跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 09:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳政欣
研究生(外文):Chen, Cheng-Hsin
論文名稱:三族氮化物半導體光電性質之研究
論文名稱(外文):Optoelectronic Properties of III-Nitride Semiconductors
指導教授:陳永芳陳永芳引用關係
指導教授(外文):Chen, Yang-Fang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:177
中文關鍵詞:氮化物光電性質
外文關鍵詞:nitrideoptoelectronic properties
相關次數:
  • 被引用被引用:1
  • 點閱點閱:449
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
摘要
本論文研究三族氮化物半導體的光學與電學性質。研究的樣品包括氮化鎵/氮化鋁鎵超晶格結構、氮化鋁銦鎵四元磊晶薄膜、及氮化銦鎵/氮化鎵多重量子井結構,內容主要分為三大部分:
(一) 氮化鎵/氮化鋁鎵超晶格結構的新穎性質:
此部分是探討氮化鎵/氮化鋁鎵超晶格結構的新穎性質,包括其發光機制與聲子布里淵區折疊效應。首先,我們從光激螢光光譜,得知光激螢光光譜的峰值隨著溫度的升高而呈現倒S型的變化。從時間解析的螢光光譜發現,激子的生命期會隨著量子井的寬度增加而減少。從這些結果顯示出有在氮化鎵/氮化鋁鎵超晶格結構中有侷限態的存在,而這是由於量子井介面的平整度變化所造成的。而從拉曼光譜中,我們發現隨著量子井寬度的減少,光學聲子會有紅移的現象,這個現象就是著名的布里淵區摺疊效應。而這樣的實驗結果也與理論的預測十分吻合。而從之前的光激螢光光譜得知,這組量子井的介面整的十分的平整,因此可以看到此效應。
(二) 氮化鋁銦鎵四元磊晶薄膜的光電性質:
這部分我們主要探討氮化鋁銦鎵的光電性質。從過去的文獻中得知,氮化鋁銦鎵的量子發光效率比氮化鋁鎵來的好,但是其物理成因並不是十分清楚。首先,我們利用光激螢光光譜與拉曼光譜的量測,來證明量子發光效率變好是因為似氮化銦鎵合金團的形成。之後,我們更進一步的量測掃瞄式電子顯微鏡影像、陰極螢光光譜與能量分散光譜。從這些量測中,我們得到直接的證據,證明此四元化合物的高效率螢光發光是來自於似氮化銦鎵合金團。由於激子被侷限在這些奈米尺度的量子團中,因此發光效率有所提高。接著我們進行光電導的量測,針對持續性光電導的衰減動力學分析,並結合光激螢光光譜與光激螢光激發譜,得到此四元化合物所引起的侷限能級深度。
(三) 氮化銦鎵/氮化鎵多重量子井結構的特殊光學性質:
這部分我們主要探討氮化銦鎵/氮化鎵量子井的特殊光電性質。根據氮化鎵系列半導體的晶格結構為六角對稱結構,因此它的光學性質與晶格方向、電場有關。第一部份與第二部分,我們利用簡單且非破壞性的光學量測方法,得到光激螢光光譜的峰值與強度跟晶格方向有關。並且利用理論公式,從清楚且明顯的干涉圖形中,正確的求得折射率,也證明折射率與晶格方向有關。從過去的文獻研究中,我們知道在氮化銦鎵/氮化鎵量子井結構中,其螢光光譜與應變壓電電場所引起的量子Stark效應有關。因此第三部分與第四部分,我們利用變化激發能量與外加電場大小的顯微光激螢光光譜與顯微拉曼光譜而發現,顯微光激螢光光譜會有藍移的現象,而折射率的改變,也可由光譜上的干涉圖形而正確的求得。而在顯微拉曼光譜上,氮化銦鎵的A1(縱向光學聲子)會有紅移的現象。而以上的實驗結果,正是因為氮化鎵/氮化銦鎵量子井中的內建壓電電場被屏避所造成的。
Abstract
This thesis concerns with the studies on the optical and electrical properties of III-Nitride semiconductors. Photoluminescence (PL), photoluminescence excitation (PLE), time-resolved photoluminescence, Cathodoluminescence (CL), Scanning Electron Microscopy (SEM), photoconductivity (PC), persistent photoconductivity (PPC), and Raman scattering are carried out to study the physical properties of III-Nitride materials, including GaN/AlGaN superlattices, InAlGaN quaternary alloys, and InGaN/GaN multiple quantum wells. Many peculiar phenomena have been observed, which are very useful for the understanding as well as application of III-Nitride materials. These results are presented as follows.
