跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/27 07:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉謹
研究生(外文):Chin Liu
論文名稱:氧化銅觸媒應用於甘油電解氧化反應之反應路徑探討
論文名稱(外文):Catalyst Development and Reaction Pathway Study of Copper Oxide for Glycerol Electro-Oxidation Reaction
指導教授:江佳穎
指導教授(外文):Chia-Ying Chiang
口試委員:林智広張家耀
口試委員(外文):Tomohiro HayashiJia-Yaw Chang
口試日期:2019-06-27
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:104
中文關鍵詞:甘油氧化甘油電解氧化原位拉曼光譜氧化銅金屬氧化物電觸媒
外文關鍵詞:glycerol oxidationin-situ Ramancopper oxideelectrocatalystdihydroxyacetone
相關次數:
  • 被引用被引用:0
  • 點閱點閱:399
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究製備出具有低成本且高電化學性能的觸媒-氧化銅觸媒應用於低耗能的電解甘油氧化。透過層析圖譜分析與拉曼光譜分析進而得出甘油氧化反應路徑。層析圖譜用於分析穩態系統中的產物分佈。在電解系統中,必須了解從反應物吸附、中間產物生成到產物脫附的反應步驟。原位拉曼光譜是檢測電極和電解質表面反應的方法。此外,通過控制電催化劑的性質以及電化學反應條件,可以調節電化學氧化以獲得高產品選擇性,然而,甘油分子中的羥基可以被選擇性地電氧化以形成醛(R-CHO)、酮(R-CO-R')和羧基(R-COOH)基團。
氧化銅觸媒對於電解甘油氧化反應有較低的過電位(1.25 V vs. RHE),在液相層析儀的定量產物分析中,主要檢測產物有二甲基丙酮(dihydroxyacetone, DHA)、甘油酸鹽 (glycerate) 、乙醇酸鹽 (glycolate) 、草酸鹽 (oxalate)、甲酸鹽 (formate)。在低電壓1.29 V vs. RHE計時安培測定中,產物分析顯示較高的C3產物選擇率,glycerate 26%、DHA 5%,然而,在高電壓下更容易使甘油C-C斷鍵,形成碳酸鹽 (carbonate)。原位拉曼光譜結合電化學反應系統進行反應機制探討,結合計時安培測定中,可觀測出甘油電解反應在氫氧化鈉水溶液中的反應路徑為甘油二級醇(DHA)的氧化進行,然而,DHA會自發性地轉換成GLAD。GLAD會持續氧化成glycerate,並接續向下的氧化反應。從C3產物的生成到C2、C1的偵測,得出氧化銅觸媒在NaOH水溶液下甘油氧化的反應路徑。除此之外,同時觀察到在電解質四硼酸鈉(Na2B4O7)添加甘油水溶液中(pH=9),得出高於50%的DHA選擇率,證明在高OH基的環境下DHA較不易生存,且氧化銅觸媒顯示出對二級醇氧化的高選擇性。
Low-cost and high-efficient copper oxide, CuO, was used as an electrocatalyst for glycerol electro-oxidation reaction (GEOR). Copper oxide showed the onset potential of 1.25 V vs. RHE for GEOR in pH 13. High-performance liquid chromatography (HPLC), Raman spectroscopy and electrochemical method were used for analysis the products of GEOR. Considering that reactant adsorption, intermediate formation to product desorption are critical, HPLC was used for analyzing the product distribution in the bulk liquid while the in-situ Raman spectroscopy was employed to detect the surface reaction on the solid electrode. Accordingly, dihydroxyacetone (DHA), glycerate, glycolate, oxalate, and formate were detected quantitatively by HPLC. Interestingly, it was found that the product selectivity can be controlled by tuning the properties of the applied potential and solution pH. At the lower applied potential of 1.29 V vs. RHE in pH 13, three-carbon (C3) products have a higher selectivity, i.e. 26% for glycerate and 5% for DHA. However, C-C bond cleavage at higher potential was observed which lead to the formation of vast amount of formate and carbonate. From In-situ Raman spectroscopy, we found that the reaction pathway of GEOR in pH 13 by CuO catalyst started from the oxidation of secondary hydroxyl group, leading to the formation of DHA, and DHA spontaneously transferred to glyceraldehyde (GLAD). GLAD then oxidized to glycerate and continued the higher oxidation degree products. Lowering the pH to pH 9 can slow down the transformation of DHA to GLAD, thus, the ability of selective oxidation of glycerol to DHA (~60% selectivity) can be easily observed.
