|
[1] A. Talebian-Kiakalaieh, N.A.S. Amin, K. Rajaei, S. Tarighi, Oxidation of bio-renewable glycerol to value-added chemicals through catalytic and electro-chemical processes, Applied Energy, 230 (2018) 1347-1379. [2] O.F.A. Outlook, OECD/FAO, Paris, 2017. [3] G. Dodekatos, L. Abis, S.J. Freakley, H. Tüysüz, G.J. Hutchings, Glycerol Oxidation Using MgO- and Al2O3-supported Gold and Gold-Palladium Nanoparticles Prepared in the Absence of Polymer Stabilizers, ChemCatChem, 10 (2018) 1351-1359. [4] C.H.C. Zhou, J.N. Beltramini, Y.X. Fan, G.Q.M. Lu, Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals, Chemical Society Reviews, 37 (2008) 527-549. [5] H.J. Kim, Y. Kim, D.E. Lee, J.R. Kim, H.J. Chae, S.Y. Jeong, B.S. Kim, J. Lee, G.W. Huber, J. Byun, S. Kim, J. Han, Coproducing Value-Added Chemicals and Hydrogen with Electrocatalytic Glycerol Oxidation Technology: Experimental and Techno-Economic Investigations, ACS Sustainable Chemistry & Engineering, 5 (2017) 6626-6634. [6] Q. He, J. McNutt, J. Yang, Utilization of the residual glycerol from biodiesel production for renewable energy generation, Renewable & Sustainable Energy Reviews, 71 (2017) 63-76. [7] M. Paliagro, M.J.R.G.C. Rossi, The Future of Glycerol, 2008. [8] L. Clarizia, I.D. Somma, L. Onotri, R. Andreozzi, R. Marotta, Kinetic modeling of hydrogen generation over nano-Cu (s) /TiO 2 catalyst through photoreforming of alcohols, Catalysis Today, 281 (2017) 117-123. [9] D. Sun, Y. Yamada, S. Sato, W. Ueda, Glycerol hydrogenolysis into useful C3 chemicals, Applied Catalysis B: Environmental, 193 (2016) 75-92. [10] M.H. Haider, N.F. Dummer, D.W. Knight, R.L. Jenkins, M. Howard, J. Moulijn, S.H. Taylor, G.J. Hutchings, Efficient green methanol synthesis from glycerol, Nat Chem, 7 (2015) 1028-1032. [11] D. Sun, Y. Yamada, S. Sato, W. Ueda, Glycerol as a potential renewable raw material for acrylic acid production, Green Chemistry, 19 (2017) 3186-3213. [12] M. Malyaadri, K. Jagadeeswaraiah, P.S. Sai Prasad, N. Lingaiah, Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over Mg/Al/Zr catalysts, Applied Catalysis A: General, 401 (2011) 153-157. [13] A. Martin, M. Richter, Oligomerization of glycerol - a critical review, European Journal of Lipid Science and Technology, 113 (2011) 100-117. [14] R.P.V. Faria, C.S.M. Pereira, V. Silva, J.M. Loureiro, A.E. Rodrigues, Glycerol Valorization as Biofuel: Thermodynamic and Kinetic Study of the Acetalization of Glycerol with Acetaldehyde, Industrial & Engineering Chemistry Research, 52 (2013) 1538-1547. [15] G. Dodekatos, S. Schunemann, H. Tuysuz, Recent Advances in Thermo-, Photo-, and Electrocatalytic Glycerol Oxidation, ACS Catalysis, 8 (2018) 6301-6333. [16] B. Katryniok, H. Kimura, E. Skrzyńska, J.-S. Girardon, P. Fongarland, M. Capron, R. Ducoulombier, N. Mimura, S. Paul, F. Dumeignil, Selective catalytic oxidation of glycerol: perspectives for high value chemicals, Green Chemistry, 13 (2011) 1960-1979. [17] H. Kimura, K. Tsuto, T. Wakisaka, Y. Kazumi, Y. Inaya, Selective oxidation of glycerol on a platinum-bismuth catalyst, Applied Catalysis A: General, 96 (1993) 217-228. [18] S.-S. Liu, K.-Q. Sun, B.