|
1. Muir, P. and A.M. van Loon, Enterovirus infections of the central nervous system. Intervirology, 1997. 40(2-3): p. 153-66. 2. Lashkevich, V.A., [100 years of studying poliomyelitis virus and nonpoliomyelitis enteroviruses]. Vopr Virusol, 2008. 53(4): p. 41-4. 3. Paul, J.R. and J.D. Trask, A Comparative Study of Recently Isolated Human Strains and a Passage Strain of Poliomyelitis Virus. J Exp Med, 1933. 58(5): p. 513-29. 4. Enders, J.F., T.H. Weller, and F.C. Robbins, Cultivation of the Lansing Strain of Poliomyelitis Virus in Cultures of Various Human Embryonic Tissues. Science, 1949. 109(2822): p. 85-7. 5. Lu, C.Y., et al., Incidence and case-fatality rates resulting from the 1998 enterovirus 71 outbreak in Taiwan. J Med Virol, 2002. 67(2): p. 217-23. 6. Rotbart, H.A., Treatment of picornavirus infections. Antiviral Res, 2002. 53(2): p. 83-98. 7. De Palma, A.M., et al., Selective inhibitors of picornavirus replication. Med Res Rev, 2008. 28(6): p. 823-84. 8. Bedard, K.M. and B.L. Se mler, Regulation of picornavirus gene expression. Microbes Infect, 2004. 6(7): p. 702-13. 9. Strebel, K. and E. Beck, A second protease of foot-and-mouth disease virus. J Virol, 1986. 58(3): p. 893-9. 10. Svitkin, Y.V., et al., Encephalomyocarditis virus-specific polypeptide p22 possessing a proteolytic activity: preliminary mapping on the viral genome. FEBS Lett, 1979. 108(1): p. 6-9. 11. Toyoda, H., et al., A second virus-encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell, 1986. 45(5): p. 761-70. 12. Aldabe, R., A. Barco, and L. Carrasco, Membrane permeabilization by poliovirus proteins 2B and 2BC. J Biol Chem, 1996. 271(38): p. 23134-7. 13. de Jong, A.S., et al., Determinants for membrane association and permeabilization of the coxsackievirus 2B protein and the identification of the Golgi complex as the target organelle. J Biol Chem, 2003. 278(2): p. 1012-21. 14. van Kuppeveld, F.J., et al., Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. EMBO J, 1997. 16(12): p. 3519-32. 15. De Jesus, N.H., Epidemics to eradication: the modern history of poliomyelitis. Virol J, 2007. 4: p. 70. 16. Choe, S.S., D.A. Dodd, and K. Kirkegaard, Inhibition of cellular protein secretion by picornaviral 3A proteins. Virology, 2005. 337(1): p. 18-29. 17. Paul, A.V., et al., Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature, 1998. 393(6682): p. 280-4. 18. Nishimura, Y. and H. Shimizu, Cellular receptors for human enterovirus species a. Front Microbiol, 2012. 3: p. 105. 19. Nishimura, Y., et al., Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med, 2009. 15(7): p. 794-7. 20. Yamayoshi, S., et al., Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med, 2009. 15(7): p. 798-801. 21. Pelletier, J. and N. Sonenberg, Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 1988. 334(6180): p. 320-5. 22. Thompson, S.R. and P. Sarnow, Enterovirus 71 contains a type I IRES element that functions when eukaryotic initiation factor eIF4G is cleaved. Virology, 2003. 315(1): p. 259-66. 23. Lu, J., et al., Viral kinetics of enterovirus 71 in human abdomyosarcoma cells. World J Gastroenterol, 2011. 17(36): p. 4135-42. 24. Ho, M., et al., An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N Engl J Med, 1999. 341(13): p. 929-35. 25. Chang, L.Y., Y.C. Huang, and T.Y. Lin, Fulminant neurogenic pulmonary oedema with hand, foot, and mouth disease. Lancet, 1998. 352(9125): p. 367-8. 26. McMinn, P.C., An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol Rev, 2002. 26(1): p. 91-107. 27. Lin, T.Y., et al., Enterovirus 71 outbreaks, Taiwan: occurrence and recognition. Emerg Infect Dis, 2003. 