跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/12 19:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐嘉彬
研究生(外文):Hsu, Chia-Ping
論文名稱:零價鐵金屬牆去除地下水中硝酸鹽氮之研究
論文名稱(外文):Groundwater Nitrate Removal by Zero-Valent Iron Permeable Reactive Barrier
指導教授:陳孝行陳孝行引用關係
指導教授(外文):Chen, Shiao-Shing
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境規劃與管理研究所
學門:環境保護學門
學類:其他環境保護學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:125
中文關鍵詞:金屬牆零價鐵管柱硝酸鹽氮
外文關鍵詞:Permeable Reactive BarrierZero-Valent Iron (ZVI)Column TestNitrate
相關次數:
  • 被引用被引用:14
  • 點閱點閱:1303
  • 評分評分:
  • 下載下載:127
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要以管柱實驗作為推求實場設置之操作參數,以及建置後可能產生的問題。零價鐵將硝酸鹽氮還原成氨氮,但由於鐵粉表面保護膜(表面氧化物)的影響,因此未經前處理鐵粉去除率只有30 %。保護膜可以利用還原劑或酸洗去除,實驗結果降解效率提升到80 %以上,其中酸洗前處理對於去除保護膜的成效較佳。鐵粉使用壽命評估方面,1克45μm零價鐵經過酸洗後可降解1.7 ~ 2.1毫克的硝酸鹽氮,鐵粉的使用率只有3.42 %。在鐵粉再利用驗證鐵粉只有表面反應,管柱反應過程鐵粉由灰白色轉變為深黑色,由化學分析電子光譜儀(ESCA)分析顯示零價鐵轉化為Fe2O3。出流水中pH值的變化與起始硝酸鹽濃度、起始pH值與去除率的好壞有關;在ORP方面均有下降的趨勢。在實場設置時建議使用pH值作為操作參數。通量大小與去除率成反比,鐵粉填充量與管柱操作時間成正比。
實場設置問題在於管柱阻塞產生,造成阻塞的原因為無機物因pH上升造成沉澱,包含Fe2O3、FeCO3、CaCO3。鐵砂混合可以解決阻塞問題,但會減少管柱的操作時間。在模場放大部分,實驗結果顯示去除率維持在85 %以上。
反應區間(transfer zone)的大小與轉速、通量成正比。利用還原劑前處理的反應區間大於酸洗前處理。酸洗前處理5 r.p.m/(157 cm3/cm2 day)之反應區間為1.85 ~ 3.03公分。反應速率常數方面,酸洗前處理鐵粉適用Thomas式,當R2大於0.8以上時,反應速率常數介於0.0240 ~ 0.0553 ( L/mg-day )。
模場放大的部分,使用動力學方法推估模場放大的貫穿體積與貫穿時間誤差較小。在金屬牆設置方面,文獻中金屬牆配置量介於93 ~ 4149(kg/m2),但本研究中鐵粉配置量均小於1 kg/m2,配置量較小的原因為零價鐵有經過前處理。
Laboratory scale column tests were conducted to obtain the field design parameters and possible operation problems after field installation.
For the nitrate contaminant water made in the laboratory, nitrate reduction by zero-valent iron was found affected by the coating or metal oxide on the ZVI surface. Without pretreatment of ZVI, nitrate removal rate was only 30%. Surface coating can be removed by strong reduction agent (NaBH4) or acid washing, but acid washing was shown better efficiency in this study. In the column tests, 1 mg ZVI can only remove 2.14 mg nitrate and the used ZVI was only 3.42% according to the stoichiometric ratio, and which is an evidence of surface reaction for the ZVI. The reduction of ZVI becomes iron oxides coating on the ZVI surface. In the column test, iron color was grayish in the beginning (pure ZVI) and became deep black after the ZVI was used. Effluent soluble iron concentration was below 1 mg/L. ESCA analysis was conducted for the surface species of the ZVI and Fe2O3 was found on the coated surface. Effluent pH was directly related to the initial nitrate concentration and removal rate and effluent ORP was decreased during the experiment. Therefore, pH is suggested as an indicator for nitrate removal efficiency for field operation. Increasing flux leads to increasing nitrate removal percentage. For the same flux, hydraulic resident time (HRT) and removal rate had no relationship, but higher HRT would increase operation time.
The problem for field operation (using actual groundwater) was the clogging in the column. The reason for clogging was due to mineral precipitates after the increased pH and gas production. The mineral precipitates include Fe2O3, FeCO3, CaCO3. ZVI mixed with sand in the column can solve the clogging, but operation time was decreased.