Abstract i
摘要 ii
Table of Content iii
Index of Figures v
Index of Table xii
Chapter 1 Introduction 1
Chapter 2 Literature Reviews 3
2.1 By-product of Biodiesel – Glycerol 3
2.2 Glycerol Oxidation 5
2.2.1 Glycerol Oxidation Products 7
2.2.2 Method of Glycerol Oxidation 10
2.2.3 Glycerol Electro-Oxidation Reaction (GEOR) 12
2.2.4 Metal Catalyst of GEOR 16
2.2.5 Metal Oxide Catalyst of GEOR 17
2.3 The pH Effect of Solution in Glycerol Oxidation 18
2.4 Method of GEOR Products Analysis 20
2.4.1 High Performance Liquid Chromatography, HPLC 21
2.4.2 In-situ Fourier Transform Infrared Spectroscopy, FTIR 22
2.4.3 In-situ Raman Spectroscopy 24
2.5 Electrocatalyst – Copper Oxide 28
Chapter 3 Experimental Method 29
3.1 Experimental Chemicals and Equipment 29
3.2 Synthesis of CuO Catalyst 31
3.3 Characterizations 31
Abstract i
摘要 ii
Table of Content iii
Index of Figures v
Index of Table xii
Chapter 1 Introduction 1
Chapter 2 Literature Reviews 3
2.1 By-product of Biodiesel – Glycerol 3
2.2 Glycerol Oxidation 5
2.2.1 Glycerol Oxidation Products 7
2.2.2 Method of Glycerol Oxidation 10
2.2.3 Glycerol Electro-Oxidation Reaction (GEOR) 12
2.2.4 Metal Catalyst of GEOR 16
2.2.5 Metal Oxide Catalyst of GEOR 17
2.3 The pH Effect of Solution in Glycerol Oxidation 18
2.4 Method of GEOR Products Analysis 20
2.4.1 High Performance Liquid Chromatography, HPLC 21
2.4.2 In-situ Fourier Transform Infrared Spectroscopy, FTIR 22
2.4.3 In-situ Raman Spectroscopy 24
2.5 Electrocatalyst – Copper Oxide 28
Chapter 3 Experimental Method 29
3.1 Experimental Chemicals and Equipment 29
3.2 Synthesis of CuO Catalyst 31
3.3 Characterizations 31
3.4 Electrocatalytic Oxidation of Glycerol and Products Analysis 32
3.5 Calculation of Products Distribution 34
3.6 Principle of Electrochemistry 35
3.6.1 Faraday’s Law of Electrolysis 36
3.6.2 Linear Sweep Voltammetry, LSV 37
3.6.3 Chronoamperometry 37
3.6.4 Electrochemical Impedance Spectroscopy, EIS 38
Chapter 4 Result and Discussion 40
4.1 Physical Characterization 40
4.2 Electrochemical Characterization 42
4.3 X-ray Photoelectron Spectroscopy (XPS) 45
4.4 Product Analysis of High-Performance Liquid Chromatography (HPLC) 47
4.4.1 Product Distribution 49
4.4.2 Carbon Balance 53
4.4.3 Oxidation Products Voltammograms 54
4.5 Product Analysis of Gas Chromatography (GC) 56
4.6 In-Situ Raman Spectrum 58
4.6.1 In-Situ Raman/ Chrono-amperometry 61
4.6.1 In-Situ Raman/ Cyclic Voltammetry 66
4.7 Reaction Pathway Study 68
4.8 Comparison of Different Electrolyte for GEOR 70
Chapter 5 Conclusion 78
References 80
Appendix 87
[1] A. Talebian-Kiakalaieh, N.A.S. Amin, K. Rajaei, S. Tarighi, Oxidation of bio-renewable glycerol to value-added chemicals through catalytic and electro-chemical processes, Applied Energy, 230 (2018) 1347-1379.
