跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 05:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施育男
研究生(外文):Yu-Nan Shih
論文名稱:以65-nm CMOS 製程製作應用於背板通訊之有線收發器
論文名稱(外文):Wireline Backplane Transceivers in 65-nm CMOS Technology
指導教授:李致毅李致毅引用關係
口試委員:盧信嘉陳信樹
口試日期:2010-12-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:70
中文關鍵詞:電路電路電路電路電路電路電路
外文關鍵詞:Decision Feedback Equalizer (DFE)Wireline Backplane TransceiverPLLCDRFeed-Forward Equalizer (FFE)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:441
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本文中,我們將會介紹三個以65-nm CMOS 製程製作的有線背板電路系統,包括10 Gb/s 的決策回饋等化器、20 Gb/s 的收發器以及40 Gb/s 的收發器。
在10 Gb/s 的決策回饋等化器中,他包含了一個類比等化器和一個有可適應性迴路的決策回饋等化器。這個晶片在以211−1 PRBS 的編碼下,可以走FR4 這種板材的傳輸線80 公分,並且達到位元誤碼率小於10−12。此外,這個電路在1 伏特的操作電壓下,消耗31 毫瓦,晶片面積則為0.1 平方公厘。
在20 Gb/s 的收發器中,我們在傳輸端製作了27-1 PRBS 產生器、注入式鎖相迴路和前饋等化器,在接收端則有一可適應性的類比等化器以及資料時脈回復電路。這個系統可以傳輸在60 公分的FR4 板材下達到位元誤碼率小於10−13,並且在傳輸端操作電壓1.2 伏特的情況下消耗310 毫瓦、接收端操作電壓1.3 伏特的情況下消耗190 毫瓦,而晶片面積在傳輸端與接收端分別為0.27 平方公厘和0.32平方公厘。
在40 Gb/s 的收發器中,我們在傳輸與接收端都使用延遲線架構的前饋等化器,其中在接收端的前饋等化器還有一個可適應性迴路。我們把這組晶片安置在羅捷士RO 4003 這種板材上,在27−1 PRBS 的編碼下可以傳遞20 公分。傳輸端在操作電壓為1.2 伏特的情況下消耗135 毫瓦、接收端在操作電壓為1.6 伏特的情況下消耗322 毫瓦,而晶片面積在傳輸端與接收端分別為0.63 平方公厘和0.66 平方公厘。

In this thesis, three wireline backplane circuit systems will be demonstrated, including a 10 Gb/s Decision Feedback Equalizer (DFE), a 20 Gb/s Transceiver Chip-set, and a 40 Gb/s Transceiver Chip-set. They are all implemented in 65-nm CMOS Technology.
First of all, in 10 Gb/s Decision Feedback Equalizer, it consists of an analog equalizer and a decision feedback equalizer with an adaptation loop. This circuit achieves BER < 10−12 for 211−1 PRBS in 80 cm FR4 channel, and consumes 31 mW with 1 V supply. Besides, the chip area is less than 0.1 mm2.
In 20 Gb/s Transceiver Chip-set, a 27−1 PRBS generator, an injection-locked PLL, and a 3-Tap feed-forward equalizer (FFE) are implemented in transmitter side. An adaptive analog equalizer and CDR are implemented in receiver side. This system achieves BER < 10−13 in a 60 cm FR4 channel, and consumes 310 mW and 190 mW with 1.2 V and 1.3 V supply in transmitter and receiver, respectively. The chip occupies 0.27 mm2 in transmitter and 0.32 mm2 in receiver.
Finally, in 40 Gb/s Transceiver Chip-set, we propose a delay-line-based feed-forward equalizer in both transmitter and receiver, and an adaptation loop is implemented in receiver. We mount transmitter and receiver chip on Rogers RO 4003 board with 20 cm transmission line, and the chip-set can achieve BER < 10−12 for 27−1 PRBS. This chip-set occupies 0.63 mm2 in transmitter and 0.66 mm2 in receiver, and consumes 135 mW with 1.2 V supply and 322 mW with 1.6 V in transmitter and receiver, respectively.