(1) Novel optical properties in GaN/Al0.2Ga0.8N superlattices
We report several novel optical properties in GaN/AlxGa1-xN quantum wells, including anomalous behaviors of photoluminescence (PL) spectra and first observation of phonon zone folding by Raman scattering. In the first part, we present photoluminescence (PL), time-resolved photoluminescence (TRPL) measurements in GaN/Al0.2Ga0.8N superlattices with different well widths. The anomalous behavior of luminescence spectra as a function of temperature and the lifetime of excitons are measured. Based on the idea of carrier localization by interface roughness, all the measurements can be clearly understood. Our results thus firmly establish that the underlying mechanism of the luminescence in GaN/Al0.2Ga0.8N superlattices arises from the radiative recombination by interface fluctuations. In the second part, we will provide a demonstration of zone-folding effect on optical phonon in GaN/AlxGa1-xN superlattices measured by Raman spectroscopy. Through the photoluminescence measurements, we show that it is the sharp interfaces between the barrier and well layers of the studied samples which enable us to observe the small Raman shift. Our observed frequency shift is in good agreement with the theoretical prediction.
(2) Optoelectronic properties in InxAlyGa1-x-yN quaternary alloys
We report excitonic optoelectronic properties of InxAlyGa1-x-yN quaternary alloys grown by metalorganic chemical vapor deposition (MOCVD). In the previous report12, we found that the quantum efficiency (QE) of InxAlyGa1-x-yN is enhanced significantly over AlGaN with a comparable Al content12 and the physical origin of this enhanced QE is not clear. Therefore, we performed the PL and Raman measurements to provide the evidence of enhanced luminescent efficiency is attributed to the existence of alloy clusters13 in the first part. In the second part, we perform scanning electron microscopy (SEM) image and energy dispersive X-ray spectrometry (EDS) measurements to provide a more direct evidence for the model described in the first part. In the third part, we report the observation of the persistent photoconductivity (PPC) effect in InxAlyGa1-x-yN quaternary alloys. We point out that the PPC effect is caused by potential fluctuations in InxAlyGa1-x-yN quaternary alloys. In order to obtain the depth of potential fluctuations, the observed PPC effect was investigated with focus on its decay kinetics at different temperature. Together with the studies on photoconductivity (PC), photoluminescence (PL), photoluminescence excitation (PLE) spectra, we show that potential fluctuations in InxAlyGa1-x-yN quaternary alloys arise from the existence of InGaN-like clusters.
(3) Peculiar Optical Properties in InxGa1-xN/GaN Multiple Quantum Wells
Because GaN-based materials have hexagonal structure, one may expect that the spectral characteristics of the photoluminescence (PL) will depend on the mutual orientation of the symmetry axis (C6), the wave vector (k), and electric field vector (E) of the light. In the fist part, we develop the simple and nondestructive PL method to detect the crystal anisotropy and to establish the crystal orientation effects on optical properties in InxGa1-xN/GaN multiple quantum wells (MQWs). In the second part, we have investigated the polarization anisotropy in the edge emission of InxGa1-xN/GaN multiple quantum wells (MQWs) by photoluminescence (PL) technique. We found that the PL intensity and peak energy strongly depend on the polarization. The origin of the anisotropy can be attributed to the effects of the transitions due to different hole states. Quite interestingly, we observed a rather pronounced interference pattern in the emission spectra. From the interference spectra, we found that the dielectric constant is also anisotropic, which is expected for a material with wurtzite structure. We point out that the superimposed interference pattern on PL spectra provides a simple and convenient way to accurately determine the refractive index.
Due to the non-centrosymmetric hexagonal structures of nitride semiconductors, they exhibit large piezoelectric effect. Several groups have pointed out that the quantum confined Stark effect (QCSE) due to piezoelectric (PZ) field plays a very import role for the luminescence in InGaN/GaN quantum wells (QWs). An interesting aspect among the physical phenomena due to the QCSE or the PZ field is the electric field modulation properties of InGaN/GaN QWs. In the final two parts, we present micro-photoluminescence (μ-PL) and micro-Raman measurements with different optical excitation intensities and/or external electric field in InGaN/GaN multiple quantum wells. The InGaN A1(LO) phonon was found to show a redshift in frequency with the increase of optical excitation intensity and/or external electric field. And a blueshift in PL spectra has been observed when the optical excitation density and/or external electric field were increased. The change in the refractive index was determined accurately from the interference pattern shown in the emission spectra. It was found to be strongly related to the blueshift of PL spectra and the redshift of the InGaN A1(LO) phonon. Based on the screening of the built-in PZ field and hence the resulting variation of the residual strain in InGaN QWs, all the measurements can be clearly understood.
