跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/20 17:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃淑芬
研究生(外文):SUE FN HUANG
論文名稱:應用模糊計劃評核術於供應鏈管理決策分析之研究
論文名稱(外文):Apply Fuzzy PERT in Decision Analysis of Supply Chain Management
指導教授:陳振東陳振東引用關係
指導教授(外文):T. C. Chen
學位類別:碩士
校院名稱:大葉大學
系所名稱:資訊管理學系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:106
中文關鍵詞:供應鏈體系模糊理論模糊計劃評核術前置作業時間
外文關鍵詞:Supply Chain SystemFuzzy PERTFuzzy Set TheoryLead Time
相關次數:
  • 被引用被引用:3
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
在全球化競爭的壓力下,企業除了要具備高品質的產品開發製造及多樣且快速的產品設計能力外,更重要的是能快速反應市場的變化,滿足消費者的需求,提高企業的競爭力。因此,回應市場變動的能力與速度已成為在激烈競爭環境中的致勝因素。然而,供應鏈體系的運作流程常缺乏足夠的透明度,每個成員的前置作業時間常常因為內外在環境變動的影響而不易精確掌握,進而影響整個供應鏈體系的運作績效。為此,本研究結合模糊理論與計劃評核術,提出一個供應鏈流程的管理決策分析模式,以進行計算供應鏈體系運作流程的週期時間,分析履行顧客訂單的能力,進而考量時間與成本參數,並以此分析模式為基礎構建一個供應鏈管理決策評估系統,提供企業在決策時參考。藉由系統模擬結果發現,本研究所提出的分析模式,可有效掌握每個成員影響供應鏈體系運作的關鍵程度,整個供應鏈體系網路結構的關鍵要徑,以及分析供應鏈體系履行顧客訂單的能力。進而,可清楚定義每個成員在不同趕工時間下所產生的趕工成本,有助於供應鏈體系進行資源的規劃與調整,並在互信合作的理念之下訂定合作策略,以達到供應鏈體系成員願意共同均擔成本與共享利潤的最終目的。
Under the pressure of the globalizational competition, the enterprise must increase the ability for developing high-quality products speedily and diversely to satisfy the requirements of customers. Hence, the ability and speed for responding the market fluctuation are key factors to raise the competition of business. However, the statuses of operational flows of supply chain system are often lack of transparency. Each member of supply chain system can not control the operation time exactly. It will affect the management performance of the supply chain system.
Combining the Fuzzy Set Theory (FST) with the Program Evaluation and Review Technique (PERT), we propose a process decision analysis model for supply chain system to evaluate the completion time and the ability for fulfillment the customers’ orders. Finally, we build a decision support system based on the process decision analysis model of supply chain network. According to the result of system simulation, our proposed analysis model can find the critical operations (or members), critical path and the possibility of fulfillment the customers’ orders in the supply chain system quickly. Furthermore, we can clearly define each member’s crash cost according to the crash time to shorten the operation time and adjust the resource of the critical members. According to the analysis result of the proposed model, the members of a supply chain system will strengthen the cooperation and trust to share the cost and profit.
目錄
封面內頁
簽名頁
授權書 …………………………………………………………………………………iii
中文摘要........................... v
英文摘要 ...........................vi
誌謝 ...........................vii
目錄 ...........................viii
圖目錄 ...........................xi
表目錄 ...........................xiii
第一章 緒論 .............................1
1.1 研究背景與動機............................. 1
1.2 研究目的 .............................3
1.3 研究流程 .............................5
1.4 研究範圍與限制 .............................7
1.4.1研究範圍 .............................7
1.4.2研究限制 .............................7
第二章 文獻探討 .............................8
2.1供應鏈管理............................. 8
2.1.1 供應鏈管理的意涵 .............................10
2.1.2 供應鏈體系 .............................12
2.1.3 供應鏈管理的議題 .............................14
2.2 計劃評核術 .............................17
2.2.1 網路圖的表達 .............................17
2.2.2 計劃評核術的演算法 .............................19
2.2.3 要徑的選擇............................. 21
2.2.4 計劃評核術的缺點 .............................22
2.3 模糊理論 .............................23
2.3.1 模糊數(Fuzzy Number) ...........................24
2.3.2 三角模糊數(Triangular Fuzzy Number; TFN) ........24
2.3.3 模糊數的 截集............................. 25
2.3.4 模糊數大小的比較 .............................26
2.4 模糊計劃評核術 .............................28
2.5 趕工成本 .............................36
第三章 分析模式的構建 .............................38
3.1分析模式的概念 .............................38
3.2分析模式的運作流程............................. 40
3.2.1 供應鏈系統的轉換............................. 42