Transfer zone in the column were proportionately related to flow rate and flux. For pretreated ZVI by acid wash (5 r.pm with 157 cm3/cm2day), transfer zone were from1.85 to 3.03 cm and real hydraulic retention time were from 10 to 16 minutes. For determination of reaction constants, Thomas Equation was applicable, where R square was above 0.8 and reaction constants were between 0.0240 and 0.0553 (L/mg-day).
Column tests were scaled up using two methods including Kinetic Approach and Scale-Up Approach. The differences were small comparing the calculated to the actual breakthrough volume and time using Kinetic Approach. For calculation of PRB installation, W/A (mass of zero-valent iron/cross-sectional plume) was below 1 kg/m2, and iron well was below 16 cm. It was low comparing to the literature value and it was due to that the ZVI used in this study was pretreated.
目 錄
中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 ix
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究方法 2
第二章 文獻回顧 5
2.1 地下水污染特性 5
2.1.1 硝酸鹽氮之污染與危害 7
2.1.2 現行飲用水法規 9
2.1.3 我國地下水污染事件簡介 10
2.2 地下水污染之整治方法 12
2.2.1 離地處理 13
2.2.2 現地處理 14
2.2.3 淨水場對於硝酸鹽的處理程序 16
2.3 零價鐵降解硝酸鹽氮理論 18
2.4 金屬牆建置理論 20
2.4.1 金屬牆建置流程 21
2.4.2 現行金屬牆實場介紹 28
2.5 零價鐵管柱理論 31
2.5.1 國外研究 31
2.5.2 國內研究 34
第三章 研究內容與實驗方法 37
3.1 研究內容 37
3.2 實驗方法 38
3.2.1 實驗設計 45
3.2.2 實驗器材與藥品 47
3.2.3 實驗配置 50
3.2.4 分析方法 51
第四章 結果與討論 52
4.1 未經前處理鐵粉對硝酸鹽降解效果 52
4.1.1 鐵粉填充量與流量 52
4.1.2 控制實驗中溶氧值 58
4.2 前處理鐵粉對硝酸鹽降解效果 63
4.2.1 還原劑前處理 63
4.2.2 酸洗前處理 73
4.3 模場各項參數探討 82
4.3.1 pH值變化 82
4.3.2 ORP變化 83
4.3.3 氨氮變化 84
4.3.4 鐵離子變化 85
4.3.5 水力停留時間(HRT) 87
4.3.6 通量變化 89
4.4 零價鐵粉使用壽命評估 90
4.5 反應速率常數與半衰期計算 93
4.5.1 反應區間計算方法 93
4.5.2 Thomas式計算方法 98
4.6 實場地下水模擬情形 101
4.7 模場放大 105
4.7.1 模場放大實驗結果 105
4.7.2 模場放大推估 107
4.8 零價鐵表面分析 110
4.9 金屬牆配置的應用 114
第五章 結論與建議 117
5.1 結論 117
5.2 建議 118
參考文獻 120
附錄
A 符號彙編 125
參考文獻
[1] U.S. EPA, "Permeable Reactive Barrier Technologies for Contaminant Remediation," 1998, EPA/600/R-98/125.
[2] A. R. Gavaskar, "Design and construction techniques for permeable reactive barriers," Journal of Hazardous Materials, vol. 68, 1999, pp.41-71.
[3] 李至倫,「後水壩時代與台灣水資源政策之研究」,財團法人國家政策研究基經會,2003,永續(研)092-012號。
[4] 「地下水:一個有價值的資源」,水土資源及防災科技研究中心 ,http://www.yuntech.edu.tw/~csx/periodical/sel073.htm。
[5] 賈儀平、王原賢、黃智昭,「台灣地區地下水資源的永續利用」,環保月刊,第二卷,第三期,2002,第59-67頁。
[6] P. B. Bedient, R. J. Charbeneau, P. C. Johnson, R. C. Loehr, H. S. Rifai, Groundwater Remediation, Water Quality Management Library, 1992, Volume 8, pp. 1-8.
[7] 王正雄,「台灣地區土壤及地下水污染來源與途徑」,台灣土壤及地下水環境保護協會簡訊,第二期,2001,第14-15頁。
[8] 劉莉蓮,「基礎生態學」,http://www.bamboo.hc.edu.tw/forum/science/course-2003/course/textbook/text06/ch03/。
[9] 王瑞香譯,生態學:科學與社會之間的橋樑,臺北市:編譯館,2000,第137-140頁。
[10] 段國仁、蘇睿智,李子祥譯,環境科學,臺北市:編譯館,2000,第128-131頁。
[11] H. Bouwer, Groundwater hydrology, Singapore: MeGraw-Hill Publishing Company, 1993, pp. 349-351.