9(3): p. 291-3. 28. Wang, S.M., et al., Clinical spectrum of enterovirus 71 infection in children in southern Taiwan, with an emphasis on neurological complications. Clin Infect Dis, 1999. 29(1): p. 184-90. 29. Racaniello, V.R., One hundred years of poliovirus pathogenesis. Virology, 2006. 344(1): p. 9-16. 30. Lee, P.I., C.Y. Lee, and T.R. Wang, Recommendations for management of severe enterovirus infection in Taiwan. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi, 1998. 39(4): p. 217. 31. Kuo, R.L. and S.R. Shih, Strategies to develop antivirals against enterovirus 71. Virol J, 2013. 10: p. 28. 32. Zhang, G., et al., In vitro and in vivo evaluation of ribavirin and pleconaril antiviral activity against enterovirus 71 infection. Arch Virol, 2012. 157(4): p. 669-79. 33. Shia, K.S., et al., Design, synthesis, and structure-activity relationship of pyridyl imidazolidinones: a novel class of potent and selective human enterovirus 71 inhibitors. J Med Chem, 2002. 45(8): p. 1644-55. 34. Senior, K., FDA panel rejects common cold treatment. Lancet Infect Dis, 2002. 2(5): p. 264. 35. Shih, S.R., et al., Mutation in enterovirus 71 capsid protein VP1 confers resistance to the inhibitory effects of pyridyl imidazolidinone. Antimicrob Agents Chemother, 2004. 48(9): p. 3523-9. 36. Weng, T.Y., et al., Lactoferrin inhibits enterovirus 71 infection by binding to VP1 protein and host cells. Antiviral Res, 2005. 67(1): p. 31-7. 37. Yen, M.H., et al., Effects of lactoferrin-containing formula in the prevention of enterovirus and rotavirus infection and impact on serum cytokine levels: a randomized trial. Chang Gung Med J, 2011. 34(4): p. 395-402. 38. Matthews, D.A., et al., Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes. Proc Natl Acad Sci U S A, 1999. 96(20): p. 11,000-7. 39. Lee, J.C., et al., A mammalian cell-based reverse two-hybrid system for functional analysis of 3C viral protease of human enterovirus 71. Anal Biochem, 2008. 375(1): p. 115-23. 40. Lu, G., et al., Enterovirus 71 and coxsackievirus A16 3C proteases: binding to rupintrivir and their substrates and anti-hand, foot, and mouth disease virus drug design. J Virol, 2011. 85(19): p. 10319-31. 41. Tsai, M.T., et al., Real-time monitoring of human enterovirus (HEV)-infected cells and anti-HEV 3C protease potency by fluorescence resonance energy transfer. Antimicrob Agents Chemother, 2009. 53(2): p. 748-55. 42. Binford, S.L., et al., Conservation of amino acids in human rhinovirus 3C protease correlates with broad-spectrum antiviral activity of rupintrivir, a novel human rhinovirus 3C protease inhibitor. Antimicrob Agents Chemother, 2005. 49(2): p. 619-26. 43. Patick, A.K., et al., In vitro antiviral activity of AG7088, a potent inhibitor of human rhinovirus 3C protease. Antimicrob Agents Chemother, 1999. 43(10): p. 2444-50. 44. Zhang, K.E., et al., Liquid chromatography-mass spectrometry and liquid chromatography-NMR characterization of in vitro metabolites of a potent and irreversible peptidomimetic inhibitor of rhinovirus 3C protease. Drug Metab Dispos, 2001. 29(5): p. 729-34. 45. Patick, A.K., et al., In vitro antiviral activity and single-dose pharmacokinetics in humans of a novel, orally bioavailable inhibitor of human rhinovirus 3C protease. Antimicrob Agents Chemother, 2005. 49(6): p. 2267-75. 46. Dragovich, P.S., et al., Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 8. Pharmacological optimization of orally bioavailable 2-pyridone-containing peptidomimetics. J Med Chem, 2003. 