參考文獻
中文部分
1.沈宜靜、林建良、許惠恒 (2011)。「糖尿病與癌症之關聯以及台灣現況探討」。內科學誌,22(1),19-30。2.李哲全、傳振宗、吳篤安 (2006)。「糖尿病的診斷與治療」。慈濟醫學雜誌,18(1_S),1-9。
3.陳正美、徐建業、邱泓文、白其卉、吳柏動 (2011)。「以類神經網路及分類回歸樹輔助肝癌病患預測存活情形」。臺灣公共衛生雜誌,30(5),481-493。
4.陳民虹 (2005)。「乳癌的流行病學特徵及危險因子」。澄清醫護管理雜誌,1(1),30-38。5.鄭淑敏 (2013)。台灣地區第2型糖尿病病患降血糖藥物的治療與癌症的關聯性。高雄醫學大學藥學研究所碩士在職專班未出版碩士論文,高雄市。6.顏秀珍、李御璽、王秋光 (2009)。「改善不平衡資料集中少數類別資料之分類正確性的方法」。電子商務學報,11(4),847-858。中文網路部分
1.衛生福利部統計處(2015)。103年度死因統計, 取自: http://www.mohw.gov.tw/cht/DOS/Statistic.aspx?f_list_no=312&fod_list_no=5487 (2015/6/17)。
英文部分
1.Boyle, P., Boniol, M., Koechlin, A., Robertson, C., Valentini, F., Coppens, K., et. al. (2012). Diabetes and breast cancer risk: a meta-analysis. British journal of cancer, 107(9), 1608-1617.
2.Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. Boca Raton, USA:CRC press.
3.Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., & Zanasi, A. (1998). Discovering data mining: from concept to implementation. New Jersey, USA:Prentice-Hall, Inc.
4.Dine, J., & Deng, C. X. (2013). Mouse models of BRCA1 and their application to breast cancer research. Cancer and Metastasis Reviews, 32(1-2), 25-37.
5.Emerging Risk Factors Collaboration. (2011). Diabetes mellitus, fasting glucose, and risk of cause-specific death. New England Journal Medicine, 2011(364), 829-841.
6.Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37.
7.Fonarow, G. C., Adams, K. F., Abraham, W. T., Yancy, C. W., Boscardin, W. J., & ADHERE Scientific Advisory Committee. (2005). Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. Jama, 293(5), 572-580.
8.Giovannucci, E., Harlan, D. M., Archer, M. C., Bergenstal, R. M., Gapstur, S. M., Habel, L. A., et al. (2010). Diabetes and cancer: a consensus report. CA: a cancer journal for clinicians, 60(4), 207-221.
9.Gu, X., Ni, T., & Wang, H. (2014). New Fuzzy Support Vector Machine for the Class Imbalance Problem in Medical Datasets Classification. The Scientific World Journal, ID: 536434, Pages: 12.
10.Hu, J., He, X., Yu, D. J., Yang, X. B., Yang, J. Y., & Shen, H. B. (2014). A new supervised over-sampling algorithm with application to protein-nucleotide binding residue prediction. PloS one, 9(9), ID: 107676.
11.Joslin, E. P., Lombard, H. L., Burrows, R. E., & Manning, M. D. (1959). Diabetes and cancer. New England Journal of Medicine, 260(10), 486-488.
12.Keteepe-Arachi, T., & Sharma, S. (2016). Underestimating risk in women delays diagnosis of CVD. The Practitioner, 260(1791), 11-5.
13.Laupacis, A., & Sekar, N. (1997). Clinical prediction rules: a review and suggested modifications of methodological standards. Jama, 277(6), 488-494.
14.Law, J. H., Habibi, G., Hu, K., Masoudi, H., Wang, M. Y., Stratford, A. L., et al. (2008). Phosphorylated insulin-like growth factor-i/insulin receptor is present in all breast cancer subtypes and is related to poor survival.Cancer research, 68(24), 10238-10246.
15.Lin, T., Chou, P., Lai, M. S., Tsai, S. T., & Tai, T. Y. (2001). Direct costs-of-illness of patients with diabetes mellitus in Taiwan. Diabetes research and clinical practice, 54, 43-46.