-Q. Xu, Specific Selectivity of Au-Catalyzed Oxidation of Glycerol and Other C3-Polyols in Water without the Presence of a Base, ACS Catalysis, 4 (2014) 2226-2230. [19] N. Vivek, R. Sindhu, A. Madhavan, A.J. Anju, E. Castro, V. Faraco, A. Pandey, P. Binod, Recent advances in the production of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate - Metabolic aspects, challenges and possibilities: An overview, Bioresour Technol, 239 (2017) 507-517. [20] R. Ciriminna, M. Pagliaro, One-Pot Homogeneous and Heterogeneous Oxidation of Glycerol to Ketomalonic Acid Mediated by TEMPO, Advanced Synthesis & Catalysis, 345 (2003) 383-388. [21] T. Imanaka, H. Terasaki, A. Fujio, Y.J.I. Yokota, H. Terasaki, J. A. Fujio, JP1992133500, 1993. [22] J. Qi, L. Xin, D.J. Chadderdon, Y. Qiu, Y. Jiang, N. Benipal, C. Liang, W. Li, Electrocatalytic selective oxidation of glycerol to tartronate on Au/C anode catalysts in anion exchange membrane fuel cells with electricity cogeneration, Applied Catalysis B: Environmental, 154-155 (2014) 360-368. [23] E. Farnetti, C. Crotti, Selective oxidation of glycerol to formic acid catalyzed by iron salts, Catalysis Communications, 84 (2016) 1-4. [24] J.L. Xu, Y.F. Zhao, H.J. Xu, H.Y. Zhang, B. Yu, L.D. Hao, Z.M. Liu, Selective oxidation of glycerol to formic acid catalyzed by Ru(OH)(4)/r-GO in the presence of FeCl3, Applied Catalysis B-Environmental, 154 (2014) 267-273. [25] P.L. Liu, X.J. Gu, H. Zhang, J. Cheng, J. Song, H.Q. Su, Visible-light-driven catalytic activity enhancement of Pd in AuPd nanoparticles for hydrogen evolution from formic acid at room temperature, Applied Catalysis B-Environmental, 204 (2017) 497-504. [26] M. Zacharska, L.G. Bulusheva, A.S. Lisitsyn, S. Beloshapkin, Y.N. Guo, A.L. Chuvilin, E.V. Shlyakhova, O.Y. Podyacheva, J.J. Leahy, A.V. Okotrub, D.A. Bulushev, Factors Influencing the Performance of Pd/C Catalysts in the Green Production of Hydrogen from Formic Acid, Chemsuschem, 10 (2017) 720-730. [27] J. Zhang, M. Sun, Y. Han, Selective oxidation of glycerol to formic acid in highly concentrated aqueous solutions with molecular oxygen using V-substituted phosphomolybdic acids, RSC Advances, 4 (2014) 35463-35466. [28] G. Dodekatos, L. Abis, S.J. Freakley, H. Tuysuz, G.J. Hutchings, Glycerol Oxidation Using MgO- and Al2O3-supported Gold and Gold-Palladium Nanoparticles Prepared in the Absence of Polymer Stabilizers, Chemcatchem, 10 (2018) 1351-1359. [29] O.A. Simakova, R.J. Davis, D.Y. Murzin, Selective Oxidation/Dehydrogenation Reactions, Biomass Processing over Gold Catalysts, Springer2013, pp. 11-31. [30] G.Y. Yang, Y.H. Ke, H.F. Ren, C.L. Liu, R.Z. Yang, W.S. Dong, The conversion of glycerol to lactic acid catalyzed by ZrO2-supported CuO catalysts, Chemical Engineering Journal, 283 (2016) 759-767. [31] J.H. Kou, C.H. Lu, J. Wang, Y.K. Chen, Z.Z. Xu, R.S. Varma, Selectivity Enhancement in Heterogeneous Photocatalytic Transformations, Chemical Reviews, 117 (2017) 1445-1514. [32] H. Kisch, Semiconductor Photocatalysis for Chemoselective Radical Coupling Reactions, Accounts of Chemical Research, 50 (2017) 1002-1010. [33] V. Maurino, A. Bedini, M. Minella, F. Rubertelli, E. Pelizzetti, C. Minero, Glycerol Transformation Through Photocatalysis: A Possible Route to Value Added Chemicals, Journal of Advanced Oxidation Technologies, 11 (2008) 184-192. [34] G. Dodekatos, H. Tuysuz, Plasmonic Au/TiO2 nanostructures for glycerol oxidation, Catalysis Science & Technology, 6 (2016) 7307-7315. [35] Y.H. Zhang, N. Zhang, Z.R. Tang, Y.J. Xu, Identification of Bi2WO6 as a highly selective visible-light photocatalyst toward oxidation of glycerol to dihydroxyacetone in water, Chemical Science, 4 (2013) 1820-1824. [36] S. Zhao, Z. Dai, W.J. Guo, F.X. Chen, Y.L. Liu, R. Chen, Highly selective oxidation of glycerol over Bi/Bi3.64Mo0.36O6.55 heterostructure: Dual