跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/14 22:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖楷捷
研究生(外文):Kai-Chieh Liao
論文名稱:人物追蹤系統與跌倒行為偵測
論文名稱(外文):Human Tracking System and Fall Detection
指導教授:陳 明 揚
指導教授(外文):Ming-Yang Chern
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:58
中文關鍵詞:物體追蹤膚色偵測人物姿勢移動物偵測跌倒偵測
外文關鍵詞:postureface detectiontracking objectfallmotion detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:601
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
近年來出生率的下降及國民平均壽命的增加,老年人及兒童的安全漸受重視,而跌倒之行為是老年人及兒童經常發生之意外,本文欲偵測此一情形,以監視系統偵測人物在活動時是否有跌倒之可能,利用此偵測結果,可便利醫護或看護人員進行相關治療及改善行人活動環境。
隨著電腦軟、硬體技術的進步,電腦視覺領域的應用也越來越廣泛,近十年來,研究者對於辨識分析人體的動作或行為的研究也相當有興趣,目前學術界在人體運動姿勢(站立、行走、蹲下、臥倒)辨識上已經有相當良好的研究結果,本文提出一套偵測系統判斷行人臥倒是否為異常行為或只是人物本身自主性的臥倒或趴下。
本論文主要分作兩個重點:1.人物個體辨識,2.跌倒行為偵測。在人物個體辨識中,我們先找出移動人物資訊並定義上半身資訊加以紀錄為模型,以此作為追蹤人物的方法,並藉由對人物帶有膚色資訊來濾除其他類型的移動物體。在跌倒行為偵測的部分,本研究藉由將人物資訊切分成多個區域,並依據各區域的水平、垂直投影量加以分析,根據連續影像中人物的動作是否屬於跌倒。
本系統之弁鄍i以進行人物追蹤並偵測是否發生跌倒的行為,而不必先定義模型以及大量的數學函式運算,即可達到此目的。
In recent years, because the decline in birth rate and the increase of national average life span, special attention is gradually shifting to the security of the elderly people and children, fall is one of the often seen accidental among them. The purpose of this thesis is to detect the situation and to examine the possibility whether or not the personages fall while moving by a monitoring system. Based on a result of detection, the doctor and medical treatment-nursing group could put forward a medical treatment plan and carry on improvement of the pedestrian''s activity environment.
The application of computer vision systems has widely spread along with the progress of the computer software and hardware. In the recent ten years, the researchers show their interest in the research of identifying and analyzing the humans'' motions or behaviors. The academia has a quite good result of study in the distinguishing of human motion posture at present. This thesis proposed a detection system on examining and judging of the pedestrian who falls for the abnormal behavior or personage''s own independence.
This thesis mainly divides into two focal points: the fist is individual distinguish personages and the second is the detection of fall. Firstly, the personage''s information and definition of the upper part of the body information were found, this result was carry on and be the method for human tracking. Due to the complexional information of human, the group of other moving objects could be leach out. Besides, the part of fall detection, we detect the person in video who falls based on the information of its horizontal, vertical projections.
The function of this system can be used on human tracking and fall detection, and it could be achieved without define models and large number of mathematics operation.
中文摘要
英文摘要
目錄
圖目錄
第一章 簡介
1.1 研究動機
1.2 相關研究
1.3 系統簡介
第二章 前景物偵測
2.1 背景建立
2.2 前處理
2.2.1 相機晃動補償
2.2.2 型態學運算
2.2.3 連通元件分析
2.2.4 人體膚色偵測
2.2.5 陰影去除
2.2.6 人物破碎區域補償
2.3 前景物追蹤
2.3.1 目標物狀態
2.3.2 人物交錯情形偵測
2.3.3 人物分離偵測
2.3.4 人物模型建立
2.3.5 模型建立與更新
2.3.6 人物交錯後比對
第三章 人體跌倒姿勢辨識
3.1 人物身體傾斜
3.2 腳步動作
3.3 人物整體型態分析
第四章 實驗結果
4.1 實驗環境與設備
4.2 實驗結果
4.2.1 背景建立
4.2.2 雜訊消除
4.2.3 標示人物
4.2.4 人物模型建立與更新
4.2.5 交錯過程及分離過程
4.2.6 跌倒行為偵測
4.2.7 類似跌倒之動作分析
第五章 結論與未來工作
5.1 結論
5.2 未來工作與發展
參考文獻
參考文獻
[1] I. Haritaoglu, D. Harwood, and L.S. Davis, “W4: Real-time surveillance of people and their activities,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 22, No. 8, pp. 809 – 830, 2000.
[2] L.S. Davis, D. Harwood, and I. Haritoaglu, “Ghost: A human body part labeling system using silhouettes,” ARPA Image Understanding Workshop, pp. 229 – 235, 1998.
[3] A. Ali and J.K. Aggarwal, “Segmentation and recognition of continuous human activity,” IEEE Workshop on Detection and Recognition of Events in Video, pp. 28 – 35, 2001.