Contents
1. Introduction
1.1 III-Nitride semiconductors 1
1.2 Overview of the thesis 3
2. Crystal, Optical, and Material characters of III-Nitride Semiconductors
2.1 Crystal structure 9
2.2 Optical properties 16
2.2.1 Near band-edge luminescence 16
2.2.1.a Exciton transition energies 16
2.2.1.b Binding energies and lifetime of the exciton 19
2.2.2 Effect of Strain 22
2.2.2.a Effect of strain on the exciton transition energies 22
2.2.2.b Effect of RTA on strain and defects 24
2.2.3 Temperature dependence of the optical transitions 25
2.2.4 Yellow luminescence 26
2.2.4.a Yellow and DAP bands 26
2.2.4.b Persistent photoconductivity 27
2.3 Properties of alloys 28
2.3.1 InGaN alloy 28
2.3.2 AlGaN alloy 33
2.3.3 InAlGaN quaternary alloy 36
3. Experimental Details and Theoretical Background
3.1 Luminescence 40
3.1.1 Photoluminescence 40
3.1.1.a Introduction 40
3.1.1.b General luminescence 41
3.1.1.c photoluminescence apparatus 43
3.1.2 Photoluminescence Excitation 46
3.1.3 Time-resolved Photoluminescence 48
3.1.4 Cathodoluminescence 50
3.2 Raman Scattering 52
3.2.1 Introduction 52
3.2.2 Stokes shift and Anti Stokes shift 53
3.2.3 Raman Scattering Apparatus 56
3.3 Photoconductivity 61
3.3.1 Introduction 61
3.3.2 Long-term relaxation of photoconductivity in semiconductors 64
3.3.3 Photoconductivity apparatus 69
3.4 Scanning Electron Microscopy 71
3.5 Energy dispersive X-ray spectrometry 75
4. Novel properties of GaN/Al0.2Ga0.8N superlattices
4.1 Introduction 78
4.2 Samples and Experiments 79
4.3 Results and Discussion 82
4.3.1 Anomalous behaviors of Photoluminescence 82
4.3.2 Phonon Zone-folding Effect 92
4.4 Summary 98
5. Optoelectronic properties of InxAlyGa1-x-yN quaternary alloys
5.1 Introduction 103
5.2 Samples and Experiments 105
5.3 Results and Discussion 109
5.3.1 Mechanism of enhanced luminescence 109
5.3.2 Nanoclusters induced enhancement of luminescence 116
5.3.3 Persistent photoconductivity 120
5.4 Summary 128
6. Peculiar properties of In0.22Ga0.78N/GaN Multiple Quantum Wells
6.1 Introduction 133
6.2 Samples and Experiments 137
6.3 Results and Discussion 140
6.3.1 In-plane optical anisotropy 140
6.3.2 Anisotropy of optical anisotropy by edge emission 147
6.3.3 Optically modulated optical parameters 153
6.3.4 Optical parameters modulated by applied electric field 161
6.4 Summary 168
7. Conclusions 174
Chapter 1
1. S. Nakamura and G. Fasol, the Blue Laser Diodes (Springer, Heidelberg, 1997).
2. S. Nakamura, in GaN and Related Materials (Gordon and Breach, New York, 1997), pp.471-507.
3. Several interesting papers on III-nitrides and devices are contained in the February 1997 special issue of MRS Bull. 22 (1997).
4. S. C. Binari and H. C. Dietrich, in GaN and Related Materials (Gordon and Breach, New York, 1997), pp. 509-534.
5. S. C. Binari, “GaN FETs for microwave and high temperature applications”, Proceedings Topical Workshop on III-V Nitrides, 1995.