[2] O.F.A. Outlook, OECD/FAO, Paris, 2017.
[3] G. Dodekatos, L. Abis, S.J. Freakley, H. Tüysüz, G.J. Hutchings, Glycerol Oxidation Using MgO- and Al2O3-supported Gold and Gold-Palladium Nanoparticles Prepared in the Absence of Polymer Stabilizers, ChemCatChem, 10 (2018) 1351-1359.
[4] C.H.C. Zhou, J.N. Beltramini, Y.X. Fan, G.Q.M. Lu, Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals, Chemical Society Reviews, 37 (2008) 527-549.
[5] H.J. Kim, Y. Kim, D.E. Lee, J.R. Kim, H.J. Chae, S.Y. Jeong, B.S. Kim, J. Lee, G.W. Huber, J. Byun, S. Kim, J. Han, Coproducing Value-Added Chemicals and Hydrogen with Electrocatalytic Glycerol Oxidation Technology: Experimental and Techno-Economic Investigations, ACS Sustainable Chemistry & Engineering, 5 (2017) 6626-6634.
[6] Q. He, J. McNutt, J. Yang, Utilization of the residual glycerol from biodiesel production for renewable energy generation, Renewable & Sustainable Energy Reviews, 71 (2017) 63-76.
[7] M. Paliagro, M.J.R.G.C. Rossi, The Future of Glycerol, 2008.
[8] L. Clarizia, I.D. Somma, L. Onotri, R. Andreozzi, R. Marotta, Kinetic modeling of hydrogen generation over nano-Cu (s) /TiO 2 catalyst through photoreforming of alcohols, Catalysis Today, 281 (2017) 117-123.
[9] D. Sun, Y. Yamada, S. Sato, W. Ueda, Glycerol hydrogenolysis into useful C3 chemicals, Applied Catalysis B: Environmental, 193 (2016) 75-92.
[10] M.H. Haider, N.F. Dummer, D.W. Knight, R.L. Jenkins, M. Howard, J. Moulijn, S.H. Taylor, G.J. Hutchings, Efficient green methanol synthesis from glycerol, Nat Chem, 7 (2015) 1028-1032.
[11] D. Sun, Y. Yamada, S. Sato, W. Ueda, Glycerol as a potential renewable raw material for acrylic acid production, Green Chemistry, 19 (2017) 3186-3213.
[12] M. Malyaadri, K. Jagadeeswaraiah, P.S. Sai Prasad, N. Lingaiah, Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over Mg/Al/Zr catalysts, Applied Catalysis A: General, 401 (2011) 153-157.
[13] A. Martin, M. Richter, Oligomerization of glycerol - a critical review, European Journal of Lipid Science and Technology, 113 (2011) 100-117.
[14] R.P.V. Faria, C.S.M. Pereira, V. Silva, J.M. Loureiro, A.E. Rodrigues, Glycerol Valorization as Biofuel: Thermodynamic and Kinetic Study of the Acetalization of Glycerol with Acetaldehyde, Industrial & Engineering Chemistry Research, 52 (2013) 1538-1547.
[15] G. Dodekatos, S. Schunemann, H. Tuysuz, Recent Advances in Thermo-, Photo-, and Electrocatalytic Glycerol Oxidation, ACS Catalysis, 8 (2018) 6301-6333.