[4] R. Cucchiara, C. Grana, A. Prati, and R. Vezzani, “Probabilistic posture classification for human-behavior analysis,” IEEE Transactions on Systems, Man, and Cybernetics, pp. 42 – 54, 2005.
[5] J. Yamato, J. Ohya, and K. Ishii, “Recognizing human action in time sequential images using hidden Markov model,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 379 – 385, 1992.
[6] J. Freer, B. Beggs, F. Chevriet, and A. Goryashko, "Automatic recognition of suspicious activity for camera based security systems," IEEE Proceedings of European Convention on Security and Detection, no. 408, pp. 54 – 58, 1995.
[7] S.Y. Chien, Y.W. Huang, B.Y. Hsieh, S.Y. Ma, and L.G. Chen, "Fast video segmentation algorithm with shadow cancellation, global motion compensation, and adaptive threshold techniques," IEEE Transactions on multimedia Volume 6, Issue 5, pp. 732 – 748, 2004.
[8] C.S. Lee, A. Elgammal, and Department of Computer Science Rutgers University, "Modeling View and Posture Manifolds for Tracking," IEEE 11th International Conference on Computer Vision, pp. 1 – 8, 2007.
[9] C.C. Li and Y.Y. Chen, "Human Posture Recognition by Simple Rules," IEEE International Conference on Systems, Man and Cybernetics, Volume 4. pp. 3237 – 3240, 2006.
[10] R.L. Hsu and A.K. Jain, " Face detection in color images," IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 24, Issue 5, pp.696 – 706, 2002.
[11] A. Branca, G. Attolico, and A. Distante, "Cast shadow removing in foreground segmentation," 16th International Conference on Pattern Recognition, Volume 1, pp.214 – 217, 2002.
[12] Y.H. Liang, S. Guo, Z.Y. Wang, X.W. Xu, and X.Y. Cao, "A Robust and Fast Motion Segmentation Method for Video Sequences," IEEE International Conference on Automation and Logistics, pp.2952 – 2957, 2007.
[13] M. Heikkila and M. Pietikainen, “A Texture-Based Method for Modeling the Background and Detecting Moving Objects,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 28, Issue 4, pp.657 – 662, April 2006.
[14] R. Caroline, M. Jean, S. Alain, and R. Jacqueline, “Fall Detection from Human Shape and Motion History using Video Surveillance,” 21st International Conference on Advanced Information Networking and Applications Workshops, Volume 2, pp.875 – 880, May 2007.
[15] S.Y. Chien, Y.W. Huang, B.Y. Hsieh, S.Y. Ma, and L.G. Chen, “Fast Video Segmentation Algorithm With Shadow Cancellation, Global Motion Compensation, and Adaptive Threshold Techniques,” IEEE Transactions on Multimedia,Volume 6, Issue 5, pp.732 – 748, Oct. 2004.
[16] S.Y. Chien, S.Y. Ma, and L.G. Chen, “Efficient moving object segmentation algorithm using background registration technique,” IEEE Transactions on Circuits and Systems for Video Technology, Volume 12, Issue 7, pp.577 – 586, July 2002.
[17] X. Fu and B. Guo, “An Efficient Video Objects Segmentation Algorithm, ” 6th World Congress on Intelligent Control and Automation, Volume 2, pp.10026 – 10030, 2006.
[18] P. Kumar, K. Sengupta, and A. Lee, “A comparative study of different color spaces for foreground and shadow detection for traffic monitoring system,” IEEE 5th International Conference on Intelligent Transportation Systems, pp.100 – 105, 2002.
[19] D.C. Tseng, C.W. Lin, and C.M. Ling, “motion object detection and tracking based on adaptive background substraction,” IPPR Conference on Computer Vision, Graphics and Image Processing, 18th, 2005.
[20] A. Bobick and J. Davis, “Real-time recognition of activity using temporal templates,” IEEE Workshop on Applications of Computer Vision, pp.39 – 42, Dec. 1996.
[21] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, “Detecting Moving Objects, Ghosts, and Shadows in Video Streams,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 25, Issue 10, pp.1337 – 1342, Oct. 2003.
[22] A. Utsumi and J. Ohya, “Image Segmentation for Human Tracking using Sequential-image-based Hierarchical Adaptation,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.911 – 916, Jun. 1998.
[23] R. Cucchiara, C. Grana, M. Piccardi, A. Prati, and S. Sirotti, “Improving Shadow Suppression in Moving Object Detection with HSV Color Information,” IEEE Intelligent Transportation Systems, pp.334 – 339, Aug. 2001.
[24] J. Stander, R. Mech, and J. Ostermann, “Detection of Moving Cast Shadows for Object Segmentation,” IEEE Transactions on Multimedia, Volume 1, Issue 1, pp.65 – 76, 1999.
[25] R. Cucchiara, C. Grana, M. Piccardi, A. Prati, and S. Sirotti, “Improving Shadow Suppression in Moving Object Detection with HSV Color Information,” IEEE Intelligent Transportation Systems, pp.334 – 339, Aug. 2001.