6. F. A. Ponce and D. P. Bour, Nature 386, 351 (1997).
7. S. C. Jain, M. Willander, J. Narayan and R. V. Overstraeten, J. Appl. Phys. 87, 965 (1999).
8. G. Landwehr. A. wagg, F. Fischer, H. —J. Lugauer, and K. Schull. Physica E 3, 158 (1998).
9. H. Morkoc, B. Sverdlov, and G. —B Gao, Proc. IEEE 81, 293 (1993).
10. L. Pfeiffer, K. W. West, H. L. Stormer, and K. W. Baldwin, Appl. Phys. Lett. 55, 1888 (1989).
11. J. D. Albrecht, R. P. Wang, P. P. Ruden, M. Farahmand, and K. F. Brennan, J. Appl. Phys. 83, 4777 (1996).
12. T. L. Tansley, E. M. Goldys, M. Goldewski, b. Zhou, and H. Y. Zou, in GaN and Related Materials (Gordon and Breach, New York, 1997), pp. 233-294.
13. B. Gelmont, K. Kim, and M. Shur, J. Appl. Phys. 74, 1818 (1993).
14. M. A. Khan, Q. Chen, J. W. Yang, and C. J. Sun, Inst. Phys. Conf. Ser. 142, 985 (1995).
15. I. Akasaki and H. Amano, Tech. Dig. Int. Electron Devices Meet. 96, 231 (1996).
16. J. C. Tan, J. S. Williams, J. Zou, D. J. H. Cockayne, S. J. Perton, and J. C. Zoppler, Appl . Phys. Lett. 72, 1190 (1998).
17. J. C. Zolper, R. M. Biefeld, S. B. Van Deusen, W. R. Wampler, D. J. Reiger, S. J. Pearton, J. W. Williams, H. H. Tan, R. F. Krlicerk, Jr. and R. A. Stall, J. Electron. Mater. 27, 179 (1998).
18. X. A. Cao, C. R. Abernathy, R. K. Singh, S. J. Pearton, M. Fu, V. Sarvepalli, J. A. Sekhar, J. C. Zoppler, D. J. Rigger, J. Ham, T. J. Drumond, R. J. Shul, and R. G. Wilson, Appl. Phys. Lett. 73, 229 (1998).
19. J. I. Pankove, in GaN and Related Materials, (Gordon and Breach, New York, 1997), pp1-9.
20. B. Monemar, The Second International Conference on Nitride Semiconductors, Tokushima, Japan, October, 27-31 1997, pp. 6-8.
Chapter 2
1. Group III Nitride Semiconductor Compounds, edited by B. Gil (Clarendon, Oxford, 1998).
2. M. Suzuki and T. U. Uenoyama, in Ref. 1, pp. 307-342.
3. W. Gotz, N. M. Johnson, C. Chen, H. Liu, C. Kuo, and W. Imler, Appl. Phys Lett. 68, 3144 (1996).
4. W. Shan, T. J. Schmidt, X. H. Yang, S. J. Hwang, J. J. Song, and B. Goldenberg, Appl. Phys. Lett. 66, 985 (1995).
5. B. Monemar, J. P. Bergman, and I. A. Buyanova, in GaN and Related Materials, edited by S. J. Pearton (Gordon and Breach, New York, 1997), pp. 85-139.
6. S. C. Jain, M. Willander, and R. Van Overstraeten, Compound Semiconductor Strained Layers and Devices (Kluwer Academic, Dordrecht, to be published).
7. N. Grandjean and J. Massies, Appl. Phys. Lett. 71 1816 (1997).
8. G. D. Chen, M. Smith, J. Y. Lin, H. X. Jiang, S. —H. Wei, M. A. Khan, and C. J. Sun, Appl. Phys. Lett. 68, 2784 (1996).
9. B. K. Meyer, A. Hoffmann, and P. Thurian, in Ref. 1., pp. 242-106.
10. J. Feldmann, G. Peter, E. O. Gobel, P. Dawson, K. Moore, C. Foxon, and R. J. Elliot, Phys. Rev. Lett. 59, 2337 (1987).
11. J. Martinez-Pastor, A. Vinattieri, L. Carraresi, M. Colocci, Ph. Rousignol, and G. Weimann, Phys. Rev. Lett. 47, 10456 (1993).