46(21): p. 4572-85. 47. Patick, A.K., Rhinovirus chemotherapy. Antiviral Res, 2006. 71(2-3): p. 391-6. 48. Cui, S., et al., Crystal structure of human enterovirus 71 3C protease. J Mol Biol, 2011. 408(3): p. 449-61. 49. Goris, N., et al., 2'-C-methylcytidine as a potent and selective inhibitor of the replication of foot-and-mouth disease virus. Antiviral Res, 2007. 73(3): p. 161-8. 50. Harki, D.A., et al., Synthesis and antiviral activity of 5-substituted cytidine analogues: identification of a potent inhibitor of viral RNA-dependent RNA polymerases. J Med Chem, 2006. 49(21): p. 6166-9. 51. Kishimoto, C., C.S. Crumpacker, and W.H. Abelmann, Ribavirin treatment of murine coxsackievirus B3 myocarditis with analyses of lymphocyte subsets. J Am Coll Cardiol, 1988. 12(5): p. 1334-41. 52. Graci, J.D., et al., Lethal mutagenesis of picornaviruses with N-6-modified purine nucleoside analogues. Antimicrob Agents Chemother, 2008. 52(3): p. 971-9. 53. Chen, T.C., et al., Novel antiviral agent DTriP-22 targets RNA-dependent RNA polymerase of enterovirus 71. Antimicrob Agents Chemother, 2009. 53(7): p. 2740-7. 54. Wikel, J.H., et al., Synthesis of syn and anti isomers of 6-[[(hydroxyimino)phenyl]methyl]-1-[(1-methylethyl)sulfonyl]-1H-benzimidazol-2-am ine. Inhibitors of rhinovirus multiplication. J Med Chem, 1980. 23(4): p. 368-72. 55. Heinz, B.A. and L.M. Vance, The antiviral compound enviroxime targets the 3A coding region of rhinovirus and poliovirus. J Virol, 1995. 69(7): p. 4189-97. 56. Hope, D.A., S.E. Diamond, and K. Kirkegaard, Genetic dissection of interaction between poliovirus 3D polymerase and viral protein 3AB. J Virol, 1997. 71(12): p. 9490-8. 57. Giachetti, C., S.S. Hwang, and B.L. Se mler, cis-acting lesions targeted to the hydrophobic domain of a poliovirus membrane protein involved in RNA replication. J Virol, 1992. 66(10): p. 6045-57. 58. Phillpotts, R.J., et al., The activity of enviroxime against rhinovirus infection in man. Lancet, 1981. 1(8234): p. 1342-4. 59. Arita, M., et al., A bifunctional anti-enterovirus compound that inhibits replication and the early stage of enterovirus 71 infection. J Gen Virol, 2010. 91(Pt 11): p. 2734-44. 60. Novina, C.D., et al., siRNA-directed inhibition of HIV-1 infection. Nat Med, 2002. 8(7): p. 681-6. 61. Jacque, J.M., K. Triques, and M. Stevenson, Modulation of HIV-1 replication by RNA interference. Nature, 2002. 418(6896): p. 435-8. 62. Gitlin, L., S. Karelsky, and R. Andino, Short interfering RNA confers intracellular antiviral immunity in human cells. Nature, 2002. 418(6896): p. 430-4. 63. Kapadia, S.B., A. Brideau-Andersen, and F.V. Chisari, Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc Natl Acad Sci U S A, 2003. 100(4): p. 2014-8. 64. Yuan, J., et al., Inhibition of coxsackievirus B3 replication by small interfering RNAs requires perfect sequence match in the central region of the viral positive strand. J Virol, 2005. 79(4): p. 2151-9. 65. Merl, S., et al., Targeting 2A protease by RNA interference attenuates coxsackieviral cytopathogenicity and promotes survival in highly susceptible mice. Circulation, 2005. 111(13): p. 1583-92. 66. Tan, E.L., A.P. Wong, and C.L. Poh, Development of potential antiviral strategy against coxsackievirus B4. Virus Res, 2010. 150(1-2): p. 85-92. 67. Sim, A.C., et al., RNA interference against enterovirus 71 infection. Virology, 2005. 341(1): p. 72-9. 68. Lu, W.W., et al., Selective inhibition of enterovirus 71 replication by short hairpin RNAs. Biochem Biophys Res Commun, 2004. 325(2): p. 494-9. 