跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/05 09:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江俊漢
研究生(外文):Jyun-Han Jlang
論文名稱:碲化鉍系熱電薄膜發電元件於Epoxy/Silicone resin基板之設計與製作
論文名稱(外文):Design and Fabrication of Bismuth-Telluride-Based Thin Film Thermoelectric Generators on Epoxy/Silicone Resin Substrates
指導教授:林昭任林昭任引用關係
指導教授(外文):Zhao-Ren Lin
口試委員:廖建能陳炳宏李文錦
口試委員(外文):Chien-Neng LiaoBing-Hung ChenWen-Jin Li
口試日期:2014-12-25
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:127
中文關鍵詞:熱電元件聚苯乙烯球模板電沉積碲化鉍基
外文關鍵詞:Thermoelectric elementspolystyrene templateelectrodepositionBi2Te3-based
相關次數:
  • 被引用被引用:1
  • 點閱點閱:611
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要利用電鍍法做出碲化鉍基熱電薄膜發電元件,使用刮塗法在不鏽鋼基材上製備聚苯乙烯球模板,並於常壓下電鍍具有三維結構的碲化鉍基熱電薄膜後,再進行同時熱壓退火和純粹退火的後處理。熱電元件在組裝時,不能直接應用於不鏽鋼上,必須以電絕緣性佳且熱傳導性較低的材料做為基材。而本實驗利用環氧樹酯和矽樹酯來對熱電薄膜進行轉移,並對於轉移成功率以及轉移後的熱電性質作探討。熱電薄膜發電元件之熱電性質與結構設計均會影響整體性能,本研究以不同的基材、熱電薄膜後處理,製作三種熱電薄膜發電器,並比較其性能。利用環氧樹酯為基材時,對於串聯1對和2對p-n對熱電薄膜以Ni做為導電電極進行電訊量測,冷熱端溫差為11K時,開路電壓為2.58/5.13mV、短路電流為75/25μA以及最大輸出功率為48/32nW;而利用矽樹酯做為基材時,冷熱端溫差為8K時,開路電壓為1.98/3.90mV、短路電流為70/24μA以及最大輸出功率為35/23nW,由研究結果得知,在相同熱源下,環氧樹酯能造成較大的溫度差,矽樹酯則較低,其原因為矽樹酯的熱傳導性較佳,容易造成熱損失。而在不同的結構設計,相同熱電薄膜截面積下,1對p-n對串聯之結構設計有較高的短路電流值與最大輸出功率值,而2對p-n對串聯對熱電薄膜則具有較高的開路電壓值。
This research are devoted to make Bismuth-Telluride-based alloy thin film thermoelectric generators fabricated by a electroplating method, the three-dimensional Bismuth-telluride-based alloy thin film prepared by potentiostatic electrodeposition technique onto three-dimensional polystyrene templates which were formed on stainless steel substrates via blade coating method, hot pressing-annealing method and pure annealing method was further treated. The thermoelectric generators assembly, cannot use directly on to the stainless steel, it must have great electrical insulating properties and low thermal conductivity of the material as a substrate. In this study, using an epoxy resin and silicone resin transfer thermoelectric films, and to explore the transfer success rate and thermoelectric properties after the transfer. The output power can also be affected by thermoelectric properties and structure design of the thermoelectric generators. This study produced three kinds of film thermoelectric generators with different substrates and post-treatment method, and the compare its performance. When the epoxy resin as a substrate, the open-circuit voltage of 2.58/5.13mV, short-circuit current of 75/25μA and estimated maximum output power of 48/32nW are obtained from 1 pair/2 pairs of legs connected by Ni electrodes and a temperature difference of ∆T=11K;When the silicone resin as a substrate, the