12. G. Popovici, H. Morkoc, and S. Noor Mohamman, in Ref. 1, pp. 19-69.
13. X. B. Li, D. Z. Sun, J. P. Zhang, and M. Y. Kong, Appl. Phys. Lett. 72, 936 (1998).
14. C. V. Reddy, K. Balakrishnan, H. Okumura, and S. Yoshida, Appl. Phys. Lett. 73, 244 (1998).
15. H. Amano, T. Takeuchi, S. Sota, H. Sakai, I. Akasaki, MRS Proc. 449, 1143 (1997).
16. S. Nakamura. T. Mukai, J. Vac. Sci. Technol. A 13, 6844 (1995).
17. In Properties of Group III Nitrides, edited by J. H. Edgar (Inspec, London 1994), pp. 231-238.
18. I. Ho, and G. B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996).
19. N. A. EI-Masry, E. L. Piner, S. X. Liu, and S. M. Bedair, Appl. Phys. Lett. 72, 40 (1998).
20. T. Matsuoka, N. Yoshimoto, T. Sasaki, and A. Latsui, J. Electron. Matt. 21, 157 (1992).
21. M. Shimizu, K. Hiramatsu, and N. Sawaki, J. Cryst. Growth 145, 209 (1994).
22. M. A. Khan, J. M. Van Hove, J. N. Kuznia, D. T. Olson, Appl. Phys. Lett. 58, 2408 (1991).
23. T. Tanaka, A. Watanabe, H. Amano, Y. Kobayashi, I. Akasaki, S. Yamazaki, M. Koike, Appl. Phys. Lett. 65, 593 (1994).
24. M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, Appl. Phys. Lett. 63, 1214 (1993).
25. H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994).
26. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsusshita, H. Kiyoko, and Y. Sugimoto, Jpn. J. Appl. Phys. 35, L74 (1996).
27. C. H. Chen, Y. F. Chen, An Shih, S. C. Chen, and H. X. Jiang, Appl. Phys. Lett. 78, 3035 (2001).
28. D. R. Hang, C. H. Chen, Y. F. Chen, H. X. Jiang, and J. Y. Lin, J. Appl. Phys. 90, 1887 (2001).
29. Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, S. Nakamura, Appl. Phys. Lett. 70, 981 (1997).
30. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 70, 2822 (1997).
31. H. C. Yang, P. F. Kuo, T. Y. Lin, and Y. F. Chen, K. H. Chen, L. C. Chen, and Jen-Inn Chyi, Appl. Phys. Lett. 76, 3712 (2000).
32. M. E. Aumer, S. F. LeBoeut, S. M. Bedair, M. Smith, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 77, 821 (2000).
33. M. A. Khan, J. W. Yang, G. Simin, R. Gaska, M. S. Shur, G. Tamulaitis, A. Zukauskas, D. J. Smith, D. Chandrasekhar, and R. Bicknell-Tassius, Appl. Phys. Lett. 76, 1161 (2000).
34. T. N. Oders. J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 77, 791 (2000).
Chapter 3
1. R. A. Stradling and P. C. Klipstein, Growth and Characterisation of Semiconductors.
2. S. Perkowitz, Optical Characterization of Semiconductors: Infrard, Raman, and Photoluminescence Spectroscopy.
3. T. Suzuki, A. Gomyo, S. Iijima, K. Kobayashi, S. Kawata, I. Hino, and T. Yuasa, Jpn. J. Appl. Phys. 27, 2098 (1988).
4. J. Y. Lin and H. X. Jiang, Phys. Rev. B 40, 10025 (1989).
5. H. J. Stormer, R. Dingle, A. C. Gossard, W. W. Wiegmann, and M. D. Sturge, Solid State Commun. 29, 705 (1974).
6. D. E. Theodorou, H. J. Queisser, and E. Bauser, Appl. Phys. Letts. 41, 628 (1982).
7. M. I. Nathan, Solid State Electro. 29, 167 (1986).
8. G.. Yusa and H. Sasaki, Appl. Phys. Lett. 70, 345 (1997).
9. H. J. Queisser, Phys. Rev. Lett. 54, 234 (1985).
10. D. V. Lang and R. A. Logan, Phys. Rev. Lett. 39, 635 (1977).
11. R. Kohlrausch, Ann. Phys. (Leipzig) 12, 393 (1847).
12. G. Williams and D. C. Watts, trans. Farady. Soc. 66, 80 (1970).
13. J. C. Phillip, Rep. Prog. Phys. 59, 1133 (1996).
14. M. Campos, J. A. Giacometti, and M. Silver, Appl. Phys. Lett. 34, 226 (1979).
15. R. S. Crandall, Phys. Rev. B 43, 4057 (1991).
16. J. Kakalios, R. A. Street, and W. B. Jackson, Phys. Rev. Lett. 59 1037 (1987).
17. Y. F. Chen, S. F. Huang, and W. S. Chen, Phys. Rev. B 44, 12748 (1991).
Chapter 4
1. M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, Appl. Phys. Lett. 63, 1214 (1993).
2. H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994).
3. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsusshita, H. Kiyoko, and Y. Sugimoto, Jpn. J. Appl. Phys. 35, L74 (1996).