[26] Y. Lu, H. Xin, J. Kong, B. Li, and Y. Wang, “Shadow Removal Based on Shadow Direction and Shadow Attributes,” Web Technologies and Internet Commerce, International Conference on Computational Intelligence for Modelling, Control and Automation, pp.37 – 37, Nov. 2006.
[27] Y. Wang, G. Zhu, and M. Tang, “An Improvement on Cast Shadow Detection for Vehicles Through Separately Locating Sub Shadow Regions,” 8th International Conference on Signal Processing, Volume 2, pp.16-20, 2006.
[28] P. Guo, Z. Miao, and Y. Yuan, “Posture and Activity Recognition Using Projection Histogram and PCA Methods,” Congress on Image and Signal Processing, Volume 2, pp.397 – 401, 2008.
[29] R. Daniel, D. Petr, and G.L. Van, “Bayesian Pixel Classification for Human Tracking,” IEEE Workshop on Motion and Video Computing. Volume 2, pp.78 – 83, Jan. 2005.
[30] X. Chen, L. Mihaylova, D.R. Bull, and N. Canagarajah, “An Efficient Visual Tracking Method for Multiple Moving Targets,” International Conference on Computational Intelligence and Security Workshops, pp.267 – 270, Dec. 2007.
[31] J. Wang, Y. Makihara, and Y. Yagi, “Human Tracking and Segmentation Supported by Silhouette-based Gait Recognition,” IEEE International Conference on Robotics and Automation, pp.1698 – 1703, 2008.
[32] M. Castaud, M. Barlaud, and G. Aubert, “Tracking Video Objects Using Active Contour,” Workshop on Motion and Video Computing, pp. 90 – 95, Dec. 2002.
[33] J.S. Cho and D.J. Park, “Robust shape-matching criterion for precision tracking of moving objects in correlated image sequences” Electronics Letters Volume 40, Issue 1, pp.22 – 24, 2004.
[34] S.K. Zhou, R. Chellappa, and B. Moghaddam, “Visual Tracking and Recognition Using Appearance-Adaptive Models in Particle Filters,” IEEE Transactions on Image Processing, Volume 13, Issue 11, pp.1491 – 1506, Nov. 2004.
[35] A. Cavallaro, O. Steiger, and T. Ebrahimi, “Tracking Video Objects in Cluttered Background,” IEEE Transactions on Circuits and Systems for Video Technology, Volume 15, Issue 4, pp.575 – 584, Apr. 2005.
[36] I.A. Sulistijono and N. Kubota, “Particle Swarm Intelligence Robot Vision for Multiple Human Tracking of A Partner Robot” Annual Conference SICE, pp.604 – 609, 2007.
[37] H. Lim, O.I. Camps, M. Sznaier, and V.I. Morariu, “Dynamic Appearance Modeling for Human Tracking,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 1, pp.751 – 757, June 2006.
[38] Q. Zhao, J. Kang, H. Tao, and W. Hua, “Part Based Human Tracking In A Multiple Cues Fusion Framework,” International Conference on Pattern Recognition, 18th Volume 1, pp.450 – 455, 2006.
[39] S. Ioffe and D. Forsyth, “Human Tracking with Mixtures of Trees,” 8th IEEE International Conference on Computer Vision, Volume 1, pp.690 - 695, July 2001.
[40] P. Guo and Z. Miao, “A Home Environment Posture and Behavior Recognition System,” International Conference on Convergence Information Technology, pp.175 – 180, Nov. 2007.
[41] M.F. Abdelkader, R. Chellappa, Q. Zheng, and A.L. Chan, “Integrated Motion Detection and Tracking for Visual Surveillance,” IEEE International Conference on Computer Vision Systems, pp.28 – 28, Jan. 2006.
[42] C.F. Juang and C.M. Chang, “Human Body Posture Classification by a Neural Fuzzy Network and Home Care System Application,” IEEE Transactions on Systems, Man and Cybernetics, Part A, Volume 37, Issue 6, pp.984 – 994, Nov. 2007.
[43] O. Ooba, J.K. Tan, H. Kim, and S. Ishikawa, “Recognizing human postures in a complex background employing MRRF method,” International Conference on Control, Automation and Systems, pp.1159 – 1162, Oct. 2007.
[44] M. Zhao, C. Chen, and C. Chen, “Robust background subtraction in HSV color space,” SPIE., pp.325-332, 2002.
[45] H.N. Charif, and S.J. McKenna, “Activity Summarisation and Fall Detection in a Supportive Home Environment,” 17th International Conference on Pattern Recognition, Volume 4, pp.323 – 326, Aug. 2004.
[46] N. Thome and S. Miguet, “A HHMM-Based Approach for Robust Fall Detection,” 9th International Conference on Control, Automation, Robotics and Vision, pp.1 – 8, Dec. 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top