reaction pathways induced by photogenerated O-1(2) and holes, Applied Catalysis B-Environmental, 244 (2019) 206-214. [37] T.W.P. Seadira, G. Sadanandam, T. Ntho, C.M. Masuku, M.S. Scurrell, Preparation and characterization of metals supported on nanostructured TiO2 hollow spheres for production of hydrogen via photocatalytic reforming of glycerol, Applied Catalysis B-Environmental, 222 (2018) 133-145. [38] T.N.S. Trindade, L.A. Silva, Cd-doped SnO2/CdS heterostructures for efficient application in photocatalytic reforming of glycerol to produce hydrogen under visible light irradiation, Journal of Alloys and Compounds, 735 (2018) 400-408. [39] V.L. Oliveira, C. Morais, K. Servat, T.W. Napporn, P. Olivi, K.B. Kokoh, G. Tremiliosi-Filho, Kinetic Investigations of Glycerol Oxidation Reaction on Ni/C, Electrocatalysis, 6 (2015) 447-454. [40] C.A. Martins, P.S. Fernández, G.A. Camara, Alternative Uses for Biodiesel Byproduct: Glycerol as Source of Energy and High Valuable Chemicals, Increased Biodiesel Efficiency, Springer2018, pp. 159-186. [41] M. Simoes, S. Baranton, C. Coutanceau, Electrochemical valorisation of glycerol, ChemSusChem, 5 (2012) 2106-2124. [42] C. Dai, L. Sun, H. Liao, B. Khezri, R.D. Webster, A.C. Fisher, Z.J. Xu, Electrochemical production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles, Journal of Catalysis, 356 (2017) 14-21. [43] Y. Kwon, Y. Birdja, I. Spanos, P. Rodriguez, M.T.M. Koper, Highly Selective Electro-Oxidation of Glycerol to Dihydroxyacetone on Platinum in the Presence of Bismuth, ACS Catalysis, 2 (2012) 759-764. [44] T. Holm, P.K. Dahlstrøm, O.S. Burheim, S. Sunde, D.A. Harrington, F. Seland, Method for studying high temperature aqueous electrochemical systems: Methanol and glycerol oxidation, Electrochimica Acta, 222 (2016) 1792-1799. [45] Z. Zhang, L. Xin, W. Li, Electrocatalytic oxidation of glycerol on Pt/C in anion-exchange membrane fuel cell: Cogeneration of electricity and valuable chemicals, Applied Catalysis B: Environmental, 119-120 (2012) 40-48. [46] Y. Kwon, S.C. Lai, P. Rodriguez, M.T. Koper, Electrocatalytic oxidation of alcohols on gold in alkaline media: base or gold catalysis?, J Am Chem Soc, 133 (2011) 6914-6917. [47] L. Du, Y. Shao, J. Sun, G. Yin, C. Du, Y. Wang, Electrocatalytic valorisation of biomass derived chemicals, Catalysis Science & Technology, 8 (2018) 3216-3232. [48] A. Villa, D. Wang, G.M. Veith, L. Prati, Bismuth as a modifier of Au-Pd catalyst: Enhancing selectivity in alcohol oxidation by suppressing parallel reaction, Journal of Catalysis, 292 (2012) 73-80. [49] A. Zalineeva, S. Baranton, C. Coutanceau, How do Bi-modified palladium nanoparticles work towards glycerol electrooxidation? An in situ FTIR study, Electrochimica Acta, 176 (2015) 705-717. [50] H. Inoue, S. Kimura, Y. Teraoka, M. Chiku, E. Higuchi, B.T.X. Lam, Mechanism of glycerol oxidation reaction on silver-modified palladium electrode in alkaline medium, International Journal of Hydrogen Energy, 43 (2018) 18664-18671. [51] V.M.F. de Araujo, E. Antolini, L.A. Pocrifka, R.R. Passos, Electro-oxidation of Glycerol on Carbon Supported Pt75CoxNi25-x (x = 0, 0.9, 12.5, 24.1 and 25) Catalysts in an Alkaline Medium, Electrocatalysis, 9 (2018) 673-681. [52] C.Y. Zhai, J.Y. Hu, H.F. Gao, L.X. Zeng, M.Q. Xue, Z.Q. Liu, M.S. Zhu, Nano-engineered hexagonal PtCuCo nanocrystals with enhanced catalytic activity for ethylene glycol and glycerol electrooxidation, Journal of the Taiwan Institute of Chemical Engineers, 93 (2018) 477-484. [53] Y. Kwon, M.T.M. Koper, Combining Voltammetry with HPLC: Application to Electro-Oxidation of Glycerol, Analytical Chemistry, 82 (2010) 5420-5424. [54] M.S.E. Houache, E. Cossar, S. Ntais, E.A. Baranova, Electrochemical modification of nickel surfaces for efficient glycerol electrooxidation, Journal of Power Sources, 375 (2018) 310-319. [55] B. Habibi, N. Delnavaz, Electrooxidation of glycerol on nickel and nickel alloy (Ni–Cu and Ni–Co) nanoparticles in alkaline media, RSC Advances, 6 (2016) 31797-31806. [56] S. Sun, L. Sun, S. Xi, Y. Du, M.U. Anu Prathap, Z. Wang, Q. Zhang, A. Fisher, Z.J. Xu, Electrochemical oxidation of C3 saturated alcohols on Co3O4 in alkaline, Electrochimica Acta, 228 (2017) 183-194. [57] A. Ashok, A. Kumar, J. Ponraj, S.A. Mansour, F. Tarlochan, Single Step Synthesis of Porous NiCoO2 for Effective Electrooxidation of Glycerol in Alkaline Medium, Journal of The Electrochemical Society, 165 (2018) J3301-J3309. [58] H. Wang, L. Thia, N. Li, X. Ge, Z. Liu, X. Wang, Selective electro-oxidation of glycerol over Au supported on extended poly(4-vinylpyridine) functionalized graphene, Applied Catalysis B: Environmental, 166-167 (2015) 25-31. [59] Y.-z. Su, Q.-z. Xu, Q.-s. Zhong, C.-j. Zhang, S.-t. Shi, C.-w. Xu, Oxide (Co3O4, NiO, Mn3O4, MgO) promoted Au/C catalyst for glycerol electrooxidation in alkaline medium, Materials Research Bulletin, 64 (2015) 301-305. [60] A.C. Garcia, E.B. Ferreira, V.V. Silva de Barros, J.J. Linares, G. Tremiliosi-Filho, PtAg/MnO /C as a promising electrocatalyst for glycerol electro-oxidation in alkaline medium, Journal of Electroanalytical Chemistry, 793 (2017) 188-196. [61] J.F. Gomes, G. Tremiliosi-Filho, Spectroscopic Studies of the Glycerol Electro-Oxidation on Polycrystalline Au and Pt Surfaces in Acidic and Alkaline Media, Electrocatalysis, 2 (2011) 96-105. [62] A. Villa, N. Dimitratos, C.E. Chan-Thaw, C. Hammond, L. Prati, G.J. Hutchings, Glycerol oxidation using gold-containing catalysts, Acc Chem Res, 48 (2015) 1403-1412. [63] N.E. de Souza, J.F. Gomes, G. Tremiliosi-Filho, Reactivity of 3-carbon-atom chain alcohols on gold electrode: A comparison to understand the glycerol electro-oxidation, Journal of Electroanalytical Chemistry, 800 (2017) 106-113. [64] N. Mimura, N. Muramatsu, N. Hiyoshi, O. Sato, Y. Masuda, A. Yamaguchi, Continuous Catalytic Oxidation of Glycerol to Carboxylic Acids Using Nanosized Gold/Alumina Catalysts and a Liquid-Phase Flow Reactor, ACS Omega, 3 (2018) 13862-13868. [65] R.G. Da Silva, S. Aquino Neto, K.B. Kokoh, A.R. De Andrade, Electroconversion of glycerol in alkaline medium: From generation of energy to formation of value-added products, Journal of Power Sources, 351 (2017) 174-182. [66] Y. Kwon, K.J.P. Schouten, M.T.M. Koper, Mechanism of the Catalytic Oxidation of Glycerol on Polycrystalline Gold and Platinum Electrodes, ChemCatChem, 3 (2011) 1176-1185. [67] D. Hiltrop, S. Cychy, K. Elumeeva, W. Schuhmann, M. Muhler, Spectroelectrochemical studies on the effect of cations in the alkaline glycerol oxidation reaction over carbon nanotube-supported Pd nanoparticles, Beilstein Journal of Organic Chemistry, 14 (2018) 1428-1435. [68] Y. Deng, B.S. Yeo, Characterization of Electrocatalytic Water Splitting and CO2 Reduction Reactions Using In Situ/Operando Raman Spectroscopy, ACS Catalysis, 7 (2017) 7873-7889. [69] A. Gómez-Monsiváis, I. Velázquez-Hernández, L. Álvarez-Contreras, M. Guerra-Balcázar, L. Arriaga, N. Arjona, J. Ledesma-García, In