跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 12:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李昱劭
研究生(外文):Yu-shao Lee
論文名稱:美式認售權證評價分析
論文名稱(外文):Pricing Analysis on American Put Warrants
指導教授:林信宏林信宏引用關係
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:財務金融系碩士班
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:64
中文關鍵詞:績效美式認售權證隨機利率隨機波動度
外文關鍵詞:Stochastic VolatilityStochastic InterestPerformanceAmerican Put Warrant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究比較隨機波動與隨機利率 (Stochastic Volatility and Stochastic Interest, SVSI)與固定波動度與固定利率 (Deterministic Volatility and Deterministic Interest, DVDI) 模型的評價差異。數值分析結果顯示,SVSI評價模型的誤差表現較DVDI評價模型來的小。接著,我們以「美式認售權證」價格之市場資料進行參數估計與評價分析。實證結果亦顯示,SVSI評價模型實證的績效表現都較DVDI評價模型佳,因此SVSI模型在美式認售權證的評價上較DVDI模型具有優勢,對於投資人的投資與避險、公司的風險管理上能提供較好的決策。
This study compares pricing models of the SVSI (Stochastic Volatility and Stochastic Interest) and DVDI (Deterministic Volatility and Deterministic Interest). For numerical analysis, the result shows that the pricing error of SVSI is smaller than the error of DVDI. Next, we take the market data of American put warrant to estimate the parameters of models and analyze the pricing performance. Empirical results reveal that the performance of SVSI is better than DVDI. Hence the SVSI model takes an advantage of American put warrant to the DVDI. Furthermore, the SVSI model provides a better decision for the investment and hedging of the investors and the risk management of the companies.
中文摘要 ........................................................................................................................... i
英文摘要 .......................................................................................................................... ii
表目錄 .............................................................................................................................. v
圖目錄 ............................................................................................................................. vi
壹、緒論 .......................................................................................................................... 1
一、研究背景與動機 .................................................................................................. 1
二、研究架構 .............................................................................................................. 5
貳、文獻回顧 .................................................................................................................. 7
一、美式選擇權評價方法之發展 .............................................................................. 7
二、波動度估計相關文獻 .......................................................................................... 9
參、研究方法 ................................................................................................................ 11
一、 DVDI評價模型介紹 ..................................................................................... 11
(一) Black & Scholes 評價模型 ............................................................................ 11
(二) 二元樹評價模型 ............................................................................................ 14
(三) 有限差分法 .................................................................................................... 17
二、SVSI模型評價模型介紹 ................................................................................... 19
三、選擇權模型之參數估計方法 ............................................................................ 20
四、「美式認售權證」績效衡量方法 .................................................................... 22
(一) 均方誤差 (Mean Square Error) ..................................................................... 22
(二) 平均絕對誤差 (Mean Absolute Error).......................................................... 22
(三) 平均絕對百分比誤差 (Mean Absolute Percentage Error) ........................... 23
肆、數值分析 ................................................................................................................ 24
iv
一、LSM模型介紹 ................................................................................................... 24
二、DVDI、SVSI模型與LSM模型之比較 ........................................................... 24
二、DVDI、SVSI模型誤差分析 ............................................................................. 29
伍、實證分析 ................................................................................................................ 31
一、資料來源 ............................................................................................................ 31
二、DVDI、SVSI模型參數估計 ............................................................................. 31
三、績效評估日的選取 ............................................................................................ 32
四、實證結果 ............................................................................................................ 32
陸、結論與建議 ............................................................................................................ 36
一、結論 .................................................................................................................... 36
二、後續研究及建議 ................................................................................................ 37
參考文獻 ........................................................................................................................ 38
附錄 ................................................................................................................................ 42
1. 賈景宇,2001,台灣創新型認購權證在不同波動模型下之比較,私立中原大學企業管理研究所,碩士論文。
2. Amin, K. I., 1991, “On the Computation of Continuous Time Option Prices Using Discrete Approximations,” Journal of Financial and Quantitative Analysis, 26(4), 477-495.
3. Bakshi, G., Cao, C., and Chen, Z., 1997, “Empirical Performance of Alternative Option Pricing Models,” Journal of Finance, 52(5), 2003-2049.
4. Bakshi, G., Cao, C., and Chen, Z., 2000, “Pricing and Hedging Long-Term Options,” Journal of Econometrics, 94(1-2), 277-318.
5. Barone-Adesi, G., and Whaley, R., 1987, “Efficient Analytical Approximation of American Option Values,” Journal of Finance, 42(2), 301-320.
6. Barraquand, J., and Martineau, D., 1995, “Numerical Valuation of High Dimensional Multivariate American Securities,” Journal of Financial and Quantitative Analysis, 30(3), 383-405.
7. Black, F., and Scholes, M., 1973, “The Pricing of Options and Corporate Liabilities,” Journal of Political Economy, 81(3), 637-659.
