|
1.Johnson, R.W., S.W. Rudy, and S.D. Unwin, Introduction and Overview, in Essential Practices for Managing Chemical Reactivity Hazards. 2010, John Wiley & Sons, Inc. p. 1-16. 2.Crowl, D.A. and J.F. Louvar, Chemical Process Safety: Fundamentals with Applications (3rd Edition) (Prentice Hall International Series in the Physical and Chemical Engineering Sciences). 2012. 3.Ando, T., Y. Fujimoto, and S. Morisaki, Analysis of differential scanning calorimetric data for reactive chemicals. Journal of Hazardous Materials, 1991. 28(3): p. 251-280. 4.Registration, E., Authorisation and Restriction of Chemicals (REACH), REGULATION (EC) No 1907/2006 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL, E.C. Agency, Editor. 2006. 5.Administration, O.S.H., 29 CFR Parts 1910, 1915, 1917, 1918, and 1926. 2012. 6.Agency, U.S.E.P., Sustainability and the U.S. EPA. 2011. 7.Agency, U.S.E.P., The Use of Structure-Activity Relationships (SAR) in the High Production Volume Chemicals Challenge Program. 8.中華民國勞動部, 新化學物質登記管理辦法, 中華民國勞動部, Editor. 103年07月01日修正. 9.Agency, E.C., Guidance on information requirements and chemical safety assessment Chapter R.6: QSARs and grouping of chemicals. 2008. 10.Agency, E.C., Guidance on information requirements and Chemical Safety Assessment Chapter R.7a: Endpoint specific guidance, E.C. Agency, Editor. 2014. 11.Fayet, G., et al., Theoretical Study of the Decomposition Reactions in Substituted Nitrobenzenes. The Journal of Physical Chemistry A, 2008. 112(17): p. 4054-4059. 12.Fayet, G., et al., On the use of descriptors arising from the conceptual density functional theory for the prediction of chemicals explosibility. Chemical Physics Letters, 2009. 467(4–6): p. 407-411. 13.Fayet, G., et al., On the prediction of thermal stability of nitroaromatic compounds using quantum chemical calculations. Journal of Hazardous Materials, 2009. 171(1–3): p. 845-850. 14.Fayet, G., et al., QSPR modeling of thermal stability of nitroaromatic compounds: DFT vs. AM1 calculated descriptors. Journal of Molecular Modeling, 2010. 16(4): p. 805-812. 15.Fayet, G., et al., Predicting explosibility properties of chemicals from quantitative structure-property relationships. Process Safety Progress, 2010. 29(4): p. 359-371. 16.Fayet, G., et al., Development of a QSPR model for predicting thermal stabilities of nitroaromatic compounds taking into account their decomposition mechanisms. Journal of Molecular Modeling, 2011. 17(10): p. 2443-2453. 17.Fayet , G., et al., Predicting the Thermal Stability of Nitroaromatic Compounds Using Chemoinformatic Tools. Molecular Informatics, 2011. 30(6-7): p. 623-634. 18.Baatia, N., et al., Quantitative Structure-Property Relationships for Thermal Stability and Explosive Properties of Chemicals. CHEMICAL ENGINEERING, 2013. 31: p. 841-846. 19.Li, J., et al., Structure-Activity Relationship Analysis of the Thermal Stabilities of Nitroaromatic Compounds Following Different Decomposition Mechanisms. Molecular Informatics, 2013. 32(2): p. 193-202. 20.Mathieu, D., Significance of Theoretical Decomposition Enthalpies for Predicting Thermal Hazards. Journal of Chemistry, 2015. 2015: p. 12. 21.Baati, N., et al., Predictive Models for Thermal Behavior of Chemicals with Quantitative Structure-Property Relationships. Chemical Engineering & Technology, 2015. 38(4): p. 645-650. 22.Zhang, Y., et al., Prediction of thermal stability of some reactive chemicals using the QSPR approach. Journal of Environmental Chemical Engineering, 2014. 2(2): p. 868-874. 23.Brown, A.C. and T.R. Fraser, On the Connection between Chemical Constitution and Physiological Action; with special reference to the Physiological Action of the Salts of the Ammonium Bases derived from Strychnia, Brucia, Thebaia, Codeia, Morphia, and Nicotia. Journal of Anatomy and Physiology, 1868. 2(2): p. 224-242. 24.Biography, R., Physiological research on alcohols. Medical Times and Gazette, 1869. 2: p. 703-706. 25.PORTIER, P. and C.R. RICHET, Del’action anaphylactique de certain venins. Comptes Rendus Des Seances De La Societe De Biologie Et De Ses Filiales, 1902. 54: p. 170-172. 26.Meyer, H., Zur Theorie der Alkoholnarkose. Archiv für experimentelle Pathologie und Pharmakologie, 1899. 