open-circuit voltage of 1.98/3.90mV, short-circuit current of 70/24μA and estimated maximum output power of 35/23nW are obtained from 1 pair/2 pairs of legs connected by Ni electrodes and a temperature difference of ∆T=8K. The results found of different substrates film thermoelectric generator, in the same heat source, epoxy resin can cause a great temperature difference of ∆T=11K, the lower silicon resin of ∆T=8K, presumably due to the thermal conductivity of the silicon resin is preferably, likely to cause heat loss. In different designs, the same sectional area of the thermoelectric thin film, a single pair of p-n of the structural design of the series has a high short-circuit current value and the maximum output power value, and the two pairs of p-n to the series have a high open-circuit voltage value.
目錄
中文摘要 II
Abstract IV
圖目錄 XII
表目錄 XVI
第一章 緒論 1
第二章 文獻回顧 3
2-1熱電材料的發展 3
2-2熱電基本原理 4
2-2-1西貝克效應(Seebeck effect) 4
2-2-2皮爾特效應(Peltier effect) 5
2-2-3湯姆森效應(Thomson effect) 6
2-3熱電裝置應用原理 7
2-3-1 熱電能源產生器 8
2-3-2 熱電致冷器 12
2-4熱電優值(Figure of merit) 14
2-5 熱電材料的分類 16
2-6 不同維度的熱電材料 18
2-7 製備薄膜熱電材料 19
2-8 利用電化學沉積法製備碲化鉍基熱電材料 22
2-9 利用奈米孔洞模板製備熱電奈米線 26
2-9-1 移除高分子模板的方法 30
2-10 改善熱電性質的後處理方法 31
2-10-1 同時熱壓退火法 31
2-10-2 退火熱處理 32
2-11 利用高分子聚合物對熱電薄膜進行轉移膜 33
2-11-1 接著劑的應用 34
2-11-2 影響接著力的因素 35
2-11-3 環氧樹酯與矽樹酯 39
2-12 熱電元件設計 40
2-12-1 Corss-Plane型熱電元件文獻 42
2-12-2 In-Plane型熱電元件文獻 44
第三章 實驗方法與步驟 48
3-1實驗藥品與儀器 48
3-1-1實驗藥品 48
3-1-2實驗儀器 50
3-2 實驗架構與流程 52
3-2-1基材清洗 54
3-2-2聚合單一粒徑PS球 55
3-2-2-1清洗苯乙烯單體 55
3-2-2-2前驅物溶液製備 56
3-2-2-3聚合聚苯乙烯球 57
3-2-2-4以刮塗法製作聚苯乙烯球模板 59
3-2-3配置電鍍液 60
3-2-4電鍍碲化鉍基熱電材料 61
3-2-5移除聚苯乙烯球模板 61
3-2-6後處理 62
3-2-7同時熱壓退火對碲化鉍基熱電材料做後處理 63
3-2-8以純粹退火對同時熱壓退火過的試片進行再處理 66
3-2-9利用環氧樹脂將薄膜與基材分離 66
3-2-10利用矽樹脂將薄膜與基材分離 68
3-3 熱電薄膜發電元件之設計 69
3-3-1 熱電薄膜發電元件之製程步驟 71
3-3-2 熱電薄膜發電元件之製程參數 72
3-4分析儀器與原理 73
3-4-1CHI電化學分析儀(CH Instrument Electro working station) 73
3-4-2掃描式電子顯微鏡(Scanning Electron Microscpoe, SEM) 75
3-4-3 Seebeck係數量測 75
3-4-4霍爾效應量測 76
3-4-5表面輪廓儀(Alpha-step) 77
3-4-6 開路電壓與短路電流量測 77
第四章 結果與討論 79
4-1 不同接著劑特性分析 79
4-1-1 環氧樹酯(Epoxy) 79
4-1-2 矽樹酯(silicone resin) 80
4-2 不同接著劑應用於轉移熱電薄膜 83
4-2-1 環氧樹酯轉移熱電薄膜 83
4-2-2 矽樹酯轉移熱電薄膜 84
4-2-2-1 矽樹酯{DC-840(more)/DC-805}+胺基矽烷偶合劑(AID-21) 85
4-2-2-2 矽樹酯{DC-805(more)/DC-840}+胺基矽烷偶合劑(AID-21) 86
4-2-2-3 矽樹酯{DC-840(more)/GS-104}+胺基矽烷偶合劑(AID-21) 88
4-2-2-4 矽樹酯{GS-104 (more)/DC-840}+胺基矽烷偶合劑(AID-21) 89
4-3 不同基材之熱電薄膜熱電性質量測 91
4-3-1 環氧樹酯為基材之熱電性質 91
4-3-2 矽樹酯為基材之熱電性質 94
4-4 不同後處理與基材下之熱電薄膜發電元件的電訊量測 98
4-4-1 以環氧樹酯為基材之熱電薄膜發電元件 99
4-4-2 以矽樹酯為基材之熱電薄膜發電元件 103
4-4-2-1 (製程一)以矽樹酯為基材之熱電薄膜發電元件 103
4-4-2-2 (製程二)以矽樹酯為基材之熱電薄膜發電元件 107
4-4-3 不同尺寸熱電接腳增加串聯數之熱電薄膜發電元件 111
第五章 結論與未來展望 116
5.1結論 116
5.2未來展望 118
參考文獻 119