4. T. Uenoyama and M. Suzuki, Appl. Phys. Lett. 67, 2527 (1995).
5. A. Niwa, T. Ohtoshi, and T. Kuroda, Appl. Phys. Lett. 70, 2159 (1997).
6. H. S. Kim, J. Y. Lin, H. X. Jiang, W. W. Chow, A. Botchkarev, and H. Morkoc, Appl. Phys. Lett. 73, 3426 (1998).
7. L. Bergman, M. Dutta, M. A. Stroscio, S. M. Komirenko, C. J. Eiting, D. J. H. Lambert, H. K. Kwon, and R. D. Dupuis, Appl. Phys. Lett. 76, 1969 (2000).
8. K. C. Zeng, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 76, 3040 (2000).
9. K. C. Zeng, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett.76, 864 (2000).
10. S. Jin, Y. Zheng, and A Li, J. Appl. Phys. 82, 3870 (1997).
11. M. Smith, J. Y. Lin, H. X. Jiang, A. Salvador, A. Botchkarev, W. Kim, and H. Morkoc, Appl. Phys. Lett. 69, 2453 (1996).
12. H. S. Kim, J.Y. Lin, H. X. Jiang, W. W. Chow, A. Botchkarev, and H. Morkoc, Appl. Phys. Lett. 73, 3426 (1998).
13. S. M. Olsthoorn, F. A. J. M. Driessen, A. P. A. M. Eijkelenboom, and L. J. Giling, J. Appl. Phys. 73, 7798 (1993).
14. P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, Appl. Phys.Lett. 71, 569 (1997).
15. S. T. Davey, E. G. Scott, B. Wakefield, and G. J. Davies, Semicond. Sci. Technol. 3, 365 (1988).
16. H. Nashiki, I. Suemune, H. Suzuki, T. Obinata, K. Vesugi, and J. Nakahara, Appl. Phys. Lett. 70, 2350 (1997).
17. L. Vina, S. Logothertidis, and M. Cardona, Phys. Rev. B 30, 1979 (1984).
18. P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, Phys. Rev. B 35, 9174 (1987).
19. T. Yamamoto, M. Kasu, S. Noda, and A. Sasaki, J. Appl. Phys. 68, 5318 (1990).
20. M. Kasu, T. Yamamoto, S. Noda, and A. Sasaki, Jpn. J. Appl. Phys. 29, 828 (1990).
21. L. Pavesi, G. Mariotto, J. F. Carlin, A. Rudra, and R. Houdre, Solid State Commun. 84, 705 (1992).
22. C. A. Tran, M. Jouanne, J. L. Brebner, and R. A. Masut, J. Appl. Phys. 74, 4983 (1993).
23. B. Jusserand and M. Cardona, Light Scattering in Solids V, p61, Springer, Heidelberg (1989).
24. G. P. Srivastava, The Physics of Phonons, p263, Adam Hilger, Bristol (1990).
25. J. Singh, Physics of Semiconductors and their heterostructures, p318, McGraw-Hill, Singapore (1993).
26. J. Gleize, F. Demangeot, J. Frandon, M. A. Renucci, F. Widmann, and B. Daudin, Appl. Phys. Lett. 74, 703 (1999).
27. H. Grille and F. Bechstedt, J. Raman Spectroscopy 27, 201 (1996).
28. C. Bungaro and S. de Gironcoli, Appl. Phys. Letts. 76, 2101 (2000).
29. M. Rajalakshmi and A. K. Arora, Nanostruct. Mater. 11, 399 (1999).
30. D. Behr, R. Niebuhr, J. Wagner, K. H. Bachem, and U. Kaufmann, Appl. Phys. Lett. 70, 363 (1997).
Chapter 5
1. M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, Appl. Phys. Lett. 63, 1214 (1993).
2. H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994).
3. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsusshita, H. Kiyoko, and Y. Sugimoto, Jpn. J. Appl. Phys. 35, L74 (1996).
4. C. H. Chen, Y. F. Chen, An Shih, S. C. Chen, and H. X. Jiang, Appl. Phys. Lett. 78, 3035 (2001).
5. D. R. Hang, C. H. Chen, Y. F. Chen, H. X. Jiang, and J. Y. Lin, J. Appl. Phys. 90, 1887 (2001).
6. Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, S. Nakamura, Appl. Phys. Lett. 70, 981 (1997).
7. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 70, 2822 (1997).
8. H. C. Yang, P. F. Kuo, T. Y. Lin, and Y. F. Chen, K. H. Chen, L. C. Chen, and Jen-Inn Chyi, Appl. Phys. Lett. 76, 3712 (2000).
9. M. E. Aumer, S. F. LeBoeut, S. M. Bedair, M. Smith, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 77, 821 (2000).
10. M. A. Khan, J. W. Yang, G. Simin, R. Gaska, M. S. Shur, G. Tamulaitis, A. Zukauskas, D. J. Smith, D. Chandrasekhar, and R. Bicknell-Tassius, Appl. Phys. Lett. 76, 1161 (2000).
11. T. N. Oders. J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 77, 791 (2000).
12. J. Li, K. B. Nam, K. H. Kim, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 78, 61 (2001).
13. T. Matsuoka, J. Cryst. Growth 189/190, 19 (1998).
14. I-hsiu Ho and G. B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996).
15. H. Siegle, G. Kaczmarczyk, L. Filippidis, A. P. Litvinchuk, A. Hoffmann, and C. Thomsen, Phys. Rev. B 55, 7000 (1997).
16. Guanghong Wei, Jian Zi, Kaiming Zhang, and Xide Xie, J. Appl. Phys. 82, 4693 (1997).
17. L. H. Robins, A. J. Paul, C. A. Parker, J. C. Roberts, S. M. Bedair, E. L. Piner, and N. A. El-Masry, MRS Internet J. Nitride Semicond. Res. 4S1, G3.22 (1999).
18. J. Wagner, A. Ramakrishnan, H. Obloh, and M. Maier, Appl. Phys. Lett. 74, 3863 (1999).
19. M. Yoshikawa, J. Wagner, H. Obloh, M. Kunzer, and M. Maier, J. Appl. Phys. 87, 2853 (2000).
20. D. Behr. R. Niebuhr, J. Wagner, K. —H. Bachem, and U. Kaufmann, Appl. Phys. Lett. 70, 363 (1997).
21. F. Demangeot, J. Groenen, J. Frandon, M. A. Renucci, O. Briot, S. Clur, and R. L. Aulombard, Appl. Phys. Lett. 72, 2674 (1998).
22. S. M. Olsthoorn, F. A. J. M. Driessen, A. P. A. M. Eijkelenboom, and L. J. Giling, J. Appl. Phys. 73, 7798 (1993).
23. H. Nashiki, I. Suemune, H. Suzuki, T. Obinata, K. Vesugi, and J. Nakahara, Appl. Phys. Lett. 70, 2350 (1997).
24. P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, Appl. Phys.Lett. 71, 569 (1997).
25. S. T. Davey, E. G. Scott, B. Wakefield, and G. J. Davies, Semicond. Sci. Technol. 3, 365 (1988).
26. C. H. Chen, L. Y. Huang, Y. F. Chen, H. X. Jiang, and J. Y. Lin, Appl. Phys. Lett. 80, 1397 (2002).
27. J. Kakalios, R. A. Street, and W. B. Jackson, Phys. Rev. Lett. 59, 1037 (1987).
28. Y. F. Chen, S. F. Huang, and W. S. Chen, Phys. Rev. B 44, 12748 (1991).
29. A. S. Dissanayake, J. Y. Lin, and H. X. Jiang, Phys. Rev. B 48, 8145 (1993).
30. H. C. Yang, T. Y. Lin, and Y. F. Chen, Appl. Phys. Lett. 78, 338 (2001).
Chapter 6
1. M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, Appl. Phys. Lett. 63, 1214 (1993).
2. H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994).
3. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsusshita, H. Kiyoko, and Y. Sugimoto, Jpn. J. Appl. Phys. 35, L74 (1996).
4. Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, S. Nakamura, Appl. Phys. Lett. 70, 981 (1997).
5. H. C. Yang, P. F. Kuo, T. Y. Lin, and Y. F. Chen, K. H. Chen, L. C. Chen, and Jen-Inn Chyi, Appl. Phys. Lett. 76, 3712 (2000).