摘要------------------------------------------------------------------------------------------------ I
ABSTRACT-------------------------------------------------------------------------------------- II
CONTENTS------------------------------------------------------------------------------------- IV
LIST OF FIGURES ---------------------------------------------------------------------------- VI
LIST OF TABLES------------------------------------------------------------------------------- X
Chapter 1 Introduction1 ---------------------------------------------------------------------1
1.1 Motivation -------------------------------------------------------------------------------1
1.2 Thesis Organization---------------------------------------------------------------------4
Chapter 2 A 10 Gb/s Decision Feedback Equalizer ------------------------------------5
2.1 Introduction of Decision Feedback Equalizer (DFE)-------------------------------5
2.2 System Architecture --------------------------------------------------------------------6
2.3 2.2.1 Analog Equalizer---------------------------------------------------------------7
2.3 2.2.2 Summing Amplifier------------------------------------------------------------8
2.3 2.2.3 Delay Cell-----------------------------------------------------------------------9
2.3 2.2.4 Sign-Sign Block Least Mean Square (SS-BLMS) Algorithm ---------- 11
2.3 2.2.5 SS-BLMS Core Operation -------------------------------------------------- 12
2.3 Measurement Results ----------------------------------------------------------------- 14
2.4 Performance Summary --------------------------------------------------------------- 15
Chapter 3 A 20 Gb/s Transceiver Chip-set --------------------------------------------- 17
3.1 Transmitter Architecture ------------------------------------------------------------- 17
3.1 3.1.1 10 GHz Injection-Locked PLL --------------------------------------------- 18
3.1 3.1.2 Half-Rate 27−1 PRBS Generator------------------------------------------- 19
3.1 3.1.3 Feed-Forward Equalizer (FFE)--------------------------------------------- 22
3.2 Receiver Architecture----------------------------------------------------------------- 24
3.2 3.2.1 Adaptive Analog Equalizer ------------------------------------------------- 24
3.2 3.2.2 CDR---------------------------------------------------------------------------- 25
3.3 Measurement Results ----------------------------------------------------------------- 28
3.3 3.3.1 Transmitter Measurement --------------------------------------------------- 29
3.3 3.3.2 CDR Measurement----------------------------------------------------------- 35
3.3 3.3.3 Transceiver Measurement--------------------------------------------------- 38
3.4 Performance Summary --------------------------------------------------------------- 44
Chapter 4 A 40 Gb/s Transceiver Chip-set --------------------------------------------- 46
4.1 Transmitter Architecture ------------------------------------------------------------- 46
3.3 4.1.1 5-Tap Feed-Forward Equalizer --------------------------------------------- 47
3.3 4.1.2 Layout Topology of Feed-Forward Equalizer ---------------------------- 49
3.3 4.1.3 1-UI Delay Generator ------------------------------------------------------- 50
4.2 Receiver Architecture----------------------------------------------------------------- 52
4.3 Measurement Results ----------------------------------------------------------------- 54
4.3 4.3.1 Transmitter Measurement --------------------------------------------------- 54
4.3 4.3.2 Transceiver Measurement--------------------------------------------------- 59
4.4 Performance Summary --------------------------------------------------------------- 62
Chapter 5 Conclusion--------------------------------------------------------------------- 64
Bibliography------------------------------------------------------------------------------------ 67


[1] IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task Force: http://www.ieee802.org/3/ba/
[2] Universal Serial Bus:http://www.usb.org/
[3] Serial ATA:http://www.sata-io.org/
[4] PCI-SIG:http://www.pcisig.com/
[5] Behzad Razavi, Disign of Integrated Circuits for Optical Communications, First Ed., New York: McGRAW-HILL, 2003.
[6] Jri Lee, “A 20-Gb/s Adaptive Equalizer in 0.13-μm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 41, no. 9, pp. 2058-2066, Sep. 2006.
[7] M. E. Austin, “Decision-feedback Equalization for Digital Communication over Dispersive Channels,” Tech. Rep. 437, MIT Lincoln Lab, Lexington, MA, August 1967.
[8] James E. C. Brown et al., “A 35 Mb/s Mixed-Signal Decision-Feedback Equalizer for Disk Driver in 2-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 31, no. 9, pp. 1258-1266, Sep.1996.
[9] Vladimir Stojanovic et al., “Autonomous Dual-Mode (PAM2/4) Serial Link Transceiver With Adaptive Equalization and Data Recovery,” IEEE Journal of Solid-State Circuits, vol. 40, no. 4, pp. 1012-1026, Apr.2005.
[10] Sanjay Kasturia and Jack H. Winters, “Techniques for High-speed Implementation of Nonlinear Cancellation,” IEEE Journal on selected areas in communications, vol. 9, no. 5, pp. 711-717, Jun. 1991.[11] Ravinder S. Kajley et al., “A Mixed-Signal Decision-Feedback Equalizer That Uses a Look-Ahead Architecture,” IEEE Journal of Solid-State Circuits, vol. 32, no. 3, pp. 450-459, Mar. 1997.
[12] Jong-Sang Choi et al., “A 0.18-μm CMOS 3.5-Gb/s Continuous-Time Adaptive Cable Equalizer Using Enhanced Low-Frequency Gain Control Method,” IEEE Journal of Solid-State Circuits, vol. 39, no. 3, pp. 419-425, Mar. 2004.
[13] Simon Haykin, Adaptive Filter Theory, Fourth Ed., New York: Prentice Hall, 2004.
