跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 21:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳致源
研究生(外文):Chih-Yuan Chen
論文名稱:熱塑性樹脂改質環氧樹脂基材製備碳/碳複合材料之加工製程參數及性質研究
論文名稱(外文):Study on Thermoplastic Polymer Modified Novolac Type Epoxy Resin Derived Carbon/Carbon Composite
指導教授:馬振基馬振基引用關係
指導教授(外文):Chen-Chi M. Ma
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:123
中文關鍵詞:環氧樹脂碳/碳 複合材料機械性質加工參數
外文關鍵詞:Novolac type epoxy resinCarbon/Carbon compositeMechanical propertiesProcessing parameters
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1077
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文之研究目的在於利用熱塑性聚矽氧烷聚胺酯樹脂(polydimethylsiloxane polyurethane)改質碳/碳複合材料(Carbon/Carbon Composite)熱固性樹脂基材之前驅體(Precursor),系統設計係改變過去所利用之物理摻混改質方法,而以化學鍵結之方式將熱塑性聚矽氧烷聚胺酯樹脂分散在熱固性環氧樹脂基材之中,期望降低碳/碳複合材料在加工製程中高溫後硬化及碳化裂解時對材料所造成的損害。為便以改質劑進行反應,本實驗系統中利用環氧樹脂作為碳/碳複合材料基材,變化其後硬化加工製程參數,探討其所製備出碳/碳複合材料物理性質及機械性質之改變。並研究其碳化過程中物理及機械性質的改變情形。
本實驗系統中所使用之改質劑為自行合成之熱塑性聚矽氧烷聚胺酯樹脂,將其加入環氧樹脂基材中觀察對相容性及硬化性質的影響。在聚矽氧烷聚胺脂熱塑性樹脂改質環氧樹脂的相容性研究中發現,少量(10phr)的聚矽氧烷聚胺脂熱塑性樹脂摻混量與環氧樹脂有較佳的相容性,可均勻分佈在基材當中,造成玻璃轉化溫度及結晶度的下降。當摻混量超過7phr後,則會開始發生相分離。在硬化動力學的研究上,聚矽氧烷聚胺脂熱塑性樹脂的添加會造成環氧樹脂在硬化時的碰撞參數(Pre-exponential factor)下降,造成反應活化能提高,總反應熱下降。
利用自行合成之熱塑性聚矽氧烷聚胺酯樹脂改質環氧樹脂基材基材製備碳/碳複合材料,觀察其改質後製備碳/碳複合材料對材料性質之影響。研究結果發現,由於聚矽氧烷聚胺酯樹脂的分子結構相當柔軟,在與可相容基材混合時會使得後硬化後基材的強度下降,不過在碳化過程中,聚矽氧烷聚胺酯樹脂會保護纖維在高溫的過程中較不容易產生損傷,因而提高其機械性質。由熱重分析(TGA)之實驗結果發現,在聚矽氧烷聚胺酯樹脂改質劑含量較少(<5phr)的系統之中,基材具有較為穩定的熱性質;而在改質含量較高的系統,由於長鏈聚矽氧烷聚胺酯樹脂的分子鏈結構較不穩定,造成基材會較早發生裂解。在氧化測試結果中發現,經過改質的碳材料在高溫有氧的環境之中具有較高的抗氧化特性,經過該質的碳材料氧化過程的最大氧化速率也較未改質系統來的低。
研究結果發現,較高溫且長時間的後硬化過程可以降低材料在碳化過程的質量損失,但卻會使得材料在高溫後硬化的過程中容易受到損害。而以環氧樹脂為前驅物製備之碳/碳複合材料其性質較酚醛樹脂系統為佳,且其碳/碳複合材料機械強度可從63.9 MPa提升至94.2 Mpa提升47.4%。

In this study, modified novolac type epoxy resin has been used as a new matrix precursor to fabricate C/C composites. The polydimethylsiloxane polyurethane synthesized was used as a modification agent. Novolac type epoxy has almost the same chemical structure as phenolic resin, however, it possesses the epoxied functional group that is easy to react with the modification agent.
The modification system utilized is polydimethylsiloxane polyurethane(PDMS-PU) which protects the fiber surface and improves the thermal stability of matrix. PDMS-PU was synthesized in this study and it structure was confirmed by IR and NMR. Results show that modified epoxy with low content(<10phr) of PDMS-PU is miscible, the PDMS-PU can completely disperse in the epoxy matrix and decrease the glass transition temperature and crystallinity of novolac type epoxy. In the study of curing kinetics, it was found that the content of PDMS-PU will affect the collision factor, total heat of reaction and the active energy of reaction.
In order to achieve the modification purpose, the first step is utilizing novolac type epoxy resin to derive carbon/carbon composite instead of using phenolic resin. Different post curing times and temperatures, and different carbonization heat treatment temperatures were applied to the novolac type epoxy resin. Results show that the matrix cured at a higher post-curing time and temperature exhibits a significantly weight loss on the post curing process and limits the weight loss on carbonization processing.
In the modified composite system, results show that the flexural strength of composite after post curing process will be reduced when the PDMS-PU content increase because of the flexible molecular structure. In the carbonization process, PDMS-PU will protect the fiber surface to prevent the intense shrinkage deriving from thermal degradation consequently, increase the flexural strength of C/C composite from 94.2Mpa to 106.9MPa after carbonization process. Oxidation testing result shows that PDMS-PU containing carbon/carbon composites exhibit better oxidation resistance and lower oxidation rate than those derived from pure epoxy resins.