3.2.2 供應鏈體系的完成時間 .............................43
3.2.3 關鍵成員及要徑 .............................45
3.2.4 履行訂單的能力指標 .............................47
3.2.5 時間與成本的分析 ..............................49
3.3範例說明.............................. 52
第四章 系統開發與模擬分析 ..............................65
4.1 系統開發設計 ..............................65
4.1.1 系統建構環境 ..............................65
4.1.2 系統架構 ..............................65
4.1.3 系統功能 ..............................66
4.2 液晶顯示器產業供應鏈體系 ..............................68
4.3 模擬分析 ..............................70
第五章 結論與建議 ..............................81
5.1 結論 ..............................81
5.2 後續研究與建議 ..............................84
參考文獻 ..............................86
圖目錄
圖1.1 研究流程 ..............................6
圖2.1 供應鏈流程 ..............................9
圖2.2 供應鏈程序 ..............................10
圖2.3 供應鏈體系的結構 ..............................13
圖2.4 供應鏈管理的相關議題 ..............................15
圖2.5 作業活動表示在節點(AON) .............................18
圖2.6 作業活動表示在箭頭(AOA) ............................18
圖2.7 前推運算的網路圖 ..............................19
圖2.8 後推運算的網路圖 ..............................20
圖2.9 範例的網路圖 ..............................22
圖2.10 正三角模糊數 的隸屬函數 ..............................25
圖2.11 正三角模糊數 的α截集 ..............................26
圖3.1 供應鏈體系的週期時間與成本分析模式概念流程 ..............................39
圖3.2 供應鏈體系的週期時間與成本決策分析程序 ...........................41
圖3.3 一般性供應鏈的網路架構 ...........................42
圖3.4 供應鏈體系成員的網路架構 ...........................43
圖3.5 模糊數 的隸屬函數 ............................48
圖3.6 趕工時間下的趕工成本( )函數 ...........................51
圖3.7 範例的供應鏈體系網路架構 ...........................53
圖3.8 關鍵要徑的成員 ...........................55
圖3.9 可趕工時間與趕工成本之函數圖 ...........................57
圖3.10 不同RDD時的履行訂單能力 ...........................62
圖3.11 RDD為模糊值的履行訂單能力 ...........................64
圖4.1 系統功能架構 ...........................66
圖4.2 系統主畫面 ...........................67
圖4.3 TFT-LCD產業供應鏈體系零組件成員 ...........................69
圖4.4 TFT-LCD產業供應鏈體系的網路架構 ...........................70
圖4.5 TFT-LCD產業供應鏈體系的關鍵要徑 ...........................74
圖4.6 TFT-LCD關鍵成員可趕工時間與成本的函數 ...........................79
表目錄
表2.1 供應鏈管理的定義 ...........................12
表2.2 供應鏈管理相關議題 ...........................16
表2.3 各項活動的作業時間 ...........................21
表3.1 範例的每個成員作業時間 ...........................53
表3.2 各個成員的各項作業時間 ...........................54
表3.3 供應鏈體系每條路徑的關鍵程度 ...........................55
表3.4 每個關鍵節點的可趕工時間與趕工成本 ...........................56
表3.5 當 的分析結果 ...........................62
表3.6 當 的分析結果 ...........................62
表3.7 當 的分析結果 ...........................63
表3.8 當 的分析結果 ...........................64
表3.9 當 的分析結果 ...........................64
表4.1 TFT-LCD產業供應鏈體系每個零組件成員作業時間 ...........................71
表4.2 TFT-LCD製程中每個零組件成員的各項作業時間 ...........................73
表4.3 當 的結果........................... 75
表4.4 當 的結果 ...........................76
表4.5 當 的結果 ...........................76
表4.6 當 的結果 ...........................76
表4.7 TFT-LCD產業供應鏈體系的可趕工時間與趕工成本 ...........................78
[1] Abbasi G. Y. and Mukattash A. M., “Crashing PERT networks using mathematical programming,” International Journal of Project Management 19, pp. 181-188, 2001.
[2] Anatioliy I. S. and Tetyana A. T., “Fuzzy temporal characteristics of operations for project management on the network models basis,” European Journal of Operational Research 147, pp. 253-265, 2003.
[3] Benita M. and Beamon, “Supply chain design and analysis: Models and methods,” International Journal of Production Economics 55, pp. 281-294, 1998.
[4] Buckley J. J., “Fuzzy PERT application of fuzzy set methodology in industrial engineering,” Elsevier Science Publishers, pp. 103-114, 1989.
[5] Chanas S. and Kamburowsi J., “The use of fuzzy variables in PERT,” Fuzzy Sets and Systems 5, pp. 11-19, 1981.
[6] Chanas S. and Zielinski P., “Critical path analysis in the network with fuzzy activity times,” Fuzzy Sets and Systems 122, pp. 195-204, 2001.