6. M. Suzuki, T. Uenoyama, and A. Yanase, Phys. Rev. B 52, 8132 (1995).
7. T. Uenoyama and M. Suzuki, Appl. Phys. Letts. 67, 2527 (1995).
8. Bao Oinncheng, Zhang Fungleng. Shi Ke, Dai Rensong, and Xu Xurong, Solid State Commun. 59, 599 (1986).
9. Yu. V. Zhilyaev, V. V. Krivolapchuk, and I. N. Safronov, Semiconductors 33, 716 (1999).
10. S. L. Chuang and C. S. Chang, Phys. Rev. B 54, 2491 (1996).
11. A. Niwa, T. Ohtoshi, and T. Kuroda, Appl. Phys. Lett. 70, 2159 (1997).
12. Chii-Chang Chen, Kun-Long Hsieh, Jinn-kong Sheu, Gou-Chung Chi, Ming-Juinn Jou, Chih-Hao Lee, and Ming-Zhe Lin, Appl. Phys. Lett. 79, 1477 (2001).
13. T. N. Oder, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 79, 12 (2001).
14. Group III-Nitride Semiconductor Compounds, edited by B. Gil (Clarendon, Oxford, 1998).
15. A. Alemu, B. Gil, M. Julier, and Nakamua, Phys. Rev. B 57, 3761 (1998).
16. M. Arlery, J. L. Rouviere, F. Widmann, B. Daudin, G. Feuillet, and H. Mariette, Appl. Phys. Lett. 74, 3287 (1999).
17. A. D. Andreev and E. P. O’Reilly, Phys. Rev. B 62, 15851 (2000).
18. P. Kung, C. J. Sun, A. Saxler, H. Ohsato, and M. Razeghi, J. Appl. Phys. 75, 4515 (1994).
19. Eugene Hecht, Optics, 2nd ed. (Addison-Wesley, Amsterdam, 1990).
20. D. C. Marra, E. S. Aydil, S. —J. Joo, E. Yoon, and V. I. Srdanov, Appl. Phys. Lett. 77, 3346 (2000).
21. C. F. Klingshirn, Semiconductor Optics (Springer-Verlag, Berlin, 1995).
22. Bernard Gil and Andenet Alemu, Phys. Rev. B 56 12446 (1997).
23. M. Kumagai, S. L. Chuang, H. Ando, Phys. Rev. B 57, 15303 (1998).
24. Seoung-Hwan Park and Shun-Lien Chuang, Phys. Rev. B 59, 4725 (1999).
25. K. Domen, K. Horino, A. Kuramata, and T. Tanahashi, Appl. Phys. Lett. 71, 1996 (1997).
26. B. Lakshmi, Daniel T. Cassidy, and B. J. Robinson, J. Appl. Phys. 79, 7640 (1996).
27. M. Schubert, E. Franke, H. Neumann, T. E. Tiwald, D. W. Thompson, J. A. Woollam, and J. Hahn, Thin Solid Films 313-314, 692 (1998).
28. J. F. Nye, Physical Properties of Crystals, 1st ed. (Oxford University, London, 1972).
29. E. Ejder, Phys. Status Solidi (a) 6, K39 (1971).
30. R. Poerschke, Data in Science and Technology (Springer-Verlag, Berlin, 1991).
31. E. Kuokstis, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, Appl. Phys. Lett. 80, 977 (2002).
32. P. Riblet, H. Hirayama, A. Kinoshita, A. Hirata, T. Sugano, and Y. Aoyagi, Appl. Phys. Lett. 75, 2241 (1999).
33. E. Kim, B. Lee, A. Nahhas, and H. K. Kim, Appl. Phys. Lett. 77, 1747 (2000).
34. F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10024 (1997).
35. J. M. Wagner and F. Bechstedt, Appl. Phys. Lett. 77, 346 (2000).
36. D. Behr, J. Wagner, A. Ramakrishnan, H. Obloh, and K. H. Bachem, Appl. Phys. Lett. 73, 241 (1998).
37. H. Siegle, G. Kaczmarczyk, L. Fillippidis, A. P. Litvinchuk, A. Hoffmann, and C. Thomsen, Phys. Rev. B 55, 7000 (1997).
38. J. Wagner, A. Ramakrishnan, H. Obloh, and M. Maier, Appl. Phys. Lett. 74, 3863 (1999).
39. C. F. Klingshirn, Semiconductor Optics (Springer-Verlag, Berlin, 1995).
40. H. Jiang, and J. Singh, Appl. Phys. Lett. 75, 1932 (1999).
41. D. A. B. Miller, D. S. Chemla, T. C. Kamen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, Phys. Rev. Lett. 53, 2173 (1984).
42. E. A. Caridi, T. Y. Chang, K. W. Goossen, and L. F. Eastman, Appl. Phys. Lett. 56, 659 (1990).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top