42(2-4): p. 109-118. 27.Overton, E., Ueber die osmotischen Eigenschaften der Zelle in ihrer Bedeutung für die Toxikologie und Pharmakologie Zeitschrift für Physikalische Chemie, 1987. 22: p. 189–209. 28.Hammett, L.P., Some Relations between Reaction Rates and Equilibrium Constants. Chemical Reviews, 1935. 17(1): p. 125-136. 29.Hammett, L.P., The Effect of Structure upon the Reactions of Organic Compounds. Benzene Derivatives. Journal of the American Chemical Society, 1937. 59(1): p. 96-103. 30.Hansch, C., et al., Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients. Nature, 1962. 194(4824): p. 178-180. 31.Hansch, C., et al., The Correlation of Biological Activity of Plant Growth Regulators and Chloromycetin Derivatives with Hammett Constants and Partition Coefficients. Journal of the American Chemical Society, 1963. 85(18): p. 2817-2824. 32.Free, S.M. and J.W. Wilson, A Mathematical Contribution to Structure-Activity Studies. Journal of Medicinal Chemistry, 1964. 7(4): p. 395-399. 33.王鵬, 定量結構關係及研究方法. 2011, 哈爾濱工業大學. 34.Consonni, V. and R. Todeschini, Multivariate Analysis of Molecular Descriptors, in Statistical Modelling of Molecular Descriptors in QSAR/QSPR. 2012, Wiley-VCH Verlag GmbH & Co. KGaA. p. 111-147. 35.Maran, U. and S. Slid, QSAR Modeling of Genotoxicity on Non-congeneric Sets of Organic Compounds. Artificial Intelligence Review, 2003. 20(1-2): p. 13-38. 36.Development, O.f.E.C.-o.a., GUIDANCE DOCUMENT ON THE VALIDATION OF (QUANTITATIVE)STRUCTURE-ACTIVITY RELATIONSHIPS [(Q)SAR] MODELS, O.E.H.a.S.P.S.o.T.a. Assessment, Editor. 2007. 37.中華民國勞動部, 職業安全衛生設施規則, 中華民國勞動部, Editor. 103年07月01日修正. 38.Association, N.F.P., NFPA704:STANDARD SYSTEM FOR THE IDENTIFICATION OF THE HAZARDS OF MATERIALS FOR EMERGENCY RESPONSE 2012. 39.NATIONS, U., Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations. 2013. 40.Dearden, J.C., P. Rotureau, and G. Fayet, QSPR prediction of physico-chemical properties for REACH. SAR and QSAR in Environmental Research, 2013. 24(4): p. 279-318. 41.Saraf, S.R., W.J. Rogers, and M.S. Mannan, Prediction of reactive hazards based on molecular structure. Journal of Hazardous Materials, 2003. 98(1–3): p. 15-29. 42.Saraf, S.R., et al., Integrating molecular modeling and process safety research. Fluid Phase Equilibria, 2004. 222–223: p. 205-211. 43.Inc, H., HyperChem Release 8.0 for Windows. Molecular Modeling System, 2008. 44.Lewars, E., COMPUTATIONAL CHEMISTRY-Introduction to the Theory and Applications of Molecular and Quantum Mechanics. 2004. 45.srl, T., Dragon for Windows (Software for molecular Descriptor Calculations). Version 6.0. (http://www.talete.mi.it/). 2013. 46.Katritzky, A.R., M. Karelson, and R. Petrukhin, CODESSA PRO, Version 1.0RC2. 2005. 47.Duh, Y.-S., et al., Chemical incompatibility of nitrocompounds. Journal of Hazardous Materials, 1997. 53(1–3): p. 183-194. 48.陸立明. 熱分析應用基礎. 2010. 49.Materials, A.S.F.T.a., Standard Test Method for The Thermal Stability of Chemicals by Differential Scanning Calorimetry. 2015. 50.Sahigara, F., et al., Comparison of Different Approaches to Define the Applicability Domain of QSAR Models. molecules, 2012. 17: p. 4791-4810. 51.Netzeva, T., et al., Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. The report and recommendations of ECVAM Workshop 52. Altern Lab Anim, 2005. 33: p. 155 - 173. 52.Sahigara, F., et al., Defining a novel k-nearest neighbours approach to assess the applicability domain of a QSAR model for reliable predictions. Journal of Cheminformatics, 2013. 5(1): p. 27. 53.Jaworska, J., N. Nikolova-Jeliazkova, and T. Aldenberg, QSAR applicabilty domain estimation by projection of the training set descriptor space: A review. Altern Lab Anim, 2005. 33: p. 445 - 459. 54.Sahigara, F., et al., Assessing the validity of QSARs for ready biodegradability of chemicals: an applicability domain perspective. Current Computer Aided-Drug Design, 2014. 10(2): p. 137-147. 55.Group, M.C.a.Q.R., Applicability Domain toolbox for MATLAB version 1.0. 2014. 56.Amin, J.S., S. Nikkhah, and M. Veiskarami, A statistical method for assessment of the existing correlations of hydrate forming conditions. Journal of Energy Chemistry, 2015. 24(1): p. 93-100.
|