002) Transcriptional and proteomic analysis of a ferric uptake regulator (fur) mutant of Shewanella oneidensis: possible involvement of Fur in energy metabolism, transcriptional regulation, and oxidative stress. Appl. Environ. Microbiol. 68, 881-892.

Thompson, J.D., Higgins,D.G. and Gibson.,T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.

Walker, G.C. (1984) Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev. 48, 60-93.
Wertman, K.F. and Mount, D.W. (1985) Nucleotide sequence binding specificity of the LexA repressor of Escherichia coli K-12. J. Bacteriol. 163, 376–384.

Winterling, K.W., Levine, A.S., Yasbin, R.E. and Woodgate, R. (1997) Characterization of DinR, the Bacillus subtilis SOS repressor. J. Bacteriol. 179, 1698–1703.

Winterling, K.W., Chafin, D., Hayes, J.J., Sun, J.I., Levine, A.S., Yasbin, R.E. and Woodgate, R. (1998) The Bacillus subtilis DinR Binding Site: Redefinition of the Consensus Sequence. J. Bacteriol. 180, 2201–2211.

Yang, M.K., Su, W.C. and Kuo, T.T. (1991) Highly efficient transfection of Xanthomonas campestris by electroporation. Bot Bull Acad Sinica(Taipei). 32, 197-203.

Yang, M.K. and Wu, P.I. (1999) Identification of the promoter region of the Xanthomonas campestris pv. citri recA gene responsible for induction by DNA-damaging agents. FEMS Microbiol. Lett. 176, 57-65

Yang, Y.C. and Yang, M.K. (2000) Construction and characterization of a recA mutant of Xanthomonas campestris pv. citri. Bot. Bull. Acad. Sin. 41, 129-137.

Yang, M.K., Wu, P.I. and Yang, Y.C. (2000) Identification of a lexA Gene in, and Construction of a lexA Mutant of, Xanthomonas campestris pv. citri. Curr. Microbiol. 40, 233-238.

Yang, M.K., Chou, M.E. and Yang, Y.C. (2001) Molecular characterization and expression of the recX gene of Xanthomonas campestris pv. citri. Curr. Microbiol. 42, 257-263.

Yang, Y.C., Yang, M.K., Kuo, T.T. and Tu, T. (2001) Structural and functional characterization of the lexA gene of Xanthomonas campestris pathovar citri. Mol. Genet. Genomics. 265, 316-326.

Yang, M.K., Yang, Y.C. and Hsu, C.H. (2002) Characterization of Xanthomonas axonopodis pv. citri LexA: recognition of the LexA binding site. Mol. Genet. Genomics. 268, 477-487.

楊源昌 (2000) 柑橘潰瘍病菌參與DNA修補基因之結構與特性分析。國防醫學院生命科學研究所博士論文

徐千琇 (2002) 柑橘潰瘍病菌 LexA 蛋白結合位置之確定。輔仁大學生物研究所碩士論文

蘇宿睿 (2003) 柑橘潰瘍病菌 lexA2 基因對 SOS DNA 修補系統的調控。輔仁大學生命科學研究所碩士論文
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top