Situ Surface-Enhanced Raman Spectroscopy Study of the Electrocatalytic Effect of PtFe/C Nanocatalyst on Ethanol Electro-Oxidation in Alkaline Medium, Energies, 10 (2017) 290. [70] M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chemical Physics Letters, 26 (1974) 163-166. [71] B. Ren, X.F. Lin, Y.X. Jiang, P.G. Cao, Y. Xie, Q.J. Huang, Z.Q. Tian, Optimizing detection sensitivity on surface-enhanced Raman scattering of transition-metal electrodes with confocal Raman microscopy, Appl Spectrosc, 57 (2003) 419-427. [72] Z.C. Zeng, S. Hu, S.C. Huang, Y.J. Zhang, W.X. Zhao, J.F. Li, C. Jiang, B. Ren, Novel Electrochemical Raman Spectroscopy Enabled by Water Immersion Objective, Anal Chem, 88 (2016) 9381-9385. [73] I. Velázquez-Hernández, M.T. Oropeza-Guzmán, M. Guerra-Balcázar, L. Álvarez-Contreras, N. Arjona, Electrocatalytic Promotion of Pt Nanoparticles by Incorporation of Ni(OH)2 for Glycerol Electro-Oxidation: Analysis of Activity and Reaction Pathway, ChemNanoMat, 5 (2019) 68-78. [74] P. Chand, A. Gaur, A. Kumar, Structural, Optical, and Ferroelectric Behaviors of Cu1−x Li x O (0 ≤ x ≤ 0.09) Nanostructures, Acta Metallurgica Sinica (English Letters), 27 (2014) 306-312. [75] C.-Y. Chiang, Y. Shin, K. Aroh, S. Ehrman, Copper oxide photocathodes prepared by a solution based process, International Journal of Hydrogen Energy, 37 (2012) 8232-8239. [76] A.H. Maruta, T.R.L.C. Paixão, Flow injection analysis of free glycerol in biodiesel using a copper electrode as an amperometric detector, Fuel, 91 (2012) 187-191. [77] L. Thia, M. Xie, Z. Liu, X. Ge, Y. Lu, W.E. Fong, X. Wang, Copper-Modified Gold Nanoparticles as Highly Selective Catalysts for Glycerol Electro-Oxidation in Alkaline Solution, ChemCatChem, 8 (2016) 3272-3278. [78] A.J. Bard, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical methods: fundamentals and applications, wiley, New York,1980. [79] E.P. Randviir, C.E. Banks, Electrochemical impedance spectroscopy: an overview of bioanalytical applications, Analytical Methods, 5 (2013) 1098-1115. [80] W. Wang, Z. Liu, Y. Liu, C. Xu, C. Zheng, G. Wang, A simple wet-chemical synthesis and characterization of CuO nanorods, Applied Physics A: Materials Science & Processing, 76 (2003) 417-420. [81] Z.Y. Zhang, L. Xin, J. Qi, D.J. Chadderdon, K. Sun, K.M. Warsko, W.Z. Li, Selective electro-oxidation of glycerol to tartronate or mesoxalate on Au nanoparticle catalyst via electrode potential tuning in anion-exchange membrane electro-catalytic flow reactor, Applied Catalysis B-Environmental, 147 (2014) 871-878. [82] J.C. Speck, The Lobry De Bruyn-Alberda Van Ekenstein Transformation, Advances in carbohydrate chemistry, 13 (1958) 63-103. [83] K.K. Chow, M. Short, S. Lam, A. McWilliams, H. Zeng, A Raman cell based on hollow core photonic crystal fiber for human breath analysis, Med Phys, 41 (2014) 092701. [84] C.H. Lam, A.J. Bloomfield, P.T. Anastas, A switchable route to valuable commodity chemicals from glycerol via electrocatalytic oxidation with an earth abundant metal oxidation catalyst, Green Chemistry, 19 (2017) 1958-1968. [85] N.Y. Suzuki, P.V.B. Santiago, T.S. Galhardo, W.A. Carvalho, J. Souza-Garcia, C.A. Angelucci, Insights of glycerol electrooxidation on polycrystalline silver electrode, Journal of Electroanalytical Chemistry, 780 (2016) 391-395. [86] Z.-F. Yuan, W.-N. Zhao, Z.-P. Liu, B.-Q. Xu, NaOH alone can be a homogeneous catalyst for selective aerobic oxidation of alcohols in water, Journal of Catalysis, 353 (2017) 37-43.
|