[1]. W. Thomson, “On a mechanical theory of thermoelectric currents,” Proc. Roy. Soc. Edinburgh, 1851, 91-98

[2].L. D. Hicks, M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric Figure of merit”, 1993, Physical ReviewB, 47, 12727-12731.

[3]. 莊幸蓉,“熱電致冷器與熱電能源產生器之設計與分析”,2005,國立清華大學微機電系統工程研究所。

[4]. 吳奕諼,趙振綱,“碲化鉍合金熱電薄膜發電器之設計與製造”,2009,國立台灣科技大學機械工程系。

[5].G. S. Nolas, J. Sharp, H. J. Goldsmid, “Thermoelectrics Basic Principles and New Materials Developments”, 2001, Materials Science, 2-13.

[6].G. S. Nolas, J. Sharp, H. J. Goldsmid, “Thermoelectrics”, 2001, Springer,Chap.2, 40-41.


[7].G. J. Snyder, E. S. Toberer, “Complex thermoelectric materials”, 2008, Nature Materials , 7, 105-114.

[8].F. Gascoin, J. Rasmussen, G. J. Snyder, “High temperature thermoelectric properties of Mo3Sb7-xTex for x = 1.6 and 1.5”, 2007, Journal of Alloys and Compounds, 427, 324.

[9]. M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. B. Cronin, T. Koga, “Low-dimensional thermoelectric materials”, 1999, Physics of the Solid State, 679-682.

[10].L. D. Hicks, T. C. Harman, X. Sun, M. S. Dresselhaus, “Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit”, 1996, Physical Review B, 53, 10493-10496.

[11].蔡鎮安,「應用超臨界二氧化碳電鍍碲化鉍熱電奈米線之研究」,2009,國立中正大學化學工程學系。

[12]. 吳東峰,「利用PS球為模板電鍍碲化鉍熱電材料之研究」,2010,國立中正大學化學工程學系。

[13].鐘昌浩,「利用聚苯乙烯微球模板與電沉積來製備三維結構碲化鉍熱電材料之研究」,2011,國立中正大學化學工程學系。

[14]. D. H. Kim, E. Byon, G. H. Lee, S. Cho, “ Effect of deposition temperature on the structural and thermoelectric properties of bismuth telluride thin films grown by co-sputtering”, 2006, Thin Solid Films, 148-153.

[15]. L. M. Goncalves, C. Couto, P. Alpuim, A. G. Rolo, F. Volklein, J. H. Correia, “ Optimization of thermoelectric properties on Bi2Te3 thin films deposited by thermal co-evaporation”, 2009, Thin Solid Films, 2816-2821.

[16]. T. C. Harman, P. J. Taylor, D. L. Spears, M. P. Walsh, “PbTe-based quantum dot thermoelectric materials with High ZT”, 1999, Proc of 18th int. conf. on Thermoelectrics, 280-284.

[17]. T. C. Harman, M. P. Walsh, B. E. Laforge, G. W. Turner, “Nanostructured Thermoelectric Materials, 2005, Journal of Electronic Materials, L19-22.