[7] Chen S. J. and Hwang C. L., “Fuzzy multiple attribute decision making-methods and applications,” Springer-Verlag Berlin Heidelberg, 1992.
[8] Christopher M., Magrill L. and Wills G., “Educational development for marketing logistics,” International Journal of Physical Distribution and Logistics Management, pp. 234-241, 1998.
[9] Cooper M. C. and Lambert D. M., “Issues in supply chain management,” Industrial Marketing Management 29, pp. 65-83, 2000.
[10] Cynthia S. M., “Using PERT as an approximation of fuzzy project-network analysis,” IEEE Transactions on Engineering Management 40, pp. 146-153, 1993.
[11] Dejonckheere J., Disney S. M., Lambrecht M. R. and Towill D. R., “Transfer function analysis of forecasting induced bullwhip in supply chains,” International Journal of Production Economics 76, pp. 133-144, 2002.
[12] Dobrila P., Rajat R. and Radivoj P., “Supply chain modeling using fuzzy sets,” International Journal of Production Economics 59, pp. 443-453, 1999.
[13] Dolgui A. and Ould-Louly M. A., “A model for supply planning under lead time uncertainty,” International Journal of Production Economics 78, pp. 145-152, 2002.
[14] Dubois D. and Prade H., “Fuzzy sets and systems: theory and applications,” Academy Press, 1980.
[15] Dubois D., Fargier H. and Galvagonon V., “On latest starting times and floats in activity networks with ill-known durations,” European Journal of Operational Research 147, pp. 266-280, 2003.
[16] Duk H. C., Jin H. S. and Myoung H. K., “Critical path identification in the context of a workflow,” Information and Software Technology 44, pp. 405-417, 2002.
[17] Enns S. T., “MRP performance effects due to forecast bias and demand uncertainty,” European Journal of Operational Research 138, pp. 87-102, 2002.
[18] Fargier H. and Galvagnon V., “Fuzzy PERT in series-parallel graphs,” 9th International Conference on Fuzzy Systems, pp. 717-722, 2000.
[19] Fatemi Ghomi S. M. T. and Rabbani M., “A new structural mechanism for reducibility of stochastic PERT networks,” European Journal of Operational Research 145, pp. 394—402, 2003.
[20] Fatemi Ghomi S. M. T. and Teimouri E., “Path critical index and activity critical index in PERT networks,” European Journal of Operational Research 141, pp. 147-152, 2002.
[21] Flint D. J., “Strategic marketing in global supply chains: Four challenges,” Industrial Marketing Management 33, pp. 45-50, 2004.
[22] Gupta A., Maranas C. D., Mcdonald C. M., “Mid-term supply chain planning under demand uncertainty: customer demand satisfaction and inventory management,” Computers and Chemical Engineering 24, pp. 2613-2621, 2000.
[23] Hapke M. and Sloinski R., “Fuzzy priority heuristics for project scheduling,” Fuzzy Sets and Systems 83, pp. 291-299, 1996.
[24] Hapke M. and Sloinski R., “Fuzzy project scheduling system for software development,” Fuzzy Sets and Systems 67, pp. 101-107, 1994.
[25] Hokey M. and Gengui Z., “Supply chain modeling: past, present and future,” Computers and Industrial Engineering 43, pp. 231-249, 2002.
[26] Jukka K., Antti L. and Markku T., “An analytic approach to supply chain development,” International Journal of Production Economics 71, pp. 145-155, 2001.
[27] Kaufmann A. and Gupta M. M., “Introduction to fuzzy arithmetic: Theory and applications,” Van Nostrand Reinhold, London, 1991.
[28] Keah C. T., “A framework of supply chain management literature,” European Journal of Purchasing and Supply Management 7, pp. 39-48, 2001.
[29] Khouja M., “Optimizing inventory decisions in a multi-stage multi-customer supply chain,” Transportation Research Part E: Logistics and Transportation Review 39, pp. 193-208, 2003.
[30] Kishan M., John C. and Sharma P., “A study of approximating the moments of the job completion time in PERT networks,” Journal of Operation Management 14, pp. 277-289, 1996.
[31] Klir G. J. and Yuan B., “Fuzzy sets and fuzzy logic theory and applications,” Prentice-Hall International Inc., 1995.
[32] Kuchta D., “Use of fuzzy numbers in project risk (criticality) assessment,” International Journal of Project Management 19, pp. 305-310, 2001.
[33] Lamming R. C., Caldwell N. D. and Harrison D. A., “The Conceptual Background to Transparency in Supply,” Proceedings of the British Academy of Management, Manchester Metropolitan University, 1999.
[34] Lee E. S. and Li R. J., “Comparison of fuzzy numbers based on the probability measure of fuzzy events,” Computers and Mathematics with Applications 15, pp. 887-896, 1988.
