跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/15 22:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王振慶
研究生(外文):Chen-Ching Wang
論文名稱:活性碳披覆釕氧化物電極於電化學電容器的應用
論文名稱(外文):Ruthenium oxide / carbon composite electrodes for the application of electrochemical
指導教授:胡啟章
指導教授(外文):Chi-Chang Hu
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:釕氧化物電化學電容器超級電容器電容器
外文關鍵詞:ruthenium oxideelectrochemical capacitorsupercapacitorcapacitor
相關次數:
  • 被引用被引用:6
  • 點閱點閱:352
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文的目的在於以含浸法與無電鍍法製備活性碳披覆釕氧化物複合材料,並且研究探討該複合材料於電化學超高電容器的應用與發展。含浸法與無電鍍法的優點在於其具有良好的分散性,因此在披覆之後通常能夠獲得均勻的披覆層。然而在電化學分析方面,本研究中除了使用循環伏安法於0.1M H2SO4溶液中來觀測電極的電化學行為與評估其準電容的差異之外,亦將使用計時電位法來觀測其充放電行為,並且進一步探討陽極極化、熱處理及氫氧化鈉置換對披覆電極的電化學特性與電容行為的影響。而經由不同熱處理溫度比較之後可以發現,當活性碳披覆電極經240℃熱處理8小時之後具有最佳的穩定性,而且其循環伏安圖與理想電容器相當接近。
在研究中的第一部分,含浸法成長之活性碳披覆釕氧化物電極在經過240℃熱處理以及1.2V定電位極化1.5小時之後,可以使披覆釕獲得甚大的利用率(每克約可提供1000法拉)。而於研究中的第二部分,在85℃下乾燥之披覆電極經0.1M氫氧化鈉置換之後,將較其他熱處理溫度具有較大的比電容貢獻。
在材料的結構特性分析上,研究中以數種分析儀器進行一連串有系統的分析與探討。在表面積方面,雖然活性碳的BET表面積會隨著釕氧氧化物的披覆而減少,但是整體的電容量卻有增加的情形。而不同熱處溫度下披覆材料的結晶情形,可以X光繞射光譜(XRD)來分析披覆層,對於披覆層的表面形態則可利用掃瞄式電子顯微鏡(SEM)進行觀察,此外並利用XPS觀察不同熱處理溫度下,活性碳披覆釕氧化物電極表面的結構組成與氧化情形。
The purpose of this paper is to develop C-Ru composites for electrochemical supercapacitors using the impregnation and electroless deposition. These methods easily provide the uniform deposits of desired metals on the surface of carbon substrates. The electrochemical properties and redox behaviour of these hybrid Ru oxide-carbon composites were systematically investigated in 0.1 M H2SO4 by cyclic voltammetry (CV) and chronopotentiometry (CP). The effects of anodizing in H2SO4, annealing in air and oxidizing in NaOH on the capacitive performance have been studied extensively. When the Ru-C composites were annealed in air for 8 hr at 240℃, they would be more stable and exhibited the responses similar to that of ideal electrochemical capacitors.
In the first part, a maximum utilization of Ru ( ie, 1000F/g base on active material only) was obtained when the Ru-C composite was annealed in air at 240℃ and anodized at 1.2V for 1.5 hours. In the second part, the maximum utilization of Ru-C electrode was obtained when these composites were heated at 85℃ and place in 0.1M NaOH for 0.5 hr.
The textural characterizstics of the composites are systematically investigated in this thesis. Although the Brunauer-Emmett-Teller surface area of the activate carbon was deceased with the loading of ruthenium oxide, the specific capacitance of these composites increases. The crystalline information of the Ru-C composite with annealing at different temperatures was characterized from the X-ray diffraction (XRD) patterns. The morphologies of Ru oxide–C electrode were examined by a scanning electron microscope (SEM). The effect of annealing temperatures on the oxidation state of Ru within the Ru-C composite was stuied by X-ray photoelectron spectroscopy (XPS).