Increasing the post-cure time and temperature will improve the mechanical properties after carbonization. In the carbonization process, the mechanical properties and density decrease rapidly after 400℃. When heat treatment temperature rises up to 800℃ the mechanical properties and density will maintain constant and then increasing slightly. The mechanical property of the carbon/carbon composite made by epoxy resin was better than that of phenolic resin, and the flexural of composite strength was increased from 63.9MPa to 94.2Mpa.

目 錄
中文摘要 ----------------------------------------------------------------------Ⅰ
英文摘要 ----------------------------------------------------------------------Ⅲ
謝誌 ----------------------------------------------------------------------------Ⅴ
目錄 ----------------------------------------------------------------------------Ⅵ
圖目錄 --------------------------------------------------------------------------Ⅷ
表目錄 ------------------------------------------------------------------------ⅩⅡ
第一章 緒論
1-1前言 ------------------------------------------------------------------- 1
1-2研究目的與內容 ---------------------------------------------------------- 3
1-2.1研究目的 -------------------------------------------------------- 3
1-2.2研究內容 -------------------------------------------------------- 4
1-3實驗流程 ------------------------------------------------------------------- 5
1-4參考文獻 ------------------------------------------------------------------- 6
第二章 理論與文獻回顧
2-1碳/碳複合材料系統簡介 -------------------------------------------------- 8
2-2改質聚合物與基材相容性及測定方法 ------------------------------- 16
2-2.1剩餘比容計算 ----------------------------------------------------- 18
2-2.2動力學參數計算 -------------------------------------------------- 19
2-3碳/碳複合材料改質相關文獻回顧 ------------------------------------ 21
2-4參考文獻 ------------------------------------------------------------------- 36
第三章 研究方法
3-1實驗藥品與材料 ---------------------------------------------------------- 43
3-2實驗儀器設備 ------------------------------------------------------------- 45
3-3實驗步驟 ------------------------------------------------------------------- 46
3-3.1環氧樹脂基材Novolac型環氧樹脂前驅體製備碳/碳複合材料實驗流程 ----------------------------------------------------- 46
3-3.2熱塑性聚矽氧烷聚胺酯樹脂合成及其與環氧樹脂基材相容性研究實驗流程 ----------------------------------------------- 49
3-3.3熱塑性聚矽氧烷聚胺酯樹脂改質環氧樹脂前驅體製備碳/碳複合材料實驗流程 -------------------------------------------- 52
3-4材料性質測試 ------------------------------------------------------------- 53
第四章 結果與討論
4-1以環氧樹脂前驅體製備碳/碳複合材料性質研究 ------------------ 55
4-1.1 加工製程參數探討 ------------------------------------------ 56
4-1.2 材料性質研究 ------------------------------------------------ 68
4-1.3 材料微結構觀察 --------------------------------------------- 75
4-2熱塑性聚矽氧烷聚胺酯樹脂合成及其與環氧樹脂基材相容性研究
4-2.1 熱塑性聚矽氧烷聚胺酯樹脂反應結構鑑定 ------------ 80
4-2.2 聚矽氧烷聚胺酯樹脂與基材之摻混相容性 ------------ 82
4-2.3 聚矽氧烷聚胺酯樹脂之摻混對基材反應特性及熱性質影響 ----------------------------------------------------------- 93
4-2.4聚矽氧烷聚胺酯樹脂與環氧樹脂基材之熱遲緩與熱膨脹行為 ----------------------------------------------------------- 99
4-3聚矽氧烷聚胺酯樹脂改質環氧樹脂基材製備碳/碳複合材料性質研究 ---------------------------------------------------------------------- 102
4-3.1基本物性討論 ----------------------------------------------- 102
4-3.2機械性質討論 ----------------------------------------------- 108
4-3.3基材裂解及氧化性質討論 -------------------------------- 114
4-4參考文獻 ----------------------------------------------------------------- 119
第五章 研究總結論 -------------------------------------------------------- 121
LIST OF FIGURES
Fig.1-1 高溫物質之強度與溫度之關係 ------------------------------------ 1
Fig.1-2 碳/碳複合材料所製成之活塞 -------------------------------------- 2
Fig.1-3 碳/碳複合材料人工骨關結結構圖 -------------------------------- 2
Fig.2-1 理想石墨結晶結構示意圖 ------------------------------------------ 8
Fig.2-2 石墨化碳之結構改變圖 --------------------------------------------- 9
Fig.2-3 Isothermal Chemical Vapor Infiltration method ----------------- 11
Fig.2-4 Temperature gradient Chemical Vapor Infiltration method ---- 11
Fig.2-5 Pressure Gradient Chemical Vapor Infiltration method --------- 12
Fig.2-6 Force Flow/Temperature Gradient Chemical Vapor Infiltration method --------------------------------------------------------------- 12
Fig.2-7 Flow chart of synthesis of polydimethylsiloxane polyurethane- 17
Fig.3-1 碳/碳複合材料預浸材熱壓疊層示意圖------------------------- 47
Fig.3-2 Flow chart of manufacturing carbon/carbon composites--------- 48
Fig.3-3 Flow chart of synthesizing polydimethylsiloxane polyurethane 50
Fig.3-4 Flow chart of synthesizing polydimethylsiloxane polyurethane 51
Fig.3-5 Flow chart of preparing polydimethylsiloxane polyurethane modified epoxy precursor for manufacturing carbon/carbon-- 52
Fig.4-1 Effects of post-curing time and temperature on the char yield of post-cured resins ---------------------------------------------------- 59
Fig.4-2-a Effects of carbonization and post-curing time, and temperature on the weight loss of composites --------------------------------- 59
Fig.4-2-b Effects of post-curing time, and temperature on the weight loss of composites -------------------------------------------------------- 60
Fig4-3-a Effects of post-curing temperature on the bulk density and porosity of composites --------------------------------------------- 61