8. Black, F., 1976, “The Pricing of Commodity Contracts,” Journal of Financial Economics, 3(2), 167-179.
9. Boyle, P., 1977, “Options: A Monte Carlo Approach,” Journal of Financial Economics, 4(3), 323-338. 10. Brennan, M., and Schwartz, E., 1978, “Finite Difference Methods and Jump Processes Arising in the Pricing of Contingent Claims: A Synthesis,” Journal of Financial and Quantitative Analysis, 13(3), 461–474.
11. Broadie, M., and Detemple, J., 1996, “American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods,” The Review of Financial Studies, 9(4), 1211-1250.
12. Broadie, M., and Glasserman, P., 1997, “Pricing American-Style Securities Using Simulation,” Journal of Economic Dynamics and Control, 21(8), 1323-1352.
13. Chen, Y. C., and Huang, S. C., 2002, “Warrants Pricing: Stochastic Volatility vs. Black-Scholes,” Pacific-Basin Finance Journal, 10(4), 393-409.
14. Chu, S. H., and Freund, S., 1996, “Volatility Estimation for Stock Index Options: GARCH Approach,” The Quarterly Review of Economics and Finance, 36(4), 431-450.
15. Chung, S.-L., 1999, “American Option Valuations under Stochastic Interest Rates,” Review of Derivatives Research, 3(3), 283–307.
16. Chung, S.-L., 2002, “Pricing American Options on Foreign Assets in a Stochastic Interest Rate Economy,” Journal of Financial and Quantitative Analysis, 37(4), 667–692.
17. Cox, J., Ross S., and Rubinstein M., 1979, “Option Pricing: A Simplified Approach,” Journal of Financial Economics, 7(3), 229-264.
18. Detemple, J., and Tian W., 2002, “The Valuation of American Options for a Class of Diffusion Processes,” Management Science, 48(7), 917-937.
19. Geske, R., and Johnson, H. E., 1984, “The American Put Option Valued Analytically,” Journal of Finance, 39(5), 1511-1524.
20. Heston, S., 1993, “A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options,” Review of Financial Studies, 6(2), 327-343.
21. Hilliard, J. E., Madura J., and Tucker, A. L., 1991, “Currency Option Pricing with Stochastic Domestic and Foreign Interest Rates,” Journal of Financial and Quantitative Analysis, 26(2), 139-151.
22. Ho, T. S., Stapleton, R. C., and Subrahmanyam, M. G., 1997, “The Valuation of American Options with Stochastic Interest Rates: a Generalization of the Geske–Johnson Technique,” Journal of Finance, 52(2), 827–840.
23. Hull, J., and White, A., 1993, “Efficient Procedure for Valuation European and American Path-Dependent Options,” Journal of Derivatives, 1(1), 21-31.
24. Hull, J., 2009, Options, Futures, and Other Derivatives, 7th edition, Pearson Education, Inc., New Jersey.
25. Johnson, H. E, 1983, “An Analytic Approximation for the American Put Price,” Journal of Financial and Quantitative Analysis, 18(1), 141-148.
26. Ju, N., 1998, “Pricing an American Option by Approximating Its Early Exercise Boundary as a Piecewise Exponential Function,” Review of Financial Studies, 11(2), 627-646.
27. Lamoureux, C., and Lastrapes, H. E., 1993, “Forecasting Stock-Return Variance: Toward an Understanding of Stochastic Implied Volatilities,” Review of Financial Studies, 6(2), 293-326.
28. Lindset, S., and Lund, A., 2007, “A Monte Carlo Approach for the American Put under Stochastic Interest Rates,” Journal of Economic Dynamics and Control, 31(4), 1081-1105.
29. Longstaff, F. A., and Schwartz, E. S., 2001, “Valuing American Options by Simulation: Simple Least-Squares Approach,” Review of Financial Studies, 14(1), 113-147.
30. Medvedev, A., and Scaillet, O., 2010, “Pricing American Options under Stochastic Volatility and Stochastic Interest Rates,” Journal of Financial Economics, 98(1), 145–159.
31. Melino, A., and Turnbull, S., 1990, “The Pricing of Foreign Currency Options with Stochastic Volatility,” Journal of Econometrics, 45(1-2), 239-265.
32. Merton, R., 1973, “Theory of Rational Option Pricing,” Bell Journal of Economics and Management Science, 4(1), 141-183.
33. Poon, S.-H. and Granger, C. W. J., 2003, “Forecasting Volatility in FInancial Markets: A Review,” Journal of Economic Literature, 41(2), 478-539.
34. Randolph, W. L., and Najand, M., 1991, “A Test of Two Models in Forecasting Stock Index Future Price Volatility,” Journal of Futures Markets, 11(2), 179-190.
35. Tilley, J. A., 1993, “Valuing American Options in a Path Simulation Model,” Transactions of the Society of Actuaries, 45(1), 83-104.
36. Walsh, D. M., and Tsou, G. Y. G., 1998, “Forecasting Index Volatility: Sampling interval and non-trading effects”, Applied Financial Economics, 8(5), 477-485 37. Sharpe, W., 1978, Investments, 1st edition, Prentice-Hall, Englewood Cliffs, N.J., Shen, Q.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top