摘要…………………………………………………………………… I
目錄…………………………………………………………………… V
圖目錄…………………………………………………………………IX
表目錄…………………………………………………………………XV
第一章 緒論……………………………………………………………..1
1-1電化學原理………………………………………………………..1
1-1-1電化學反應系統……………………………………………...1
1-1-2 影響電化學反應系統的因素 ………………………………3
1-2電極材料…………………………………………………………..3
1-3金屬氧化物電極種類以及製備的方法…………………………..5
1-4電化學電容器……………………………………………………11
1-3-1電化學電容器的分類……………………………………….11
1-4-2 釕金屬氧化物於準電容器的應用 ..………………………12
1-4-3電化學電容器的量測……………………………………….16
1-4-4影響電化學電容器特性的因素…………………………….21
1-5研究動機與本文大綱……………………………………………23
第二章 實驗方法與步驟……………………………………………..26
2-1 電極製作………………………………………………………...26
2-1-1 電極基材的前處理 ...……………………………………...26
2-1-2 活性碳規格 ..………………………………………………26
2-1-3 無電鍍法及涵浸法之實驗條件 ..…………………………27
2-1-4電極之製備………………………………………………….28
2-1-5披覆電極之熱處理………………………………………….28
2-2電化學測試………………………………………………………28
2-2-1 陽極極化 ..…………………………………………………31
2-2-2 可逆性 ..……………………………………………………31
2-2-3 充放電實驗 ..………………………………………………31
2-3 材料分析 ………………………………………………………33
2-4使用儀器及藥品…………………………………………………33
第三章 無電鍍法製備之活性碳披覆釕氧化物電極的電化學行為探討
3-1純活性碳塗佈電極之循環伏安行為探討………………………36
3-1-1 碳材料之特性 ……………………………………………..36
3-1-2電化學特性測試…………………………………………….37
3-2無電鍍法披覆釕氧化物電極之電化學行為探討………………41
3-2-1 無電鍍披覆前後之循環伏安行為比較 ..…………………41
3-2-2 陽極極化之影響 …………………………………………..45
3-3 熱處理溫度對活性碳披覆電極之效應 .………………………51
3-4 電極之材料分析 .………………………………………………56
3-5 結論 .……………………………………………………………60
第四章 含浸法製備活性碳披覆釕氧化物電極材料於電化學電容器之
應用..…………………………………………………………………61
4-1 前言...……………………………………………………………61
4-2 含浸法製備活性碳披覆釕氧化物電極之行為探討 .…………61
4-3 熱處理溫度的影響……………………………………………...67
4-4 陽極極化的效應………………………………………………...73
4-5 不同掃瞄速率的影響…………………………………………...80
4-6電極之材料分析…………………………………………………83
4-6-1 充放電實驗 ..………………………………………………83
4-6-2 XRD ...………………………………………………………86
4-6-3 SEM…………………………………………………………86
4-6-4 XPS …………………………………………………………90
4-7 結論 ..…………………………………………………………..97
第五章 不銹鋼網塗佈電極材料之特性探討與比較…………………98
5-1 前言……………………………………………………………...98
5-2 含浸法披覆電極之電化學行為討論...………………………..100
5-2-1 活性碳電極之循環伏安行為 ..…………………………..100
5-2-2 氫氧化鈉置換效應的影響 ..……………………………..102
5-2-3 熱處理溫度及壓片效應對電極材料特性的影響 ………106
5-3 計時電位法檢測活性碳披覆電極之準電容 …………..….…113
5-4 電極之材料分析……………………………………………….117
5-5 結論…………………………………………………………….128
第六章 總結與展望 ..…………………………………………….…..129
1. A. J. Bard and L. R. Faulkner, “Electrochemical Methods, Fundamentals and Applications”,John Wiley & Sons, Singapore (1980).
2. D. Pletcher, “A First Course in Electrode Processes”, The Electrochemical Consultancy, England (1991).
3. D. R. Crow, “Principles and Applications of Electrochemistry”, 2nd Ed. Chapman and Hall Ltd. London (1979).
4. 田福助編著,電化學理論與應用,先科技P1.
5. D. Pletcher and F. C. Walsh, “Industrial Electrochemistry”, Chapman and Hall Ltd. N. Y. (1990).
6. 張光揮, “循環伏安置備含水釕銥氧化物於電化學電容器的應用”,國立中正大學化工研究所碩士論文, 2000.