Fig4-3-b Effects of post-curing time and temperature on the bulk density and porosity of composites ---------------------------------------- 61
Fig.4-4-a Effects of post-curing time and temperature on the bulk density and porosity of resultant C/C composites ----------------------- 62
Fig.4-4-b Effects of post-curing time and temperature on the bulk density and porosity of resultant C/C composites ----------------------- 63
Fig.4-5 Effects of post-curing temperature on the flexural strength and flexural modulus of Epoxy composite --------------------------- 64
Fig.4-6-a Effects of post-curing time and temperature on the flexural strength and flexural modulus of C/C composites ------------- 64
Fig.4-6-b Effects of post-curing time and temperature on the flexural strength and flexural modulus of C/C composites ------------- 65
Fig.4-7 Comparison of the density of C/C composites with various types of resin --------------------------------------------------------------- 70
Fig.4-8 Comparison of the flexural strength of C/C composites with various types of resin ----------------------------------------------- 70
Fig.4-9 Effects of carbonization temperature on the weight loss of bulk material and C/C composite --------------------------------------- 71
Fig.4-10 Effects of carbonization temperature on the density and porosity of C/C composite --------------------------------------------------- 71
Fig.4-11 Effect of carbonization temperature on the flexural strength(■) and flexural modulus(▲) of epoxy based C/C composite ---- 72
Fig.4-12 Effect of carbonization temperature on the flexural strength(■) Porosity(●) and density(▲) of epoxy based C/C composite 72
Fig.4-13 Effect of carbonization temperature on the X-ray diffraction patterns of carbonized neat epoxy resin ------------------------- 76
Fig.4-14 The SEM microphotographs of the surface of epoxy matrix C/C composites with different heat treatment temperatures (HTT) 77
Fig.4-15 Structure of aromatic amine terminated polydimethylsiloxane polyurethane ------------------------------ 81
Fig.4-16 IR spectra of aromatic amine terminated polydimethylsiloxane polyurethane ------------------------------------------------------ 81-a
Fig.4-17 H1-NMR spectra of aromatic amine terminated polydimethylsiloxane polyurethane --------------------------- 81-b
Fig.4-18 The excess mixing volume of epoxy matrix blended with various contents of aromatic amine terminated polydimethylsiloxane polyurethane ------------------------------ 85
Fig.4-19 The hydroxyl stretching region of Phenolic resin/polydimethylsiloxane polyurethane blends with various siloxane compositions(%) ----------------------------------------- 85
Fig.4-20 The carbonyl stretching region of Phenolic resin/polydimethylsiloxane polyurethane blends with various siloxane compositions (wt%) ------------------------------------- 86
Fig.4-21 The carbonyl group area fraction of IR spectrum of phenolic resin blends with various polydimethylsiloxane polyurethane compositions (wt%) ------------------------------------------------ 86
Fig.4-22 The carbonyl H-bonded fraction of Phenolic resin blends with various polydimethylsiloxane polyurethane compositions (wt%)
Fig.4-23 The glass transition temperatures (Tg) of the phenolic resin blended with different siloxane contents ------------------------ 87
Fig.4-24 Optical microphotographs of the phenolic blended with various siloxane contents ---------------------------------------------------- 91
Fig.4-25 Optical microphotographs of the epoxy/phenolic matrix blended with various siloxane contents ------------------------------------ 91
Fig.4-26 The activation energy of siloxane-modified epoxy matrix obtained by using Ozawa and Kissinger methods -------------- 95
Fig.4-27 The Pre-exponential factor of siloxane-modified epoxy matrix obtained by using Kissinger’s methods -------------------------- 95
Fig.4-28 The heat of cure reaction of siloxane-modified epoxy matrix from DSC measurements in the temperature range between 25-280℃ at a heating rate of 10℃/min ------------------------- 96
Fig.4-29 DSC curve of siloxane-modified epoxy matrix with different siloxane contents ----------------------------------------- 96
Fig.4-30 Wide-angle X-ray diffraction of siloxane-modified epoxy matrix with various siloxane contents ------------------------------------ 97
Fig.4-31 Thermal expansion behavior of siloxane-modified epoxy matrix with various siloxane contents ----------------------------------- 101
Fig.4-32 Comparisons of the densities of the epoxy/ polydimethylsiloxane polyurethane derived carbon fiber reinforced composites after post cure and carbonization ---- 104
Fig.4-33 Comparisons of the porosities of the epoxy/ polydimethylsiloxane polyurethane derived carbon fiber reinforced composites after post cure and carbonization ---- 104
Fig.4-34 Effects of siloxane content on the weight loss of bulk materials and composites after post cure ---------------------------------- 105
Fig.4-35 Effects of siloxane content on the weight loss of bulk materials and composites after carbonization ----------------------------- 105