16.Longadge, R., & Dongre, S. (2013). Class imbalance problem in data mining review. arXiv preprint arXiv, 1305, 1707.
17.Mani, I., & Zhang, I. (2003, August). KNN approach to unbalanced data distributions: A case study involving information extraction. In N. V. Chawla (Chair), Work-shop on Learning from Imbalanced Datasets. ICML 2003, Washington, DC.
18.Maynard, G. D. (1910). A statistical study in cancer death-rates. Biometrika, 7(3), 276-304.
19.Michels, K. B., Solomon, C. G., Hu, F. B., Rosner, B. A., Hankinson, S. E., Colditz, G. A., & Manson, J. E. (2003). Type 2 diabetes and subsequent incidence of breast cancer in the Nurses’ Health Study. Diabetes care, 26(6), 1752-1758.
20.Oh, S. M., Stefani, K. M., & Kim, H. C. (2014). Development and application of chronic disease risk prediction models. Yonsei medical journal, 55(4), 853-860.
21.Palaniappan, S., & Awang, R. (2008, March). Intelligent heart disease prediction system using data mining techniques. In Sheikha Abdulla Al-MisnadIn (Chair), 2008 IEEE/ACS International Conference on Computer Systems and Applications. AICCSA 2008, Doha, Qatar.
22.Pereira, S., Fontes, F., Sonin, T., Dias, T., Fragoso, M., Castro-Lopes, J., & Lunet, N. (2014). Neurological complications of breast cancer: study protocol of a prospective cohort study. BMJ open, 4(10), e006301.
23.Prather, J. C., Lobach, D. F., Goodwin, L. K., Hales, J. W., Hage, M. L., & Hammond, W. E. (1997). Medical data mining: knowledge discovery in a clinical data warehouse. American Medical Informatics Association, PMCID: PMC2233405, 101-105.
24.Reaven, G. M. (1980). Insulin-independent diabetes mellitus: metabolic characteristics. Metabolism, 29(5), 445-454.
25.Srokowski, T. P., Fang, S., Hortobagyi, G. N., & Giordano, S. H. (2009). Impact of diabetes mellitus on complications and outcomes of adjuvant chemotherapy in older patients with breast cancer. Journal of Clinical Oncology, 27(13), 2170-2176.
26.Suh, S., & Kim, K. W. (2011). Diabetes and cancer: is diabetes causally related to cancer?. Diabetes & metabolism journal, 35(3), 193-198.
27.Tabaei, B. P., & Herman, W. H. (2002). A multivariate logistic regression equation to screen for diabetes development and validation. Diabetes Care, 25(11), 1999-2003.
28.Tseng, C. H., Chong, C. K., & Tai, T. Y. (2009). Secular trend for mortality from breast cancer and the association between diabetes and breast cancer in Taiwan between 1995 and 2006. Diabetologia, 52(2), 240-246.
29.Wolf, I., Sadetzki, S., Catane, R., Karasik, A., & Kaufman, B. (2005). Diabetes mellitus and breast cancer. The lancet oncology, 6(2), 103-111.
30.Xie, X. D., Qu, S. X., Liu, Z. Z., Zhang, F., & Zheng, Z. D. (2009). Study on relationship between angiogenesis and micrometastases of peripheral blood in breast cancer. Journal of cancer research and clinical oncology, 135(3), 413-419.
31.Yen, S. J., & Lee, Y. S. (2006). Under-sampling approaches for improving prediction of the minority class in an imbalanced dataset. Intelligent Control and Automation, 344(8), 731-740.
32.Yen, S. J., & Lee, Y. S. (2009). Cluster-based under-sampling approaches for imbalanced data distributions. Expert Systems with Applications, 36(3), 5718-5727.
33.Zendehdel, K., Nyrén, O., Östenson, C. G., Adami, H. O., Ekbom, A., & Ye, W. (2003). Cancer incidence in patients with type 1 diabetes mellitus: a population-based cohort study in Sweden. Journal of the National Cancer Institute, 95(23), 1797-1800.