[16] B. Katryniok, H. Kimura, E. Skrzyńska, J.-S. Girardon, P. Fongarland, M. Capron, R. Ducoulombier, N. Mimura, S. Paul, F. Dumeignil, Selective catalytic oxidation of glycerol: perspectives for high value chemicals, Green Chemistry, 13 (2011) 1960-1979.
[17] H. Kimura, K. Tsuto, T. Wakisaka, Y. Kazumi, Y. Inaya, Selective oxidation of glycerol on a platinum-bismuth catalyst, Applied Catalysis A: General, 96 (1993) 217-228.
[18] S.-S. Liu, K.-Q. Sun, B.-Q. Xu, Specific Selectivity of Au-Catalyzed Oxidation of Glycerol and Other C3-Polyols in Water without the Presence of a Base, ACS Catalysis, 4 (2014) 2226-2230.
[19] N. Vivek, R. Sindhu, A. Madhavan, A.J. Anju, E. Castro, V. Faraco, A. Pandey, P. Binod, Recent advances in the production of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate - Metabolic aspects, challenges and possibilities: An overview, Bioresour Technol, 239 (2017) 507-517.
[20] R. Ciriminna, M. Pagliaro, One-Pot Homogeneous and Heterogeneous Oxidation of Glycerol to Ketomalonic Acid Mediated by TEMPO, Advanced Synthesis & Catalysis, 345 (2003) 383-388.
[21] T. Imanaka, H. Terasaki, A. Fujio, Y.J.I. Yokota, H. Terasaki, J. A. Fujio, JP1992133500, 1993.
[22] J. Qi, L. Xin, D.J. Chadderdon, Y. Qiu, Y. Jiang, N. Benipal, C. Liang, W. Li, Electrocatalytic selective oxidation of glycerol to tartronate on Au/C anode catalysts in anion exchange membrane fuel cells with electricity cogeneration, Applied Catalysis B: Environmental, 154-155 (2014) 360-368.
[23] E. Farnetti, C. Crotti, Selective oxidation of glycerol to formic acid catalyzed by iron salts, Catalysis Communications, 84 (2016) 1-4.
[24] J.L. Xu, Y.F. Zhao, H.J. Xu, H.Y. Zhang, B. Yu, L.D. Hao, Z.M. Liu, Selective oxidation of glycerol to formic acid catalyzed by Ru(OH)(4)/r-GO in the presence of FeCl3, Applied Catalysis B-Environmental, 154 (2014) 267-273.
[25] P.L. Liu, X.J. Gu, H. Zhang, J. Cheng, J. Song, H.Q. Su, Visible-light-driven catalytic activity enhancement of Pd in AuPd nanoparticles for hydrogen evolution from formic acid at room temperature, Applied Catalysis B-Environmental, 204 (2017) 497-504.
[26] M. Zacharska, L.G. Bulusheva, A.S. Lisitsyn, S. Beloshapkin, Y.N. Guo, A.L. Chuvilin, E.V. Shlyakhova, O.Y. Podyacheva, J.J. Leahy, A.V. Okotrub, D.A. Bulushev, Factors Influencing the Performance of Pd/C Catalysts in the Green Production of Hydrogen from Formic Acid, Chemsuschem, 10 (2017) 720-730.
[27] J. Zhang, M. Sun, Y. Han, Selective oxidation of glycerol to formic acid in highly concentrated aqueous solutions with molecular oxygen using V-substituted phosphomolybdic acids, RSC Advances, 4 (2014) 35463-35466.
[28] G. Dodekatos, L. Abis, S.J. Freakley, H. Tuysuz, G.J. Hutchings, Glycerol Oxidation Using MgO- and Al2O3-supported Gold and Gold-Palladium Nanoparticles Prepared in the Absence of Polymer Stabilizers, Chemcatchem, 10 (2018) 1351-1359.
