跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 09:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高瑞祥
研究生(外文):Jui-Hsiang Kao
論文名稱:螺槳引發之葉頻噪音理論預測–包含船體散射之影響
論文名稱(外文):Theoretical Prediction of The Marine Propeller Radiated Blade Rate Noises – Including The Scattering Effect Due to Ship Hull
指導教授:柯永澤柯永澤引用關係
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:系統工程暨造船學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:121
中文關鍵詞:線性聲學理論螺槳葉頻噪音時域疊代自由液面多頻散射
相關次數:
  • 被引用被引用:1
  • 點閱點閱:518
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

本論文最主要目的為依據線性聲學理論建立一套新且有效可計算船用螺槳於遠、近場所造成之葉頻噪音之數值方法。其中,船殼所引發之散射及自由液面引發之反射效應都將被考慮。
本方法中,首先於時域中推導出螺槳非定常片狀空泡及非定常力於遠場與近場引發噪音滿足線性聲波方程式之解,而自由液面效應則以映射法模擬之。本文將於時域中進行推導,且對旋轉聲源與場點間之距離無須作任何假設,因此本方法適用於遠、近場之計算。且能清楚計算於近場中,旋轉聲源與場點間距離隨時間變化引起之都普勒效應。求解螺槳非定常片狀空泡及非定常推力於遠場所引發之噪音時,可將佈滿整個葉片之音源以一等強度點音源代替之。但對非定常扭矩力於遠場所引發之噪音而言,則不可以一有效點音源替代之,否則將會有明顯之誤差存在。於近場計算時,不管何種音源皆須佈滿整個葉片始不致造成計算誤差。
至於船體散射問題之求解,本文發展一新的時域疊代方法。此時域疊代方法可同時解多頻散射之問題。疊代過程中,時間內插以傅利葉級數替換之,可有效的降低時間內插所造成之誤差。此方法可以有效替代傳統頻率域邊界元素法。計算過程中,此方法之收斂非常穩定,且高、低頻之計算例結果都和頻率域邊界元素法所得之結果吻合,然計算時間明顯縮短。
為探討於考慮自由液面效應情況下,螺槳直接葉頻輻射音與船殼散射音互相干擾之聲場,本文以一貨櫃船為計算實例。於此例中,本文方法計算之螺槳對船殼所誘導之激振力和滿足拉普拉斯(Laplace)方程式之高階小板法所計算之結果相似。
Abstract

The main objective of this thesis is to develop a new and efficient numerical method for predicting the far-field and near-field blade-rate noises of marine propellers operating in a non-uniform ship wake by linear acoustic theory. In addition, both the scattering effect from the ship hull and the reflecting effect from the free surface are included.
In the present method, an exact analytic solution satisfying the linear wave equation for predicting acoustic pressure caused by unsteady sheet cavitations, unsteady thrusts and torques can be derived directly in time domain. The free surface effect is simulated by imaged method. The deriving process has no approximation about the distance between the noise source and field points. Thus, this method can be used to predict the acoustic pressure at both far and near fields, and the Doppler effect can be demonstrate in the near field evidently. The variation of the distance between the noise source and the field points will cause obvious in the near field. It is found that for computing far-field acoustic pressure induced by the unsteady sheet cavitation and thrust, noise sources on a blade can be replaced by an effective point noise source. However, in doing so, errors appear on the computation of the acoustic pressure induced by the unsteady torque force. In the near field, any kind of noise sources should be distributed on the entire propeller blades in order to avoid the errors, especially for unsteady thrust and torque.
An iterative method in time domain for computing multi-frequency waves scattered from underwater obstacles is also developed. These equations derived in the present method are expressed in some forms relative to the retarded time, and the Fourier series is used to minimize the numerical error due to time interpolations. This iterative method is an alternative to the frequency-domain boundary element method (BEM); however, this method is more efficient than the BEM, and is found very robust. Computational results of the present method and BEM show good agreements for both low frequency and high frequency cases.
To investigate the acoustic fields radiated by the propeller and scattered from the ship hull with free surface effect, a case of container ship is calculated in this thesis. Meanwhile, the pressure fluctuations induced by the propeller on the ship hull predicted by the present method is similar to the results by a higher-order panel method satisfying the Laplace equation in this case.
Contents ............................................. V

List of Figures ......................................VIII

List of Tables.........................................XII

Nomenclature..........................................XIII

1 Introduction....................................1
1.1 The Noise Types Generated by Operating
Marine Propellers..........................1
1.2 The Discrete Blade-Rate Noise due to Marine
Propellers.................................2
1.3 Scattering Problems........................4
1.4 Objectives of This Distribution ...........6