Fig.4-36 SEM microphotographs of the composite surface with various siloxane contents after post cure -------------------------------- 106
Fig.4-37 Comparisons of the mechanical properties of the epoxy/ polydimethylsiloxane polyurethane derived carbon fiber reinforced composites after post cure --------------------------- 110
Fig.4-38 Comparisons of the mechanical properties of the epoxy/ polydimethylsiloxane polyurethane derived carbon fiber reinforced composites after carbonization --------------------- 110
Fig.4-39 Optical micrographs of carbon/carbon composites with different siloxane contents -------------------------------------------------- 111
Fig.4-40 Optical micrographs of composite with different siloxane contents after curing and post-curing --------------------------- 112
Fig.4-41 TGA degradation curves of novolac type epoxy resin blended with different siloxane contents --------------------------------- 115
Fig.4-42 Derivative TGA degradation curves of novolac type epoxy resin blended with different siloxane contents ----------------------- 115
Fig.4-43 TGA oxidation curves of novolac type epoxy resin blended with different siloxane contents after carbonization ---------------- 116
Fig.4-44 Derivative TGA oxidation curves of novolac type epoxy resin blended with different siloxane contents after carbonization 116
Fig.4-45 SEM microphotographs of the carbon/carbon composite surface with various siloxane contents after oxidation on 500℃ and 600℃ -------------------------------------------------------------- 118
LIST OF TABLES
Table.1-1 化學氣相沈積法整理 ------------------------------------------- 11
Table.1-2 化學氣相沈積法與液態樹脂含浸法製成之碳/碳複合材料性質之比較 --------------------------------------------------------- 14
Table.1-3 各種熱塑性前軀體之碳產率 ---------------------------------- 15
Table.4-1 Physical properties of the Epoxy/Carbon fiber Composites treated with different post-curing times and temperatures -- 66
Table.4-2 Physical properties of the Carbon/Carbon Composites treated with different post-curing times and temperatures ----------- 66
Table.4-3 Mechanical properties of the Epoxy/Carbon fiber Composites treated with different post-curing times and temperatures -- 67
Table.4-4 Mechanical properties of the Carbon/Carbon Composites treated with different post-curing times and temperatures -- 67
Table.4-5 Comparion of the flexural strength and Density of carbon/carbon composites with various precursors ---------- 73
Table.4-6 Physical properties of the Epoxy/Carbon fiber Composites at various carbonization processing temperatures --------------- 73
Table.4-7 Mechanical properties of the Epoxy/Carbon fiber Composites at various carbonization processing temperatures ------------ 74
Table.4-8 The density, specific volume and excess mixing specific volume of epoxy resins blended with polydimethylsiloxane polyurethane ------------------------------------------------------- 88
Table.4-9 Curve fitting data n, v1/2 , and fb of phenolic resin, polydimethylsiloxane polyurethane and their blends obtained from infrared spectrum in the range of 1750-1650cm-1 ----- 89
Table.4-10 Area of carbonyl group by curve fitting data of phenolic resin, polydimethylsiloxane polyurethane and their blends obtained from infrared spectrum ------------------------------------------- 90
Table.4-11 Kinetic parameters of the novolac type epoxy resin/phenolic/siloxane blends obtained by using the Ozawa and Kissinger’s equations --------------------------------------- 98
Table.4-12 Comparisons of the densities and porosities of the epoxy/ polydimethylsiloxane polyurethane derived carbon fiber reinforced composites after post cure and carbonization -- 107
Table.4-13 Effects of siloxane content on the volume shrinkage of composites after post cure and carbonization --------------- 107
Table.4-14 Effects of siloxane content on the weight loss of bulk materials and composites after post cure and carbonization107
Table.4-15 Comparisons of the mechanical properties of the epoxy/ polydimethylsiloxane polyurethane derived carbon fiber reinforced composites after post cure ------------------------- 113
Table.4-16 Comparisons of the mechanical properties of the epoxy/ polydimethylsiloxane polyurethane derived carbon fiber reinforced composites after carbonization ------------------- 113
Table.4-17 Comparison of the degradation temperature at 5wt%, 10wt% weig ht loss of the novolac type epoxy resin blend with different siloxane contens -------------------------------------- 117
Table.4-18 Comparison of the oxidation temperature at 5wt%, 10wt%, 50wt% weight loss of the novolac type epoxy resin blend with different siloxane contens after cabonization ---------------- 117

1.J. W. Weeton, D. M. Peters and K. L. Thomas, ”Property Data: Ceramic and Glass Matrix Composites in Engineers Guide to Composite Materials”, American Society of Mechanical Engineers, vol.8, pp39-44 (1987).
2.G. E. Stanton, ”New Designs for Commercial Aircraft Wheels and Brakes”, Journal of Aircraft, vol.5, pp73-77 (1968).
3.J. V. Weaver, ”Advanced Materials for Aircraft Brakes”, Journal Aeronomy, pp695-698(1972).
4.J. P. Ruppe, “Today and the Future in Aircraft Wheel and Brake Development”, Journal of Canadian Aeronautics and Space, vol.26, pp 209-216(1980).