[29] O.A. Simakova, R.J. Davis, D.Y. Murzin, Selective Oxidation/Dehydrogenation Reactions, Biomass Processing over Gold Catalysts, Springer2013, pp. 11-31.
[30] G.Y. Yang, Y.H. Ke, H.F. Ren, C.L. Liu, R.Z. Yang, W.S. Dong, The conversion of glycerol to lactic acid catalyzed by ZrO2-supported CuO catalysts, Chemical Engineering Journal, 283 (2016) 759-767.
[31] J.H. Kou, C.H. Lu, J. Wang, Y.K. Chen, Z.Z. Xu, R.S. Varma, Selectivity Enhancement in Heterogeneous Photocatalytic Transformations, Chemical Reviews, 117 (2017) 1445-1514.
[32] H. Kisch, Semiconductor Photocatalysis for Chemoselective Radical Coupling Reactions, Accounts of Chemical Research, 50 (2017) 1002-1010.
[33] V. Maurino, A. Bedini, M. Minella, F. Rubertelli, E. Pelizzetti, C. Minero, Glycerol Transformation Through Photocatalysis: A Possible Route to Value Added Chemicals, Journal of Advanced Oxidation Technologies, 11 (2008) 184-192.
[34] G. Dodekatos, H. Tuysuz, Plasmonic Au/TiO2 nanostructures for glycerol oxidation, Catalysis Science & Technology, 6 (2016) 7307-7315.
[35] Y.H. Zhang, N. Zhang, Z.R. Tang, Y.J. Xu, Identification of Bi2WO6 as a highly selective visible-light photocatalyst toward oxidation of glycerol to dihydroxyacetone in water, Chemical Science, 4 (2013) 1820-1824.
[36] S. Zhao, Z. Dai, W.J. Guo, F.X. Chen, Y.L. Liu, R. Chen, Highly selective oxidation of glycerol over Bi/Bi3.64Mo0.36O6.55 heterostructure: Dual reaction pathways induced by photogenerated O-1(2) and holes, Applied Catalysis B-Environmental, 244 (2019) 206-214.
[37] T.W.P. Seadira, G. Sadanandam, T. Ntho, C.M. Masuku, M.S. Scurrell, Preparation and characterization of metals supported on nanostructured TiO2 hollow spheres for production of hydrogen via photocatalytic reforming of glycerol, Applied Catalysis B-Environmental, 222 (2018) 133-145.
[38] T.N.S. Trindade, L.A. Silva, Cd-doped SnO2/CdS heterostructures for efficient application in photocatalytic reforming of glycerol to produce hydrogen under visible light irradiation, Journal of Alloys and Compounds, 735 (2018) 400-408.
[39] V.L. Oliveira, C. Morais, K. Servat, T.W. Napporn, P. Olivi, K.B. Kokoh, G. Tremiliosi-Filho, Kinetic Investigations of Glycerol Oxidation Reaction on Ni/C, Electrocatalysis, 6 (2015) 447-454.
[40] C.A. Martins, P.S. Fernández, G.A. Camara, Alternative Uses for Biodiesel Byproduct: Glycerol as Source of Energy and High Valuable Chemicals, Increased Biodiesel Efficiency, Springer2018, pp. 159-186.
[41] M. Simoes, S. Baranton, C. Coutanceau, Electrochemical valorisation of glycerol, ChemSusChem, 5 (2012) 2106-2124.
[42] C. Dai, L. Sun, H. Liao, B. Khezri, R.D. Webster, A.C. Fisher, Z.J. Xu, Electrochemical production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles, Journal of Catalysis, 356 (2017) 14-21.
[43] Y. Kwon, Y. Birdja, I. Spanos, P. Rodriguez, M.T.M. Koper, Highly Selective Electro-Oxidation of Glycerol to Dihydroxyacetone on Platinum in the Presence of Bismuth, ACS Catalysis, 2 (2012) 759-764.