7. A. M. Couper, D. Pletcher, and F. C. Walsh, Chem. Rev., 90, 837 (1990).
8. Galizzoli D., Tantardini F., Trasatti S., J. Appl. Electrochem. , 5, 203 (1975).
9. H. Wendt, “Electrocatalysis in Organic Electrochemistry”, Electrochim. Acta, 29, 1513 (1991).
10. S. Trasatti, “Physical Electrochemistry of Ceramic Oxide”, Electrochim. Acta, 36, 225 (1991).
11. B. Marsan, N. Fradette, and G. Beaudoin, J. Electrochem. Soc. 139, 1889(1992).
12. L. Nanni, S. Polizzi, A. Benedetti, and A.D. Battisti, “Morphology, Microstructure, and Electrocatalytic Properties of RuO2-SnO2 Thin Films” J. Electrochem. Soc., 146, 220-225 (1999).
13. M. Ito, Y. Murakami, H. Kaji, K. Yahikozawal, and Y. Takasu, “Surface Characterization of RuO2-SnO2 Coated Titanium Electrodes” J. Electrochem. Soc., 143, 32-36(1996).
14. Moggi Pietro, Predieri Giovanni, Di Silvestri Fabio, Ferretti Andrea,“Ru/SiO2 catalysts prepared by the sol–gel method from Ru3(CO)12”, Applied Catalysis A: General, 182, Issue: 2, June 21, 1999, 257-265.
15. F.I. Mattos-Costa, P. de Lima-Neto, S.A.S. Machado, L.A. Avaca, “Characterisation of surfaces modified by sol-gel derived RuxIr1-xO2 coatings for oxygen evolution in acid medium” Electrochimica. Acta , 44, 1515-1523(1998).
16. J. P. Zheng and T. R. jow, “A New Charge Strage Mechanism for Electrochemical Capacitors,” J. Electrochem. Soc., 142, L6-L8 (1995)
17. J. G. D. Haenen, W. Visscher and E. Barendrecht,” Oxygen Elvolution on NiCo2O4 Electrodes,” Journal Applied Electrochem., 15, 29-38 (1985).
18. Chi-Chang Hu, Kwang-Huei Chang, “Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors: effects of codepositing iridium oxide”, Electrochimica Acta, 45 (2000), 2685-2696.
19. Chi-Chang Hu, Yao-Huang Huang, “Cyclic voltammetric deposition of Hydrous Ruthenium Oxide for Electrochemical Capacitors”, Journal of the Electrochemical Society, 146 (7),2465-6471(1999).
20. S. Ardizzone, G. Fregonara and S. Trasatti, “Inner and Outer Active Surface of RuO2 Electrodes”, Electrochim. Acta, 35, 263-267 (1989).
21. S. Ardizzone, G. Fregonara and S. Trasatti, “Inner and Outer Active Surface of RuO2 Electrodes”, Electrochim. Acta, 35, 263-267 (1989).
22. Kuo-Chuan Liu and Marc A. Anderson, “Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors,”J. Electrochem. Soc., 143, 124-130(1996).
23. J. P. Zheng, P. J. Cygan, and T. R.Jow, “Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors,” J. Electrochem. Soc., 142, 2699-2703 (1995).
24. T.-C. Wen and C.-C. Hu.,”Hydrogen and Oxygen Evolutions on Ru-Ir Binary Oxides” ,J Electrochem. Soc., 139, 2158 (1992).
25. B. V. Tilak and C.-P. Chen, “Material for Electrochemical Capacitors”, J. Electrochem. Soc., 143, 3791-3799(1996).
26. J. P. Zheng, T. R. Jow, “High energy and high power density electrochemical capacitors,” J. Power Sources ., 62, 155-159(1996).
27. 張允誠, 胡如南, 電鍍手冊第二版, 國防工業出版社, P706.
28. 黃耀煌, “循環伏安法置備之含水釕氧化物於電化學電容器之應用”,國立中正大學化工研究所碩士論文, 1999.
29. G. Lodi, E. Sivieri, A. DeBattisti and S. Trasatti, “Ruthenium Dioxide-Based Film Electrodes. Ⅲ.Effect of Chemical Composition and Surface Morphology on Oxygen Evolution in Acid Solution,” Journal Applied Electrochem., 8, 135-143 (1978).