5.S. Awasthi and J. L. Wood, ”C/C Composite Material for Aircraft Brakes”, Ceram. Eng. Sci.Proc.,Vol.9, pp553-560(1988).
6.J. B. Park, ”Ceramic Implant Materials” in “Biomaterial Science and Engineering”, Plenum Press, New York N.Y., pp235-263 (1980).
7.H. Bruckmann and K. J. Huttinger, ”Carbon a Promising Material in Endoprosthetics, Part I” Biomaterials, vol.1, pp67-72 (1980).
8.許明發, ”碳、碳纖維、碳/碳複合材料之加工技術與應用”, 滄海書局(1997).
9.R. Gaskell, in “Introduction to Metallurgical Thermodynamics”, 2nd., McGraw-Hill, New York N.Y., pp155-187(1981).
10.F. J. Clauss, ”Solid Lubricants and Self-Lubricating Solids”, Academic Press, New York N.Y., pp43-74(1972).
11.G. Savage, “Carbon-Carbon Composites”, Chapman & Hall, London, 1993.
12.C. R. Thomas, “Essentials of Carbon-Carbon Composites”, Royal Society of Chemistry, 1993.
13.B. Sandor Robert, SAMPE Quarterly, April 1991, pp.23-28.
14.R. J. Zaldivar and J. M. Yang, SAMPE Journal, Vol.27 no.5, pp.29-36.
15.R. J. Zaldivar R. W. Kobayashi and G. S. Rellick, “Carbon-Catalyzed Graphitization in Polyarylacetylene-Derived Carbon-Carbon Composites”, Carbon, Vol. 29, No. 8, pp. 1145-1153, 1991.
16.R. J. Zaldivar, G. S. Rellick and J. -M. Tang, “Processing Effects on the Mechanical Behavior of Polyarylacetylene Derived Carbon/Carbon Composites”, SAMPE Journal, Vol. 27, No. 5, pp. 29-36, 1991.
17.B. Satya, “Carbonization of high temperature resins”, Carbon, vol 31 No.4, pp617-632, 1993
1.許明發, ”碳、碳纖維、碳/碳複合材料之加工技術與應用”, 滄海書局(1997).
2.G. Savage, “Carbon-Carbon Composites”, Chapman & Hall, London, 1993.
3.C. R. Thomas, “Essentials of Carbon-Carbon Composites”, Royal Society of Chemistry, 1993.
4.E. M. Wekerka and R. J. Imprescia, “The use of Organometallic Additives to Promote Graphitization of Carbons Derived from Furfuryl Alcohol Resins”, Carbon, Vol. 11, pp. 289-297. 1973.
5.A. Burger, E. Fitzer, M. Heym and B. Terwiesch, “Polyimides as Precursors for Artificial Carbon”, Carbon, Vol.13, pp. 149-157, 1975.
6.H. Marsh, D. Crawford and D. W. Taylor, “Catalytic Graphitization by Iron of Isotropic Carbon from Polyfurfuryl Alcohol, 725-1090K, A High Resolution Electron Microscope Study”, Carbon, Vol. 21, No. 1, pp. 81-87, 1983.
7.Zuzana Weishauptova and Jiri Medek, ”Properties of Graphited Pitch Cokes : Influence of the Precarbonization Treatment Pitch on the Formation of Graphitic Structure”, Fuel, Vol. 65, pp. 732-736, 1986.
8.Michio Inaguki, Tsutomu Ibuki, Keji Kobayashi and Mototsugu Sakai, “Interaction Between Pitch and Phenol Resin During Pressure Carbonization”, Carbon, Vol. 28, No. 4, pp. 559-564, 1990.
9.B. Sandor Robert, “Polybenzimidazole(PBI) As A Matrix Resin Precursor For Carbon/Carbon Composites”, SAMPE Quarterly, April 1991, pp.23-28.
10.R. J. Zaldivar and J. M. Yang, SAMPE Journal, Vol.27 no.5, pp.29-36.
11.R. J. Zaldivar R. W. Kobayashi and G. S. Rellick, “Carbon-Catalyzed Graphitization in Polyarylacetylene-Derived Carbon-Carbon Composites”, Carbon, Vol. 29, No. 8, pp. 1145-1153, 1991.
12.R. J. Zaldivar, G. S. Rellick and J. -M. Tang, “Processing Effects on the Mechanical Behavior of Polyarylacetylene-Derived Carbon/Carbon Composites”, SAMPE Journal, Vol. 27, No. 5, pp. 29-36, 1991.
13.B. Satya, “Carbonization of high temperature resins”, Carbon, vol 31 No.4, pp617-632, 1993
14.F. Dillon, “The influence of matrix microstructure on the mechanical properties of CFRC composit”, Carbon, vol 31 No.8, pp1337-1348, 1993
15.A. Oya, K. Arai and K. Fujita, “Carbonization and Graphitization of Poly-p-Phenylene Sulphide (PPS) Film“, Journal of Materials Science, Vol. 29, pp. 4477-4480, 1994.
16.H.M. Gajiwala, U. K. Sodah, S. Jeelani, ”Novel Processing Techniques for low Porosity carbon/carbon composite and their characterization.”, Innovative Processing and Characterization of Composite Materials, American Society of Mechanical Engineers,Vol.20,pp.241-248,1995.