[44] T. Holm, P.K. Dahlstrøm, O.S. Burheim, S. Sunde, D.A. Harrington, F. Seland, Method for studying high temperature aqueous electrochemical systems: Methanol and glycerol oxidation, Electrochimica Acta, 222 (2016) 1792-1799.
[45] Z. Zhang, L. Xin, W. Li, Electrocatalytic oxidation of glycerol on Pt/C in anion-exchange membrane fuel cell: Cogeneration of electricity and valuable chemicals, Applied Catalysis B: Environmental, 119-120 (2012) 40-48.
[46] Y. Kwon, S.C. Lai, P. Rodriguez, M.T. Koper, Electrocatalytic oxidation of alcohols on gold in alkaline media: base or gold catalysis?, J Am Chem Soc, 133 (2011) 6914-6917.
[47] L. Du, Y. Shao, J. Sun, G. Yin, C. Du, Y. Wang, Electrocatalytic valorisation of biomass derived chemicals, Catalysis Science & Technology, 8 (2018) 3216-3232.
[48] A. Villa, D. Wang, G.M. Veith, L. Prati, Bismuth as a modifier of Au-Pd catalyst: Enhancing selectivity in alcohol oxidation by suppressing parallel reaction, Journal of Catalysis, 292 (2012) 73-80.
[49] A. Zalineeva, S. Baranton, C. Coutanceau, How do Bi-modified palladium nanoparticles work towards glycerol electrooxidation? An in situ FTIR study, Electrochimica Acta, 176 (2015) 705-717.
[50] H. Inoue, S. Kimura, Y. Teraoka, M. Chiku, E. Higuchi, B.T.X. Lam, Mechanism of glycerol oxidation reaction on silver-modified palladium electrode in alkaline medium, International Journal of Hydrogen Energy, 43 (2018) 18664-18671.
[51] V.M.F. de Araujo, E. Antolini, L.A. Pocrifka, R.R. Passos, Electro-oxidation of Glycerol on Carbon Supported Pt75CoxNi25-x (x = 0, 0.9, 12.5, 24.1 and 25) Catalysts in an Alkaline Medium, Electrocatalysis, 9 (2018) 673-681.
[52] C.Y. Zhai, J.Y. Hu, H.F. Gao, L.X. Zeng, M.Q. Xue, Z.Q. Liu, M.S. Zhu, Nano-engineered hexagonal PtCuCo nanocrystals with enhanced catalytic activity for ethylene glycol and glycerol electrooxidation, Journal of the Taiwan Institute of Chemical Engineers, 93 (2018) 477-484.
[53] Y. Kwon, M.T.M. Koper, Combining Voltammetry with HPLC: Application to Electro-Oxidation of Glycerol, Analytical Chemistry, 82 (2010) 5420-5424.
[54] M.S.E. Houache, E. Cossar, S. Ntais, E.A. Baranova, Electrochemical modification of nickel surfaces for efficient glycerol electrooxidation, Journal of Power Sources, 375 (2018) 310-319.
[55] B. Habibi, N. Delnavaz, Electrooxidation of glycerol on nickel and nickel alloy (Ni–Cu and Ni–Co) nanoparticles in alkaline media, RSC Advances, 6 (2016) 31797-31806.
[56] S. Sun, L. Sun, S. Xi, Y. Du, M.U. Anu Prathap, Z. Wang, Q. Zhang, A. Fisher, Z.J. Xu, Electrochemical oxidation of C3 saturated alcohols on Co3O4 in alkaline, Electrochimica Acta, 228 (2017) 183-194.
[57] A. Ashok, A. Kumar, J. Ponraj, S.A. Mansour, F. Tarlochan, Single Step Synthesis of Porous NiCoO2 for Effective Electrooxidation of Glycerol in Alkaline Medium, Journal of The Electrochemical Society, 165 (2018) J3301-J3309.