2 The Blade-Rate Noise Radiated From Operating
Marine Propellers...............................8
2.1 Linear Acoustic Theory ....................8
2.2 Noise Source..............................10
2.2.1 Unsteady Source Strength of
Propeller Sheet Cavity Volume...11
2.2.2 Unsteady Force of a Propeller...12
2.3 Derivation of the Acoustic Pressure in Free
Field in Time Domain.......................13
2.3.1 The Acoustic Pressure due to a
Unsteady Propeller Sheet Cavitation ................................13
2.3.2 The Acoustic Pressure due to
Unsteady Propeller Force........17
2.4 Investigation of the Frequency Shift.......22
2.4.1 Frequency Shift for the Noise due
to Unsteady Propeller Sheet
Cavitation.......................23
2.4.2 Frequency Shift for the Noise due
to Unsteady Propeller Thrust.....24
2.4.3 Frequency Shift for the Noise due
to Unsteady Propeller Torque Force ................................25
2.5 Free Surface Effect........................26
2.5.1 General Discussion...............26
2.5.2 The Simulation of a Free Surface.28

3 A Time-Domain Iteration Method for Acoustic
Scattering Problems.............................36
3.1 Theoretical Formulations...................36
3.2 Numerical Implementation...................38
3.2.1 The Incident and Scattering
Potential.......................39
3.2.2 Equation for Iterations in Time
Domain..........................39
3.2.3 Time Marching Process...........41
3.3 Numerical Validation of the Present Method.43
3.3.1 Time Step Test..................44
3.3.2 High Frequency test.............45
3.3.3 Multi-Frequency Incident Wave
................................46
3.3.4 Comparison of Computational
Efficiency......................47

4 Computational Results...........................59
4.1 Associated Data for the Propeller..........59
4.2 The Strength of the Noise Sources..........60
4.3 Propeller Radiated Noise...................61
4.3.1 Results Without Free Surface
Effect..........................61
4.3.2 Results With Free Surface Effect ................................64
4.4 Scattering From the Ship Hull..............68
4.4.1 Iteration Scheme and Panel
Distribution....................68
4.4.2 Comparison Between Computational
Result and Experimental Measurement
for Ship Hull Pressure Fluctuation
..................................69
4.4.3 Scattering Effect in the Field
.................................71

5 Conclusion and Future Research Works ...........102

References...............................................107

Appendix
A Boundary Integral Equation............................114
B Derivation of Helmholtz Integral Equation in the Total
Potential Scheme .....................................116
C Hyperboloidal Panel Formulations......................118
References

1. Araújo, F. C., Mansur, W. J. and Carrer, J. A. M. Time-domain three-dimension analysis, in Boundary Element Acoustics, edited by T. W. Wu ( Southampton, UK, Boston, WIT Press, 2000), Chapter 8, 59-216.

2. Baiter, Hans-J. 1992 Advance views of cavitation noise, International Symposium on Propulsors and Cavitation, Hamburg, Germany.

3. Beckmann, P. and Spizzichino, A. 1963 Scattering of electromagnetic waves from rough surfaces, The Macmillan Company, New York, pp. 93.

4. Blake, W. K. 1984 Aero-hydroacoustics for ships, David Taylor Naval Ship Research and Development Center, Washington, D.C. Vol. 2.

5. Burton, A. J. and Miller, G.. F. 1971 The application of integral equation methods to the numerical solution of some exterior boundary-value problems, Proc. Roy. Soc. Lond. A. 323, 201-210.

6. Carley, M. 2000 Propeller noise fields, Journal of Sound and Vibration.233, 255-278.

7. Chen, J. T., and Hong, H. K. 1992 Boundary element method, second edition, New World Press, Taipei, Taiwan. (in Chinese)

8. Chen, Lee-Tzong, Morino, Luigi. and Emil, O. Suciu. 1975 Steady and oscillatory subsonic and supersonic aerodynamics around complex configurations. AIAA Journal, Vol. 13(3).

9. Dohner, J. L., Shoureshi, R. and Bernhard, R. J. 1987 Transient analysis of three dimensional wave propagation using the boundary element method, Int. J. Num. Methods in Eng., Vol.24, 621-634.

10. Dominguez, J. and Gallego, R. Time domain formulation, in Boundary Element in Dynamics, edited by J. Dominguez (Elsevier Applied Science, London New York, 1993), Chapter 4, 343-344.

11. Estorff, O. V., Pais, A. L. and Kausel, E. 1990 Some observations on time domain and frequency domain boundary elements, J. Num. Methods in Eng., Vol.29, 785-800.

12. Farassat, F. 1977 Discontinuities in aerodynamics and aeroacoustics: The concept and application of generalized derivatives, Journal of Sound and Vibration. 55, 165-193.

13. Farassat, F. 1981 Linear acoustic formulas for calculation of rotating blade noise, AIAA Journal. 19, 1122-1130.

14. Groenbroom, P. H. L. 1983 Wave propagation phenomena, in Progress in Boundary Elements Methods, edited by C. A. Brebbia, vol. 2, Chapter 2, 22-55.

15. Gutin, L. J. 1948 On the sound field of a rotating propeller, translated as Technical Memorandum of National Advisory Committee For Aeronautics, No. 1195, Washington, October.

16. Hanson, D. B. 1976 Near field noise of high tip speed propellers in forward flight, AIAA 3rd Aeroacoustics Conference. 76-565.