17.K. M. Beinborn, ”The significance of the fiber coating in the production of carbon fiber-reinforced carbons from HT carbon fibers 1.poly(dimethylsiloxane) and poly(methylphenylsiloxan) coatings”, Carbon, vol.33 no.8, pp.1029-1042.
18.B. Kaluderovic, “The Influence of Adding Pitch to Resin as a Matrix Precursor on Properties of Carbon/Carbon Composites”, Journal of Materials Science, Vol. 30, pp.1839-1844, 1995.
19.H.M. Gajiwala; U.K.; Sodah, S.; Jeelani, S.,”Toughing, Strengthening and densification approaches applied to carbon/carbon composite.”, Proceedings of the ASME Noise Control and Acoustics Division, American Society of Mechanical Engineers, Vol.23, No.2, pp.125-133, 1996.
20.M.M. Angelovici , et. al., ”The effect of on degradation and mechanical properties of PI coating carbon fiber/phenolic resin composites”, Materials Letters, Vol.36, No.5/6, pp.254-265, 1998.
21.S. S. Tzeng, “Mechanical behavior of two-dimensional carbon-carbon composites with interfacial carbon layers”, Carbon, vol.37, pp.2011-2019.
22.Z. Lauseviz and S. Marinkovic, “Mechanical properties and chemistry of carbonization of phenol-formaldehyde resin”, Carbon, Vol.24 no.5, pp.575-580,1986
23.Tse-Hao Ko, “Effect of Pyrolysis on the Mechanical Properties and Microstructure of Carbon Fiber-Reinforced and Stabilized Fiber-Reinforced Phenolic Resins for Carbon/Carbon Composites”, Polymer Composites, Vol. 14, No. 3, pp. 247-256, 1993.
24.Wen-Chi Chang, Chen-Chi M. Ma, Nyan-Hwa Tai, Chun-Bin Chen,”Effects of Processing Methods and Parameters on the Mechanical Properties and Microstructure of Carbon/Carbon Composites”, Journal of Materials Science, Vol. 29, No. 22, pp. 5859-5867, 1994.
25.T. H. Ko, J. J. Jaw, Y. C. Chen, “Effect of Pyrolysis on the Properties of Stablized PAN-Babric Reinforced Phenolic Resin for 2-D Carbon/Carbon Composites”, Polymer Composites, Vol. 16, No. 6, pp. 522-528, 1995.
26.A. Kimberly, “Mechanisms of the pyrolysis of penolic resin in a carbon/phenoluc composite”, Carbon, vol.33 no.11, pp.1509-1515.
27.A. Jeff Wang, “The Effects of Resin Thermal Degradation on Thermostructural Response of Carbon-Phenolic Composites and the Manufacturing Process of Carbon-Carbon composite”, Journal of Reinforced Plastics and Composites, Vol.15, pp.1011-1026.
28.K. A. Trick, “A kinetic model of the pyrolysis of phenolic resin in a carbon/phenolic composite”, Carbon, vol.35 no.3, pp.393-401.
29.Tse-Hao Ko; Tsu-Sheng Ma; ”Effect of post-curing on the mechanical properties of carbonized phenolic resins “, Polymer Composites v 19 n 4 p 456-462 Aug 1998
30.Tse-Hao Ko; Wen-Shyong Kuo; ”Effect of carbon fabric type on the mechanical performance of 2D carbon/carbon composites”, Polymer Composites, vol.19, no. 5, p 618-625, Oct 1998
31.Tse-Hao Ko; Wen-Shyong Kuo; ”The influence of post-cure on properties of carbon/phenolic resin cured composites and their final carbon-carbon composites”, Polymer Composites vol. 21, no. 1, p 96-103, 2000.
32.S. J. Gregg and R. F. S. Tyson, “The kinetics of oxidation of carbon and graphite by oxygen at 500-600℃”, Carbon, vol.3, pp.39-42.
33.H. W. Chang and S. K. Rhee, ”Oxidation of caron derived from phenolic resin”, Carbon, vol.16, pp.17-20.
34.P. Ehburger, “Characterization of cabon-carbon composite─oxidation behavior”, Carbon, vol.19, pp.7-10.
35.A. Oya, Y. Ida, M. Takabatake, S. Ofani and H. Marsh, “Oxidation with Simon‘s Reagent and HNO3/H2SO4 of Turbostratic Graphitic Carbon Prepared Catalytically by Nickel Particles (20nm) in a Carbonized Resin“, Journal of Materials Science, Vol. 16, pp. 1809-1814, 1981.
36.S. Goto Kaznhiro, “A review on oxidation kinetics of carbon fiber/carbon matrix composite at high temperature”, Transactions ISIJ, vol.26, 597-603.
37.L. Krishan, “Oxidation of carbon/carbon composites─A theoretical analysis”, Carbon, vol.26 no.2, pp.217-224.
38.M. Tugtepe, S. Ozgumes, “Modified Phenol-Formaldehyde Novolac Resin : Synthesis and Thermal Oxidative Degradation”, Journal of Applied Polymer Science, Vol. 29, pp. 83-101, 1990.
39.Tsung-Ming Wu, Wen-Cheng Wei, Shu-En Hsu, “On the Oxidation Kinetics and Mechanisms of Various SiC-Coated Carbon-Carbon Composites”, Carbon, Vol. 29, No. 8, pp. 1257-1265, 1991.
