|
[1] K. P. Bennett and A. Demiriz. Semi-supervised support vector ma- chines. In Advances in Neural Information Processing Systems, pages 368-374. MIT Press, 1998. [2] A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts. In Proc. 18th International Conf. on Machine Learning, pages 19-26. Morgan Kaufmann, San Francisco, CA, 2001. [3] O. Chapelle, B. SchÄolkopf, and A. Zien, editors. Semi-Supervised Learning (Adaptive Computation and Machine Learning). The MIT Press, Sep. 2006. [4] Y. Cheng. Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Analysis and Machine Intelligence, 17(8):790-799, Aug. 1995. [5] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Analysis and Machine Intelligence, 24(5):603-619, May 2002. [6] V. Ramesh D. Comaniciu and P. Meer. The variable bandwidth mean shift and data-driven scale selection. Proc Eighth Int'l Conf. Com- puter Vision, 1:331-337, July 2001. [7] V. Ramesh D. Comaniciu and P. Meer. Kernel-based object tracking. IEEE Trans. Pattern Analysis and Machine Intelligence, 25(5):564- 575, May 2003. [8] K. Fukunaga and L. D. Hosteler. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Information Theory, 21:32-40, 1975. [9] T. Kailath. The divergence and bhattacharyya distance measures in signal selection. IEEE Trans. Commun. Tech., 15:52-62, 1967. [10] V. Kolmogorov and R. Zabih. What energy functions can be mini- mized via graph cuts. IEEE Trans. on Pattern Analysis and Machine Intelligence, 26:65-81, 2004. [11] Y.-J. Lee and O. L. Mangasarian. Rsvm: Reduced support vector machines. In Data Mining Institute, Computer Sciences Department, University of Wisconsin, pages 00-07, 2001. [12] F. Laviolette M. R. Amini and N. Usunier. A transductive bound for the voted classi‾er with an application to semi-supervised learning. In NIPS, pages 65-72, 2008. [13] S. J. Sheater and M. C. Jones. A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statitical Society. Series B (Methodological), 53(3):683-690, 1991. [14] B. W. Silverman. Density Estimation for Statistics and Data Analy- sis. Chapman & Hall/CRC, Apr. 1986. [15] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geo- metric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, Dec. 2000. [16] M. P.Wand and M. C. Jones. Kernel Smoothing (Monographs on Sta- tistics and Applied Probability). Chapman & Hall/CRC, Dec. 1994. [17] X. Zhu. Semi-supervised learning literature survey. Technical report, Dec. 2007. [18] X. Zhu and Z. Ghahramani. Learning from labeled and unlabeled data with label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002.
|