[58] H. Wang, L. Thia, N. Li, X. Ge, Z. Liu, X. Wang, Selective electro-oxidation of glycerol over Au supported on extended poly(4-vinylpyridine) functionalized graphene, Applied Catalysis B: Environmental, 166-167 (2015) 25-31.
[59] Y.-z. Su, Q.-z. Xu, Q.-s. Zhong, C.-j. Zhang, S.-t. Shi, C.-w. Xu, Oxide (Co3O4, NiO, Mn3O4, MgO) promoted Au/C catalyst for glycerol electrooxidation in alkaline medium, Materials Research Bulletin, 64 (2015) 301-305.
[60] A.C. Garcia, E.B. Ferreira, V.V. Silva de Barros, J.J. Linares, G. Tremiliosi-Filho, PtAg/MnO /C as a promising electrocatalyst for glycerol electro-oxidation in alkaline medium, Journal of Electroanalytical Chemistry, 793 (2017) 188-196.
[61] J.F. Gomes, G. Tremiliosi-Filho, Spectroscopic Studies of the Glycerol Electro-Oxidation on Polycrystalline Au and Pt Surfaces in Acidic and Alkaline Media, Electrocatalysis, 2 (2011) 96-105.
[62] A. Villa, N. Dimitratos, C.E. Chan-Thaw, C. Hammond, L. Prati, G.J. Hutchings, Glycerol oxidation using gold-containing catalysts, Acc Chem Res, 48 (2015) 1403-1412.
[63] N.E. de Souza, J.F. Gomes, G. Tremiliosi-Filho, Reactivity of 3-carbon-atom chain alcohols on gold electrode: A comparison to understand the glycerol electro-oxidation, Journal of Electroanalytical Chemistry, 800 (2017) 106-113.
[64] N. Mimura, N. Muramatsu, N. Hiyoshi, O. Sato, Y. Masuda, A. Yamaguchi, Continuous Catalytic Oxidation of Glycerol to Carboxylic Acids Using Nanosized Gold/Alumina Catalysts and a Liquid-Phase Flow Reactor, ACS Omega, 3 (2018) 13862-13868.
[65] R.G. Da Silva, S. Aquino Neto, K.B. Kokoh, A.R. De Andrade, Electroconversion of glycerol in alkaline medium: From generation of energy to formation of value-added products, Journal of Power Sources, 351 (2017) 174-182.
[66] Y. Kwon, K.J.P. Schouten, M.T.M. Koper, Mechanism of the Catalytic Oxidation of Glycerol on Polycrystalline Gold and Platinum Electrodes, ChemCatChem, 3 (2011) 1176-1185.
[67] D. Hiltrop, S. Cychy, K. Elumeeva, W. Schuhmann, M. Muhler, Spectroelectrochemical studies on the effect of cations in the alkaline glycerol oxidation reaction over carbon nanotube-supported Pd nanoparticles, Beilstein Journal of Organic Chemistry, 14 (2018) 1428-1435.
[68] Y. Deng, B.S. Yeo, Characterization of Electrocatalytic Water Splitting and CO2 Reduction Reactions Using In Situ/Operando Raman Spectroscopy, ACS Catalysis, 7 (2017) 7873-7889.
[69] A. Gómez-Monsiváis, I. Velázquez-Hernández, L. Álvarez-Contreras, M. Guerra-Balcázar, L. Arriaga, N. Arjona, J. Ledesma-García, In Situ Surface-Enhanced Raman Spectroscopy Study of the Electrocatalytic Effect of PtFe/C Nanocatalyst on Ethanol Electro-Oxidation in Alkaline Medium, Energies, 10 (2017) 290.
[70] M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chemical Physics Letters, 26 (1974) 163-166.
[71] B. Ren, X.F. Lin, Y.X. Jiang, P.G. Cao, Y. Xie, Q.J. Huang, Z.Q. Tian, Optimizing detection sensitivity on surface-enhanced Raman scattering of transition-metal electrodes with confocal Raman microscopy, Appl Spectrosc, 57 (2003) 419-427.