[35] Lee H. L., Padamanabhan V. and Whang S., “Information distortion in a supply chain: the bullwhip effect,” Management Science 43, pp. 546-565, 1997.
[36] Mon D. L., Cheng C. H. and Lu H. C., “Application of fuzzy distributions on project management,” Fuzzy Sets and Systems 73, pp. 227-234, 1995.
[37] Nicole A., Lea F. and Zilla S. S., “Review of ranking methods in the data envelopment,” European Journal of Operational Research 140, pp. 249-265, 2002.
[38] Nunzia C., Ilaria G. and Pierpaolo P., “Supply chains within industrial districts: A theoretical framework,” International Journal of Production Economics 76, pp. 159-176, 2002.
[39] Ouyang L. Y. and Chang H. C., “A minimax distribution free procedure for mixed inventory models involving variable lead time with fuzzy lost sales,” International Journal of Production Economics 76, pp. 1-12, 2002.
[40] Petrovic D., “Simulation of supply chain behavior and performance in an uncertain environment,” International Journal of Production Economics 71, pp. 429-438, 2001.
[41] Petrovic D., Roy R. and Petrovic R., “Modeling and simulation of a supply chain in an uncertain environment,” European Journal of Operational Research 109, pp. 299-309, 1998.
[42] Rachel M. J. and Denis R. T., “Total cycle time compression and the agile supply chain,” International Journal of Production Economics 62, pp. 61-73, 1999.
[43] Richard A. L., Michael F.S. and Hope J. S., “Strategic internet application trends in supply chain management,” Industrial Marketing Management 32, pp. 211-217, 2003.
[44] Sanchoy K. D. and Layek A. M., “Modeling the flexibility of order quantities and lead-times in supply chains,” International Journal of Production Economics 85, pp. 171-181, 2003.
[45] Seung C. L., Pak B. Y. and Geun H. L., “Business value of B2B electronic commerce: the critical role of inter-firm collaboration,” Electronic Commerce Research and Applications 2, pp. 350-361, 2003.
[46] Shyi M. C. and Tao H. C., “Finding multiple possible critical paths using fuzzy PERT,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 31, pp. 930-937, 2001.
[47] Stevenson, W. J., “Operation management,” Seventh Edition McGraw-Hill, 2002.
[48] Tan K. C., “A framework of supply chain management literature,” European Journal of Purchasing and Supply Management 7, pp. 39-48, 2001.
[49] Zadeh L. A., “Fuzzy sets,” Information and Control 8, pp. 338-353, 1965.
[50] Zimmerman H. J., “Fuzzy set theory and its applications,” Kluwer Academic Publishers Boston, 1991.
[51] 王淑珍,台灣邁向液晶王國之秘,中國生產力中心出版,民 92。
[52] 石滋宜,e流企業,未來書城出版社,頁51-54,民89年。
[53] 宋欣財,專案排程趕工決策模式,成功大學土木工程學系博 士論文,民92。
[54] 涂松柏,運用供應鏈管理提升企業競爭力,能力雜誌,頁60-63,民89年。
[55] 張文貴、傅敬群,模糊理論在軍事作戰上的應用,國防菅理學院學報,第十四卷,pp. 63-70,1993。
[56] 莊玉姝,考慮長鞭效應之供應鏈最適存貨水準,國立雲林科技大學工業工程與管理研究所碩士論文,民90年。
[57] 陳建中,應用類神經網路與卡爾曼濾波器於供應鏈作顧客需求預測之研究,國立中正大學資訊管理研究所碩士論文,民91年。
[58] 陳惠國、張美香,模糊集合於專案評核術之應用─日程分析,中華民國第二屆模糊理論與應用研討會,頁344-349,1994。
[59] 陳惠國、張美香,模糊集合於專案評核術之應用─日程分析,模糊系統學刊,第二卷,第一期,頁83-92,1996。
[60] 黃逸華,What is SCM供應鏈管理?,數位時代特刊第1號,頁117-125,民89年。
[61] 楊珮珮,探討如何應用共同訂購週期方法以降低供應鏈成本之模擬研究,國立中正大學企業管理研究所碩士論文,民92年。
[62] 蔡國展,模糊多準則計劃評核術及其在高科技專案管理之應用,華梵大學工業管理所碩士論文,民88年。
[63] 盧舜年、鄒坤霖,供應鏈管理的第一本書,城邦文化事業股份有限公司,頁11-21,民91年。
[64] 賴瓊華,完工時間限制下模糊計畫評核術之研究,成功大學工業管理所碩士論文,民90年。
[65] 鍾一宏,以延伸性標記語言為基礎的電子化供應鏈管理系統之研究,大葉大學資訊管理所碩士論文,民90年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top