30. J. C. F. Boodts, S. Trasatti, “Hydrogen evolution on iridium oxide cathodes”, J. Applied Electrochem., 19, 255-262 (1989).
31. S. Hadzi-Jordanov, H. Angerstein-Kozlowska, M. Vukovic and B. E. Conway, “Reversibility and Growth Behavior of Surface Oxide Films at Ruthenium Electrode”, J, Electrochem. Soc., 125, 1471-1480 (1978).
32. J. Augustynski, L. Balsenc, and J. Hinden, “ X-Ray Photoelectron Spectroscopic Studies of RuO2-Based Film Electrodes”, J. Electrochem. Soc., 125, 1093-1097(1978).
33. Chuan Lin, James A. Ritter, and Branko N. Popov, “Development of Carbon- Metal Oxide Supercapacitors from Sol-Gel Derived Carbon-Ruthenium Xerogels”, Journal of The Electrochimical Society, 146(9), 3155-3160(1999)
34. 江鴻儒, “循環伏安法及電鍍法制備釕電極在電化學電容器之應用”,國立中正大學化工研究所碩士論文, 2001.
35. R. P. Simpraga and B. E. Conway, “The real-are scaling factor in electrocatalysis and in charge storage by supercapacitors”, Electrochim. Acta, 43, 3045-3058(1998).
36. R. Otogawa, M. Morimitsu, and M. Matsunaga, “Effect of microstructure of IrO2-based anodes on electrocatalytic properties”, Electrochimica Acta, 44, 1509-1513(1998).
37. J. M. Marracino, F. Coeuret and S. Langlois, “A first Investigation of Flow-Through Porous Electrodes Made of Metallic Felts or Foams”, Electrochim. Acta, 32, 1303-1309(1987).
38. S. Langlois and F. Coeuret, “Flow-Through and Flow-By Porous Electrodes of Nickel Foam. I, Material Characterization”, J. Appl. Electrochim., 19, 43-50(1989).
39. M. Ramani, B. S. Haran, R. E. White, B. N. Popov, L. Arsov, J. Power Sources, 93, 209 (2001).
40. B. E. Conway, Electrochemical Supercapacitors, Kluwer-Plenum Pub. Co., New York NY, 1999.
41. 賴其亮, “開發濕式氧化觸媒以去除廢水中的VOC”,國立中正大學化工研究所碩士論文, 2001.
42. 翁得期, “介相瀝青製備超高電容器之高表面積碳極材料”, 國立成功大學化學工程研究所碩士論文, 2000.
43. Y. sato, K. Yomogida, T. Nanaumi, K. Kobayakawa, Y. Ohsawa, and M. Kawai, “Electrochemical Behavior of Activated-Carbon Capacitor Materials Loaded with Ruthenium Oxide” Electrochemical and solid-state Letters, 3(3) 113-116 (2000).
44. J. J. Sunol, M. E. Bonneau, L. Roue’, D. Guay, R. Schulz, “XPS surface study of nanocrystalline Ti-Ru-Fe materials”, Applied Surface Science, 158 (2000), 252-262.
45. T. A. F. Lassali, S. C. De Castro, and J. F. C. Boodts, “Structural, morphological and surface properties as a function of composition of Ru + Ti + Pt mixed-oxide electrodes”, Electrochimica Acta, 43, Nos 16-17, pp. 2515-2525 (1998).
46. M. Bron, P. Bogdanoff, S. Fiechter, M. Hilgendorff, J. Radnik, I. Dorbandt, H. Schulenburg, H. Tributsch, “Carbon supported catalysts for oxygen reduction in acidic media prepared by thermolysis of Ru3(CO)12”, Journal of Electroanalytical Chemistry 517 (2001), 85-94.
47. G. Myburg, K. Varga, W. O. Barnard, P. Baradlai, L. Tomcsanyi, J. H. Potgieter, C. W. Louw, M. J. van Staden, “Surface composition of Ru containing duplex stainless steel after passivation in non-oxidizing media”, Applied Surface Science 136, 29-35 (1998).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