[18]. R. Venkatasubramanian, T.Colpitts, B. O’Quinn, S. Liu, N. El-Masry, M. Lamvik, “Low-temperature organometallic epitaxy and its application to superlattice structures in thermoelectrics”, 1999, Appl. Phys. Lett., 75, 1104-1106.

[19]. V. Rama, S Edward, C. Thomas, Q. Brooks, “Thin-film thermoelectric devices with high room-temperature figures of merit”, 2001,Nature, 413, 597.

[20].M. Takahashi, Y. Oda, T. Ogino, S. Furuta, “Electrodeposition of Bi‐Te Alloy Films”,1993, Journal of Electrochemical Society, 140, 2550-2553.

[21]. J. P. Fleurial, A. Borshchevsky, M. Ryan, W. Phillips, J. Snyder, T. Caillat, E. Kolawa, J. Herman, P. Mueller, M. Nicolet, “Development of Thick-Film Thermoelectric Microcoolers Using Electrochemical Deposition” ,1998, in MRS Fall Meeting, vol.545, pp. 493.

[22]. Y. Miyazaki, T. Kajitani, “Preparation of Bi2Te3 films by electrodeposition”, 2001, Journal of Crystal Growth, 229, 542-546.

[23].M. Gonzalez, A. L. Prieto, R. Gronsky, T. Sands, A. M. Stacy, “Insights into the electrodeposition of Bi2Te3”, 2002, J. Electrochemical Seciety, 149, 546-554.

[24]. B. Y. Yoo, C. K. Huang, J. R. Lim, J. Herman, M. A. Ryan, J. P. Fleurial, N. V. Myung, “Electrochemically deposited thermoelectric n-type Bi2Te3 thin films”, 2005, Electrochimica Acta, 50(22), 4371-4377.

[25]. S. Li, M. S. Toprak, H. M. A. Soliman, J. Zhou, M. Muchammed, D. Platzek, E. Muller, “Fabrication of nanostructured thermoelectric bismuth telluride thick films by electrochemical deposition”, 2006, Chemistry of Materials, 18(16), 3627-3633.

[26]. 劉長宏,「應用超臨界二氧化碳電鍍碲化鉍熱電薄膜之研究」,2008,國立中正大學化學工程學系。

[27].黃盟儀,「應用超臨界二氧化碳電鍍碲硒化鉍熱電薄膜之研究」,2012,國立中正大學化學工程學系。

[28].賴韋成,「退火對電沉積於聚苯乙烯球模板3-D碲化鉍熱電性質之影響」,2012,國立中正大學化學工程學系。

[29].胡嗣祥,「熱壓對3-D碲化鉍電鍍膜熱電性質影響之研究」,2013,國立中正大學化學工程學系。

[30]. J. Chena, P. Donga,D. Dia, C. Wanga, H. Wanga, J. Wanga, X. Wu, “Controllable fabrication of 2D colloidal-crystal films with polystyrenenanospheres of various diameters by spin-coating”, 2013, Applied Surface Science, 270, 6-15.

[31]. Q. B. Meng, Z. Z. Gu, O. Sato, A. Fujishima, “Fabrication of highly ordered porous structure”, 2000, Applied physics letters, 77, 4313-4315.

[32]. J. Y. Yang, X. A. Fan, R. G. Chen, W. Zhu, S. Q. Bao, X. K. Duan. “Consolidation an Thermoelectric Properties of N-type Bismuth Telluride based Materials by Mechanical Alloying and Hot Pressing” , 2006, J. Alloys Compd. 416, 1-2, 270-273.

[33].曾逸婷,張立信,「熱壓對鉍碲熱電材料特性與微結構之影響」,2004,國立中興大學材料工程學系。

[34].D. H. Kim, G. H. Lee, “Effect of rapid thermal annealing on thermoelectric properties of bismuth telluride film grown by co-sputtering”, 2006, Materials Science and Engineering B, 131, 106-110.

[35]. W. Xing, H. Hongcai, W. Ning, M. Lei, “Effects of annealing temperature on thermoelectric properties of Bi2Te3 films prepared by co-sputtering”, 2013, Applied Surface Science, 276, 539-542.