[14] Jri Lee and H. Wang, "Study of Subharmonically Injection-Locked PLLs," IEEE Journal of Solid-State Circuits, vol. 44, pp. 1539-1553, May 2009.
[15] William J. et al., “1-Gword/s Pseudorandom Word Generator,” IEEE Journal of Solid-State Circuits, vol. 24, no. 3, pp. 747-751, Mar. 1989.
[16] John F. Bulzacchelli et al., “A 10-Gb/s 5-Tap DFE/4-Tap FFE Transceiver in 90-nm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2885-2900, Dec. 2006.
[17] Huaide Wang et al., "A 21-Gb/s 87-mW Transceiver with FFE/DFE/Linear Equalizer in 65-nm CMOS Technology," Digest of Symposium on VLSI Circuits, pp. 50-51, June 2009.
[18] Troy Beukema et al., "A 6.4-Gb/s CMOS SerDes Core With Feed-Forward and Decision-Feedback Equalization,” IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2633-2645, Dec. 2005.
[19] Y. Ji-ren et al., "A true single-phase-clock dynamic CMOS circuit technique,” IEEE Journal of Solid-State Circuit, vol. 22, pp. 899-901, Oct. 1987.
[20] Hai Tao et al., "40–43-Gb/s OC-768 16:1 MUX/CMU Chipset With SFI-5 Compliance,” IEEE Journal of Solid-State Circuits, vol. 38, no. 12, pp. 2169-2180, Dec. 2003.
[21] Adrian Ong et al., "A 40–43-Gb/s Clock and Data Recovery IC With Integrated SFI-5 1:16 Demultiplexer in SiGe Technology,” IEEE Journal of Solid-State Circuits, vol. 38, no. 12, pp. 2155-2168, Dec. 2003.
[22] Charles R. Hogge, Jr., "A Self Correcting Clock Recovery Circuit,” IEEE Transcation on Election Device, vol. 32, no. 12, pp. 2704-2706, Dec. 1985.
[23] J. D. H. Alexander, “Clock recovery from random binary data,” Electronics Letters, vol. 11, pp. 541-542, Oct. 1975.
[24] Jri Lee, and Ke-Chung Wu, "A 20-Gb/s Full-Rate Linear Clock and Data Recovery Circuit With Automatic Frequency Acquisition," IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3590-3602, Dec. 2009.
[25] Ansgar Pottbacker et al., "A Si bipolar phase and frequency detector for clock extraction up to 8 Gb/s,” IEEE Journal of Solid-State Circuits, vol. 27, no. 12, pp. 1747-1751, Dec. 1992.
[26] Seema Eutala Anand, Behzad Razavi, “A 2.75 Gb/s CMOS Clock Recovery Circuit with broad Capture Range,” IEEE International Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 214-215, Feb. 2001.
[27] Rainer Kreienkamp et al., "A 10-Gb/s CMOS Clock and Data Recovery Circuit With an Analog Phase Interpolator,” IEEE Journal of Solid-State Circuits, vol. 40, no. 3, pp. 736-743, Mar. 2005.
[28] Jitter generation and measurement with off-the-shelf test equipment: http://amorgignitamorem.nl/Audio/Jitter/TMW_0405_Dig_jitter.pdf
[29] Hui Wu et al., " Integrated Transversal Equalizers in High-Speed Fiber-Optic Systems,” IEEE Journal of Solid-State Circuits, vol. 38, no. 12, pp. 2131-2137, Mar. 2005.
[30] Jonathan Sewter and Anthony Chan Carusone, “A CMOS Finite Impulse Response Filter With a Crossover Traveling Wave Topology for Equalization up to 30 Gb/s,” IEEE Journal of Solid-State Circuits, vol. 41, no. 4, pp. 909-917, April. 2006.
[31] Jonathan Sewter and Anthony Chan Carusone, “A 3-Tap FIR filter with cascaded distributed Tap amplifiers for equalization up to 40 Gb/s in 0.18 um CMOS,” IEEE Journal of Solid-State Circuits, vol. 41, no. 8, pp. 1919–1929, Aug. 2006.
[32] Afshin Momtaz, and Michael M. Green, “An 80 mW 40 Gb/s 7-Tap T/2-Spaced Feed-Forward Equalizer in 65 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 45, no. 3, pp. 629-639, Mar. 2010.
[33] Hormoz Djahanshahi et al., "Gigabit-per-Second, ECL-Compatible I/O Interface in 0.35-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 34, no. 8, pp. 1074-1083, Aug. 1999.
[34] Jri Lee et al., "A 75-GHz Phase-Locked Loop in 90-nm CMOS Technique," IEEE Journal of Solid-State Circuits, vol. 43, no. 6, pp. 1414-1426, Jun. 2008.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top