[72] Z.C. Zeng, S. Hu, S.C. Huang, Y.J. Zhang, W.X. Zhao, J.F. Li, C. Jiang, B. Ren, Novel Electrochemical Raman Spectroscopy Enabled by Water Immersion Objective, Anal Chem, 88 (2016) 9381-9385.
[73] I. Velázquez-Hernández, M.T. Oropeza-Guzmán, M. Guerra-Balcázar, L. Álvarez-Contreras, N. Arjona, Electrocatalytic Promotion of Pt Nanoparticles by Incorporation of Ni(OH)2 for Glycerol Electro-Oxidation: Analysis of Activity and Reaction Pathway, ChemNanoMat, 5 (2019) 68-78.
[74] P. Chand, A. Gaur, A. Kumar, Structural, Optical, and Ferroelectric Behaviors of Cu1−x Li x O (0 ≤ x ≤ 0.09) Nanostructures, Acta Metallurgica Sinica (English Letters), 27 (2014) 306-312.
[75] C.-Y. Chiang, Y. Shin, K. Aroh, S. Ehrman, Copper oxide photocathodes prepared by a solution based process, International Journal of Hydrogen Energy, 37 (2012) 8232-8239.
[76] A.H. Maruta, T.R.L.C. Paixão, Flow injection analysis of free glycerol in biodiesel using a copper electrode as an amperometric detector, Fuel, 91 (2012) 187-191.
[77] L. Thia, M. Xie, Z. Liu, X. Ge, Y. Lu, W.E. Fong, X. Wang, Copper-Modified Gold Nanoparticles as Highly Selective Catalysts for Glycerol Electro-Oxidation in Alkaline Solution, ChemCatChem, 8 (2016) 3272-3278.
[78] A.J. Bard, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical methods: fundamentals and applications, wiley, New York,1980.
[79] E.P. Randviir, C.E. Banks, Electrochemical impedance spectroscopy: an overview of bioanalytical applications, Analytical Methods, 5 (2013) 1098-1115.
[80] W. Wang, Z. Liu, Y. Liu, C. Xu, C. Zheng, G. Wang, A simple wet-chemical synthesis and characterization of CuO nanorods, Applied Physics A: Materials Science & Processing, 76 (2003) 417-420.
[81] Z.Y. Zhang, L. Xin, J. Qi, D.J. Chadderdon, K. Sun, K.M. Warsko, W.Z. Li, Selective electro-oxidation of glycerol to tartronate or mesoxalate on Au nanoparticle catalyst via electrode potential tuning in anion-exchange membrane electro-catalytic flow reactor, Applied Catalysis B-Environmental, 147 (2014) 871-878.
[82] J.C. Speck, The Lobry De Bruyn-Alberda Van Ekenstein Transformation, Advances in carbohydrate chemistry, 13 (1958) 63-103.
[83] K.K. Chow, M. Short, S. Lam, A. McWilliams, H. Zeng, A Raman cell based on hollow core photonic crystal fiber for human breath analysis, Med Phys, 41 (2014) 092701.
[84] C.H. Lam, A.J. Bloomfield, P.T. Anastas, A switchable route to valuable commodity chemicals from glycerol via electrocatalytic oxidation with an earth abundant metal oxidation catalyst, Green Chemistry, 19 (2017) 1958-1968.
[85] N.Y. Suzuki, P.V.B. Santiago, T.S. Galhardo, W.A. Carvalho, J. Souza-Garcia, C.A. Angelucci, Insights of glycerol electrooxidation on polycrystalline silver electrode, Journal of Electroanalytical Chemistry, 780 (2016) 391-395.
[86] Z.-F. Yuan, W.-N. Zhao, Z.-P. Liu, B.-Q. Xu, NaOH alone can be a homogeneous catalyst for selective aerobic oxidation of alcohols in water, Journal of Catalysis, 353 (2017) 37-43.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top