[36]. 小野昌孝,賴耿陽編譯,「接著技術與接著劑應用」,1992,復文書局。

[37]. 吳文政,「接著劑的原理」,南寶樹酯,科學新天地,46-51。

[38]. D.M. Rowe, G. Min. “Evaluation of thermoelectric modules for power generation”, 1998,Journal of Power Sources, 73, 193-198.

[39]. M. Kishi, H. Nemoto, T. Hamao, M. Yamamoto, S. Sudou, M. Mandai, S. Yamamoto. “Micro-Thermoelectric Modules and
Their Application to Wristwatches as an Energy Source”, 1999, 18th international conference on Thermoelectrics, 301-307.

[40]. H. Bo ̈ttner, J. Nurnus, A. Gavrikov, G. Ku ̈hner, M. Ja ̈gle, C. Ku ̈nzel, D. Eberhard, G. Plescher, A. Schubert, K. Schlereth. “New hermoelectric Components Using Microsystem Technologies”, 2004, journal of microelectromechanical systems, 13(3).

[41]. G.S. Hwang, A.J. Gross, H. Kim, S.W. Lee, N. Ghafouri, B.L. Huang, C. Lawrence, C. Uher, K. Najafi, M. Kaviany. “Micro thermoelectric cooler: Planar multistage”, 2009, Internation journal Heat and Mass Transfer, 52, 1843-1852.

[42]. D. D. L. Wijngaards, G. de Graaf, R.F. Wolffenbuttel. “ Single-chip micro-thermostat applying both activeheating and active cooling”, 2003, Sensors and Actuators, A110, 187-195.

[43]. N. Sato, M. Takeda. “Fabrication and evaluation of a flexible thermoelectric device using metal thin films”, 2005, International Conference on Thermoelectrics, 160-163.

[44]. S. D. Kwon, B. K. JU, S. J. Yoon, J. S. Kim. “Fabrication of Bismuth Telluride-Based Alloy Thin Film Thermoelectric Devices Grown by Metal Organic Chemical Vapor Deposition”, 2009, Journal of Electronic Materials, Vol. 38, No. 7, 920-924.

[45].田福助,「電化學-理論與應用」,高立圖書有限公司,1991。

[46]. 李宗儒,「同時熱壓與退火處理3-D碲硒(銻)化鉍薄
膜熱電性質之研究」,2014,國立中正大學化學工程學系。

[47]. M. Takashiri, T. Shirakawa, K. Miyazaki, H. Tsukamoto. “Fabrication and characterization of bismuth-telluride-based alloy thin film thermoelectric generators by flash evaporation method”, 2007, Sensors and Actuators, A138, 329-334.
[48]. T. Ming, Y. Deng, Y. Hao, “Improved thermoelectric performance of a film device induced by densely columnar Cu electrode”, 2014, Energy, 70, 143-148.

[49]. T. Huesgen, P. Woias, N. Kockmann. “Design and fabrication of MEMS thermoelectric generators with high temperature”, Sensors and Actuator, A145-146, 423-429.

[50]. L. M. Goncalves, J. G. Rocha, C. Couto, P. Alpuim, J. H. Correia. “On-chip array of thermoelectric Peltier microcoolers”, 2007, Sensor and Actuators, A145-146, 75-80.

[51]. D. M. Rowe, G. Min. “Evaluation of thermoelectric modules for power generation”, 1998, Journal of Power Sources, 73, 193-198.

[52]. A. Hmood, A. Kadhim, H. Abu Hassan. “Fabrication and characterization of Pb1-XYbxTe-based alloy thin-film thermoelectric generators grown by thermal evaporation technique”, 2013, Materials Science in Semiconductor Processing, 16, 612-618.

[53].Y. Ma, E. Ahlbergb, Y. Sunc, B. B. Iversenc, A. E.C. Palmqvist,“Thermoelectric properties of thin films of bismuth tellurideelectrochemicallydeposited on stainless steel substrates”, 2011, Electrochimica Acta, 56, 4216-4223.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