跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/16 07:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉明杰
研究生(外文):Ming-Chieh Lu
論文名稱:含光錐切面齊次多項式相位之振盪積分
論文名稱(外文):Oscillatory Integral Operators with Light-Like Homogeneous Polynomial Phases
指導教授:傅學舜
指導教授(外文):Shieh-Shun Fu
學位類別:碩士
校院名稱:輔仁大學
系所名稱:數學系研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:47
中文關鍵詞:振盪積分
外文關鍵詞:Oscillatory Integral Operators
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們用震盪積分算子,在一光錐曲面中,以一平面與之相切為零,進而求之衰退速率.
In this paper, we discuss the oscillatory integral operators with
homogeneous polynomial phase functions. The phase function can be
constructed from two polynomials of degree 2. We consider the determinantal polynomials have multiple roots, and we calculate their norms.
Contents
1. Introduction
2. Some Useful Lemmas
3. Main Theorem
4. Remark
References
[1] Shieh-Shun Fu: L2 estimates for oscillatory integral operators and pencils
of homogeneous functions. Forum Math. 11 (1999), 513-541
[2] Greenleaf, A. and G. Uhlmann: Microlocal analysis of the two-plane
transform. Contemporary Mathematics 140 (1992), 65-71
[3] Phong, D. H. and E. M. stein: Oscillatory integrals with polynomial
phases. Invent. Math. 110 (1992), 39-62
[4] Phong, D. H. and E. M. stein: On a Stopping Process for Oscillatory
Integrals. The Journal of Geometric Analysis. Volume 4, Number 1,
1994, 105-120
[5] Christopher Donald. Sogge: Fourier integrals in classical analysis. Cambridge
University Press, 1993, 22
[6] O. Robert and P. Sargos: A general bound for oscillatory integrals with
a polynomial phase of degree k. Math. Res. Lett. 13(2005), no. 4,
531-537
[7] Wan Tang: Decay rates of oscillatory integral operators in ”1+2” dimensions.
Forum Math. 18(2006), 427-444
[8] Phong, D. H. and E. M. stein: Oscillatory integrals with polynomial
phases. Invent. Math. 110 (1992), 332
[9] Phong, D. H. and E. M. stein: Oscillatory integrals with polynomial
phases. Invent. Math. 110 (1992), 329-432
[10] Folland, Gerald B.: Real Analysis: Modern Techniques and Their
Applications (second edition). New York: Wiley, c1999, 67
[11] Michael Ruzhansky: Multidimensional decay in Van der Corput lemma.
[math.AP] 5 Nov (2007).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top