40.Tsung-Ming Wu, Wen-Cheng Wei, Shu-En Hsu, “Sol-Gel Silica in the Healing of Microcracks in SiC-Coated Carbon/Carbon Composites”, Journal of the European Ceramic Society, Vol. 9, No. 5, pp. 351-356, 1992.
41.Tsung-Ming Wu, Wen-Cheng Wei, “Oxidation of Carbon/Carbon Composite Coated with SiC-(Si/ZrSi2)-ZrSi2”, Carbon, Vol. 32, No. 4, pp. 605-613, 1994.
42.P. Partha, “Carbon materials of obtained from organometallic modification of pitch and its oxidation resistance properties”, Carbon, Vol. 34, No. 1, pp. 89-95, 1994.
43.Chen-Chi M. Ma, Nyan-Hwa Tai, Wen-Chi Chang, Huai-Te Chao, “Microstructure and Oxidation Resistance of SiC Coated Carbon-Carbon Composites via Pressureless Reaction Sintering”, Journal of Materials Science, Vol. 31, No. 3, pp. 649-654, 1996, 1994.
44.L. M. Manocha, “Oxidation behavior of carbon-carbon composites impregnated with silica and silicon oxycarbide”, Carbon, vol.38, pp.1481-1491, 1998.
45.I. J. Davies, “Microstructural investigation of low density carbon-carbon composites”, Journal of Material Science, vol 29, 338-344.
46.Chang, Wen-Chi; Tai, Nyan-Hwa; Ma, Chen-Chi M., “Dynamic Mechanical Properties of Carbon-Carbon Composites”, Journal of Materials Science, Vol. 30, No. 5, pp. 1225-1232, 1995.
47.Donald L. Schmidt, “Unique Applications of Carbon-Carbon Composite Materials”, SAMPE Journal, vol.35 no.3, pp.27-38, 1995.
48.M. H. Choi, “The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites”, Polymer, vol. 41, pp.3243-3252, 2000.
49.C .C. M. Ma, “Utilization of the Derivatives of Fullerene(C60) Modified Phenolic Resin to Prepare Carbon/Carbon Composite”, ANTEC, Soc. of Plastic Engr., New York City, May 2-6, 1999.
50.J. M. Lin, C.C. M. Ma et al, ”Preparation and properties of SiC Modified Carbon/Carbon Composites by Carbothermal Reduction Reaction.” J. Material Science Letters, Vol.18, PP.1353-1355, 1999.
51.J. M. Lin, C.C. M. Ma et al, ”Carbon fiber reinforced phenolic/silica Hybrid Ceramers”, Polymer Composite, vol. 21, no.2, pp.305-310 , 2000.
52.J. M. Lin, C.C. M. Ma et al, ”Thermal Degradation of Phenolic Resin/silica Hybrid Ceramers.” Polymer Degradation and Stability, vol. 69, pp.229-235 , 2000.
53.V. E. Yudin, M. Ya. Goykhman et al, “Carbonization behaviour of some polyimide resins reinforced with carbon fibers” Carbon, vol. 38, pp.5-12, 2000.
54.S. J. Park, M. S. Cho, “Thermal Stability of carbon-MoSi2-carbon composites by thermogravimetric analysis” Journal of Material Science, vol. 35, pp.3525-3527, 2000.
55.S. R. Dhakate, V. K. Parashar et al, “Effect of titania(TiO2) interfacial coating on mechanical properties of carbon-carbon composites” Journal of Material Science Letters, vol. 19, pp.699-701, 2000.
56.Stephen J. Clarson and J. Anthony Semlyen, ”Siloxane polymers”, PTR Prentice Hall Inc., New Jersey 07632, p315 ,1993.
57.H.E.Kissinger, ”Reaction Kinetics in Differential Thermal Analysis”, Anal.Chem., 29, 1702, 1957.
58.T. J. Ozawa, Bull. Chem. Soc. Jpn., 38, 1881,1965.
59.T. J. Ozawa, J. Therm. Anal., 2, 301 ,1970.
60.W. C. Shih, C. C. M. Ma et al, "Polydimethylsiloxane Containing Isocyanate Group Modified Epoxy Resin: Curing, Characterization and Properties", J. Appl. Polym. Sci., Vol. 73, pp. 2739-2747, 1999.
61.Hatta Hiroshi, Kogo Yasuo et al, “High temperature Oxidation behavior of SiC-coated C/C composites”, Journal of the Japan Institute of Metals, V.62, n4, PP.404-412, 1998.
62.Bryan Ellis, “Chemistry and Technology of Epoxy Science”, Blackie Academic & Professional, London, 1993.
63.F. Y. Wang, C.C.M. Ma and W.J. Wu.."Thermal degradation of polyethylene oxide blend with novolac type phenolic resin". Journal of Materials Science,Vol.36 , pp1-5, 2001
64.J.M. Lin, C. C. M. Ma and W. C. Chang , “Carbon/Carbon Composites Derived from Phenolic Resins/silica Hybrid Ceramers (I). Oxidation Resistance and Morphological Properties” , Journal of Materials Science , 2000 (in press).