17. Hanson, D. B. 1976 Near field noise of high tip speed propellers in forward flight, AIAA 3rd Aeroacoustics Conference, 76-565, Palo Alto, California, July.

18. Hanson, D. B. 1979 The influence of propeller design parameters on far-field harmonic noise in forward flight, AIAA 79-0609.

19. Harry, A. Schenck. 1968 Improved integral formulation for acoustic radiation problem, J. Acoust. Soc. Am, Vol.44, No.1, 41-58.

20. Hawkings, D. L. and Lowson, M. V. 1974 Theory of open supersonic rotor noise, Journal of Sound and Vibration. 36, 1-20.

21. Howe, M. S. 1998 Acoustic of fluid-structure interaction, Cambridge University Press.

22. Hsin, Ching-Yeh. 1990 Development and analysis of panel methods for propellers in unsteady flow. PhD thesis, M.I.T., Department of Ocean Engineering.

23. Jin, Chaosong. 1993 A direct boundary integral equation method for the acoustic scattering problem, Engineering Analysis with Boundary Elements, Vol.12, 39-46.

24. Jou, W. H. 1979 Supersonics propeller noise in a uniform flow, AIAA, 79-0348, Aerospace Sciences Meeting, 17th, New Orleans, LA, January.

25. Kehr, Y. Z., Hsin, Ching-Yeh and Sun Yung-Ching. 1998 Calculations of pressure fluctuations on the ship hull induced by intermittently cavitating propellers. Proc. Natl. Sci. Counc. ROC(A), Vol.22, No.5, 642-653.

26. Kehr, Y. Z. and Kao, J. H. 2004 The acoustic pressure due to the unsteady forces of a marine propeller considering free surface effect. Journal of Taiwan Society of Naval Architects and Marine Engineers, Vol.23, No.2, 55-66.

27. Kerwin, J. E., and Lee, C. S. 1978 Prediction of steady and unsteady marine propeller performance by numerical lifting surface theory, Societyof Naval Architects and Marine Engineers Transactions, 86, 218-253.

28. Kress, R. and Mohsen, A. 1986 On the simulation source technique for exterior problems in acoustics, Math. Meth. In the Appl. Sci. , 585-597.

29. Li, W. L., Wu, T. W. and Seybert, A. F. 1994 A half-space boundary element method for acoustic problems with a reflecting plane of arbitrary impedance, J. Sound Vib., Vol.171, 173-183.

30. Lord, Rayleigh. 1945 Theory of sound, Dover Publications, New York, Vol. 2, pp. 89-94.

31. Mansur, W. J. and Brebbia, C. A. 1982 Formulation of the boundary element method for transient problems governed by scalar wave equation, Appl. Math. Modelling, 6, 307-311.

32. Magliozzi, B., Hanson, D. B., and Amiet, R. K. 1991 Propeller and profan noise. of Aeroacoustics of flight vehicles: Theory and practice, NASA Reference Publication 1258, edited by Hubbard, H. H., originally published at 1991, Volume 1., Chapter 1.

33. Morfey, C.L. 1973 Rotating blades and aerodynamic sound, Journal of Sound and Vibration. 28, 587-617.

34. Morse, P.M. and Ingard, K.U. Theoretical Acoustics, Princeton University Press, Princeton, N. J (1968).

35. Noble, D. J., Sponagle, N. C. and Leggat, L. J. 1986 DREA Propeller cavitation research, Proceedings, 2first ATTC, Washington, D.C, August.

36. Ochmann, M. 1995 The source simulation technique for acoustic radiation problems, Acustica, Vol.81, 512-527.

37. Raestad, A. E. 1996 Tip vortex index – an engineering approach to propeller noise prediction, The Naval Architect, July.


38. Urick, Robert. J. 1982 Sound propagation in the sea, Peninsula Publishing, Los Altos, California U.S.A.

39. Ross, D. 1987 Mechanics of underwater noise, Peninsula Publishing, Los Altos, California U.S.A.

40. Seybert, A. F., Soenarko, B., Rizzo, F. J. and Shippy, D. J. 1985 An advanced computational method for radiation and scattering of acoustic waves in three dimensions, J. Acoust. Soc. Am, Vol.77, No.2, 362-368.

41. Seybert, A. F. and Soenarko, B. 1988 Radiation and scattering of acoustic waves from bodies of arbitrary shape in a three-dimensional half space, ASME Trans, Vol.110, 112-117.

42. Seybert, A. F. and Wu, T. W. 1988 Modified helmholtz integral equation for bodies sitting on an infinite plane, J. Acoust. Soc. Am, Vol.85, No.1, 19-23.

43. Succi, G. P. 1979 Design of quiet efficient propellers, SEA Paper 790584.

44. Wu, T. W. 2000 Boundary element acoustics, Southampton, UK, Boston, WIT Press, Chapter 4, 51-67.

45. Ziomek, J. 1995 Fundamentals of acoustic field theory and space-time signal processing lawrence, Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, California.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top