[12] A. E. Williams, L. J. Lund, J. A. Johnson and Z. J. Kabala, "Natural and anthropogenic nitrate contamination of groundwater in a rural community, California," Environmental Science & Technology, vol. 32, no. 1, 1998, pp. 32-39.
[13] P. J. Thorburn, J. S. Biggs, K. L. Weier and B. A. Keating, "Nitrate in groundwaters of intensive agricultural areas in coastal Northeastern Australia," Agriculture, Ecosystems and Environment, vol. 94, 2003, pp. 49-58.
[14] W. L. Zhang, Z. X. Tian, N. Zhang and X. Q. Li, "Nitrate pollution of groundwater in northern China," Agriculture, Ecosystems and Environment, vol. 59, 1996, pp. 223-231.
[15] K. J. Limbrick, "Baseline nitrate concentration in groundwater of the Chalk in south Dorset, UK," The Science of the Total Environment, vol. 314-316, 2003, pp. 89-98.
[16] 行政院環保署,http://www.epa.gov.tw。
[17] 土壤及地下水污染整治網,http://ww2.epa.gov.tw/SoilGW/index.asp。
[18] U.S. EPA, "Innovative Remediation Technologies:Field-Scale Demonstration Projects in North America," 2000, 2nd Edition.
[19] U.S. EPA, "A Citizen’s Guide to Bioremediation," 2001, EPA 542-F-01-001.
[20] 陳谷汎、高志明、蔡啟堂,「土壤及地下水生物復育技術」,工業污染防治,第84期,2002,第136-157頁。
[21] 盧至人,「含氯有機溶劑(DNAPL)污染的現地生物復育技術」,環保月刊,第二卷,第三期,2002,第79-86頁。
[22] 盧至人,「現地生物復育技術」,台灣土壤及地下水環境保護協會簡訊,第五期,2002,第3-5頁。
[23] U.S. EPA, "A Citizen’s Guide to Soil Vapor Extraction and Air Sparging," 2001, EPA 542-F-01-006.
[24] U.S. EPA, "A Citizen’s Guide to Monitored Natural Attenuation," 2001, EPA 542-F-01-004.
[25] 林財富,「土壤與地下水物理化學與熱處理整治技術之發展現況」,環保月刊,第2卷,第3期,2002,第87-99頁。
[26] 高志明、陳谷汎、廖毓鈴、李淑慧,「以現地透水性反應牆整治污染之地下水」,環保月刊,第二卷,第三期,2002,第101-108頁。
[27] 陳谷汎、高志明,「土壤及地下水物理/化學復育技術」,台灣土壤及地下水環境保護協會簡訊,第五期,2002,第6-11頁。
[28] M. Shrimali and K. P. Singh, "New methods of nitrate removal from water," Environmental Pollution, vol. 112, 2001, pp. 351-359.
[29] 江弘斌、洪世政,「高硝酸鹽氮地下水源脫硝之研究」,自來水會刊,第二十一卷,第二期,2000,第3-13頁。
[30] D. P. Siantar, C. G. Schreier, C. S. Chou and M. Reinhard, "Treatment of 1,2-Dibromo-3-Chloroproprane and Nitrate Contaminated Water with Zero-valent iron or Hydrogen/Palladium Catalysts," Water Research, vol. 30, no. 10, 1996, pp.2315-2322.
[31] C. Su and R. W. Puls, "In situ remediation of Arsenic in simulated groundwater using zero valent iron : laboratory column tests on combined effect of phosphate and silicate," Environmental Science & Technology, vol. 37, no. 11, 2003, pp.2582-2587.
[32] L. L. Zawaideh and T. C. Zhang, "The effects of pH and addition of an organic buffer (HEPES) on nitrate transformation in Fe0 water systems," Water Science Technology, vol. 38, no. 7, 1998, pp.107-115.
[33] 蔡政勳,零價鐵反應牆處理三氯乙烯污染物之反應行為研究,碩士論文,國立中央大學環境工程研究所,中壢,2000。
[34] I. F. Cheng, R. Muftikian, Q. Fernando and N. Korte, "Reduction of nitrate to ammonia by zero-valent iron," Chemosphere, vol. 35, no. 11, 1997, pp. 2689-2695.
[35] J. C. Fanning, "The chemical reduction of nitrate in aqueous solution," Coordination chemistry reviews, vol. 199, 2000, pp.159-179.
[36] P. Westerhoff and J. James, "Nitrate removal in zero-valent iron packed columns," Water Research, vol. 37, 2003, pp.1818-1830.
[37] S. Choe, Y. Y. Chang, K. Y. Hwang and J. Khim, "Kinetics of reduction by nanoscale zero-valent iron," Chemosphere, vol. 41, 2000, pp.1307-1311.