65.C. C. M. Ma, J. M. Lin, W. C. Chang, T. H. Ko, “Carbon/Carbon Composites Derived from Phenolic Resin/Silica Hybrid Ceramers ─ Microstructure, Physical and Morphological Properties” , Carbon, 2001 (accepted)
1.A. Burger, E. Fitzer, M. Heym and B. Terwiesch, “Polyimides as Precursors for Artificial Carbon”, Carbon, Vol.13, pp. 149-157, 1975.
2.Robert B. Sandor, SAMPE Quarterly, April 1991, pp.23-28.
3.R. J. Zaldivar and J. M. Yang, SAMPE Journal, Vol.27 no.5, pp.29-36.
4.R. J. Zaldivar, R. W. Kobayashi and G. S. Rellick, “Carbon-Catalyzed Graphitization in Polyarylacetylene-Derived Carbon-Carbon Composites”, Carbon, Vol. 29, No. 8, pp. 1145-1153, 1991.
5.R. J. Zaldivar, G. S. Rellick and J. -M. Tang, “Processing Effects on the Mechanical Behavior of Polyarylacetylene-Derived Carbon/Carbon Composites”, SAMPE Journal, Vol. 27, No. 5, pp. 29-36, 1991.
6.C. R. Thomas, “Essentials of Carbon-Carbon Composites”, Royal Society of chemistry, 1993.
7.Tse-Hao Ko; Tsu-Sheng Ma, ”Effect of post-curing on the mechanical properties of carbonized phenolic resins “, Polymer Composites v 19 n 4 p 456-462 ,Aug 1998
8.Tse-Hao Ko; Wen-Shyong Kuo; ”The influence of post-cure on properties of carbon/phenolic resin cured composites and their final carbon-carbon composites”, Polymer Composites vol. 21, no. 1, p 96-103, 2000.
9.Stephen J. Clarson and J. Anthony Semlyen, ”Siloxane polymers”, PTR Prentice Hall Inc., New Jersey 07632, p315 ,1993.
10.C.C.Riccardi, ”Curing Reaction of Epoxy Resins with Diamines”, J. Appl. Polym. Sci., 29, 481,1984.
11.P.P.Shah,”Differential Scanning Calorimetric Investigation of Polymerization of Epoxy Resin Based on Phenolphthalein with Phthalic Anhydride”, Brit. Polym.J.,17,354,1985.
12.R.D.Patel,”Cure Kinetics of Epoxy Resin by Differential Scanning Calorimetry Technique”, Brit. Polym.J.,19,37,1987.
13.H.E.Kissinger,”Reaction Kinetics in Differential Thermal Analysis”, Anal.Chem., 29,1702,1957.
14.Wen-Chang Shih “Polydimethylsiloxane containing isocyanate group-modified epoxy resin :Curing, Characterization, and Properties”, Journal of applied polymer science , Vol.73, 2739-2747,1999.
15.T. J. Ozawa, Bull. Chem. Soc. Jpn., 38, 1881,1965.
16.T. J. Ozawa, J. Therm. Anal., 2, 301 ,1970.
17.P. C. Painter, J. F. Graf, M. M. Coleman, “Effect of Hydrogen-Bonding on the Enthalpy of Mixing and the Composition Dependence of the Glass-Transition Temperature in Polymer Blends”, Macromol., Vol. 24, No. 20, pp. 5630-5638, 1991.
18.A. J. Kovacs, J. M. Hutchinson and J. J. Aklois, The Structure of Non-crystalline Materials (P. H. Gaskell, ed.) Taylor and Francis, London, 1977, p.153.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 巫鑫,未分配盈餘加徵10%營所稅對外僑股東之影響,中國稅務旬刊第1727期,PP.16-22
2. 王銘生,兩稅合一後如何解釋財務與稅務會計之差異,中國稅務旬刊第1670期,PP.13-16
3. 王金和,兩稅合一可扣抵稅額設計之探討,中國稅務旬刊第1682期,PP.14-19
4. 王志銘,澳洲租稅系列之一澳洲兩稅合一制度之介紹,中國稅務旬刊1609期,PP.23-25
5. 何添義,談兩稅合一與未分配盈餘,中國稅務旬刊第1731期,PP.8-12
6. 李煥珪,兩稅合一制度下合理稅額扣抵比率之計算,中國稅務旬刊1681期,PP.15-17
7. 余文彬,談未分配盈餘所得稅問題與改進之道,中國稅務旬刊第1755期,PP.11-13
8. 林妙雀,為兩稅合一之健全立法請命(上),會計研究月刊第145期,PP.135-142
9. 林妙雀,為兩稅合一之健全立法請命(下),會計研究月刊第146期,PP.135-140
10. 許崇源,股東可扣抵稅額之計算與探討,中國稅務旬刊第1729期,PP.29-35
11. 張清讚,再論營所稅之盈餘分配說,中國稅務旬刊第1740期,PP.8-12
12. 張清讚,未分配盈餘稅能否全額扣抵之探討,中國稅務旬刊第1665期,PP.7-12
13. 張清讚,股東扣抵及未分配盈餘研析,中國稅務旬刊第1651期,PP.7-12
14. 張清讚,兩稅合一之保留盈餘扣繳法補論,中國稅務旬刊第1633期,PP.7-8
15. 張明德、王金和,視我國兩稅合一達成租稅公平之可行性,中國稅務旬刊第1721期,PP.15-21