[38] 程淑芬、章日行,「以零價金屬技術處理受硝酸鹽類污染之地下水水源之研究」,國科會成果報告,NSC 89-2211-E-324-038,2000。
[39] Y. H. Huang and T. C. Zhang, "Kinetics of nitrate reduction by iron at near neutral pH," Journal of environmental engineering, vol. 128,no7, 2002, pp.604-611.
[40] K. Ritter, M. S. Odziemkowski, R. Simpgraga, R. W. Gillham and D. E. Irish, "An in situ study of the effect of nitrate on the reduction of trichloroethylene by granular iron, " Journal of Contaminant Hydrology, vol. 65, 2003, pp.121-136.
[41] Y. Yin and H. E. Allen, "In situ chemical treatment," Ground-Water Remediation Technologies Analysis Center, 1999, TE-99-01.
[42] N. Ott, Permeable reactive barriers for inorganics, Washington: U.S. EPA Office of Solid Waste and Emergency Response Technology Innovation Office, 2000, pp. 4-29.
[43] S. J. Morrison, D. R. Metzler and B. P. Dwyer, " Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell: reaction progress modeling," Journal of Contaminant Hydrology, vol. 56, 2002, pp.99-116.
[44] N. Gupta, and T. C. Fox, "Hydrogeologic modeling for permeable reactive barriers," Journal of Hazardous Materials, vol. 68, 1999, pp. 19-39.
[45] 洪旭文、林財富,「透水性反應牆之設計介紹」,工業污染防治,第84期,2002,第114-135頁。
[46] U.S. EPA, Field Applications of In Situ Remediation Technologies: Permeable Reactive Barrier, Washington: U.S. EPA Office of Solid Waste and Emergency Response Technology Innovation Office, 2002, pp. 1-28.
[47] RTDF, http://www.rtdf.org/public/permbarr/prbsumms/default.cfm
[48] C. F. Chew, T. C. Zhang and J. Shan, "Removal of Nitrate/Atrazine Contamination with Zero-valent iron Promoted Processes," Proceedings of the 1998 Conference on Hazardous Waste Research, 1998, pp. 335-346.
[49] S. Gandhi, B. T. Oh, J. L. Schnoor and Pedro J.J. Alvarez, "Degradation of TCE, Cr(VI), sulfate, and nitrate Mixtures by granular iron in flow-through columns under different microbial conditions," Water Research, vol. 36, 2002, pp. 1973—1982.
[50] P. D. Mackenzie, D. P. Horney and T. M. Sivavec, "Mineral precipitation and porosity losses in granular iron columns," Journal of Hazardous Materials, vol. 68, 1999, pp.1-17.
[51] W. Kamolpornwijit, L. Liang, O. R. West, G. R. Moline and A. B. Sullivan, " Preferential flow path development and its influence on long-term PRB performance : column study," Journal of Contaminant Hydrology, vol. 66, 2003, pp.161-178.
[52] R. W. Puls, C. J. Paul and R. M. Powell, "The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate contaminated groundwater: a field test," Applied Geochemistry, vol. 14, 1999, pp.989-1000.
[53] 程淑芬、章日行,「以零價金屬技術處理受硝酸鹽類污染之地下水水源之研究(Ⅱ)」,國科會成果報告,NSC 90-2211-E-324-004,2001。
[54] 程淑芬、陳岱伯,「結合零價金屬及電混凝處理技術促進硝酸鹽去除之研究」,第二十八屆廢水技術研討會論文集,台中,2003。
[55] 林錕松、袁熙隆、傅聖峰,「利用零價鐵粉復育受重金屬鉻污染地下水之研究」,國科會成果報告,NSC 89-2211-E-274-001,2000。
[56] 吳先琪、陳世裕,「零價鐵還原技術用於含氯有機化合物污染場址之復育(Ⅰ)」,國科會成果報告,NSC 88-2218-E-002-035,1999。
[57] 曾迪華,「零價鐵技術去除水中三氯乙烯之反應行為研究」,國科會成果報告,NSC 89-2211-E-008-063,2000。
[58] 吳先琪、陳世裕、程淑芬,「以健康風險管理為依據之含氯有機化合物污染場址地下水復育技術及決策支援系統架構之研發-子計畫四:金屬還原技術用於含有機化合物污染場址復育之機制即評估預測模式(Ⅲ)」,國科會成果報告,NSC 90-2621-Z-002-069,2001。
[59] T. D. Reynolds and P. A. Richards, Unit operations and processes in environmental engineering, Boston: PWS Publishing Company, 1995, pp. 350-372.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top