69. Tan, E.L., et al., Inhibition of enterovirus 71 in virus-infected mice by RNA interference. Mol Ther, 2007. 15(11): p. 1931-8. 70. Merl, S. and R. Wessely, Anti-coxsackieviral efficacy of RNA interference is highly dependent on genomic target selection and emergence of escape mutants. Oligonucleotides, 2007. 17(1): p. 44-53. 71. Liu, M.L., et al., Type I interferons protect mice against enterovirus 71 infection. J Gen Virol, 2005. 86(Pt 12): p. 3263-9. 72. Yi, L., et al., Potent inhibition of human enterovirus 71 replication by type I interferon subtypes. Antivir Ther, 2011. 16(1): p. 51-8. 73. Lei, X., et al., Cleavage of the adaptor protein TRIF by enterovirus 71 3C inhibits antiviral responses mediated by Toll-like receptor 3. J Virol, 2011. 85(17): p. 8811-8. 74. Lei, X., et al., The 3C protein of enterovirus 71 inhibits retinoid acid-inducible gene I-mediated interferon regulatory factor 3 activation and type I interferon responses. J Virol, 2010. 84(16): p. 8051-61. 75. Lei, X., et al., Cleavage of interferon regulatory factor 7 by enterovirus 71 3C suppresses cellular responses. J Virol, 2013. 87(3): p. 1690-8. 76. Lu, J., et al., Enterovirus 71 disrupts interferon signaling by reducing the level of interferon receptor 1. J Virol, 2012. 86(7): p. 3767-76. 77. Kota, S., et al., A time-resolved fluorescence-resonance energy transfer assay for identifying inhibitors of hepatitis C virus core dimerization. Assay Drug Dev Technol, 2010. 8(1): p. 96-105. 78. Mukherjee, S., et al., Identification and analysis of hepatitis C virus NS3 helicase inhibitors using nucleic acid binding assays. Nucleic Acids Res, 2012. 40(17): p. 8607-21. 79. Kremb, S., et al., EASY-HIT: HIV full-replication technology for broad discovery of multiple classes of HIV inhibitors. Antimicrob Agents Chemother, 2010. 54(12): p. 5257-68. 80. Che, P., L. Wang, and Q. Li, The development, optimization and validation of an assay for high throughput antiviral drug screening against Dengue virus. Int J Clin Exp Med, 2009. 2(4): p. 363-73. 81. Eidne, K.A., K.M. Kroeger, and A.C. Hanyaloglu, Applications of novel resonance energy transfer techniques to study dynamic hormone receptor interactions in living cells. Trends Endocrinol Metab, 2002. 13(10): p. 415-21. 82. Jares-Erijman, E.A. and T.M. Jovin, FRET imaging. Nat Biotechnol, 2003. 21(11): p. 1387-95. 83. Pollok, B.A. and R. Heim, Using GFP in FRET-based applications. Trends Cell Biol, 1999. 9(2): p. 57-60. 84. Wu, P. and L. Brand, Resonance energy transfer: methods and applications. Anal Biochem, 1994. 218(1): p. 1-13. 85. Tsien, R.Y., B.J. Bacskai, and S.R. Adams, FRET for studying intracellular signalling. Trends Cell Biol, 1993. 3(7): p. 242-5. 86. Demchenko, A.P., The concept of lambda-ratiometry in fluorescence sensing and imaging. J Fluoresc, 2010. 20(5): p. 1099-128. 87. Srikun, D., et al., An ICT-based approach to ratiometric fluorescence imaging of hydrogen peroxide produced in living cells. J Am Chem Soc, 2008. 130(14): p. 4596-7. 88. Hsu, Y.Y., et al., In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair. Biochem Biophys Res Commun, 2007. 353(4): p. 939-45. 89. Byrd, C.M., et al., Novel benzoxazole inhibitor of dengue virus replication that targets the NS3 helicase. Antimicrob Agents Chemother, 2013. 57(4): p. 1902-12. 90. Kaur, P., et al., Inhibition of chikungunya virus replication by harringtonine, a novel antiviral that suppresses viral protein expression. Antimicrob Agents Chemother, 2013. 57(1): p. 155-67. 91. Cencic, R., et al., Blocking eIF4E-eIF4G interaction as a strategy to impair coronavirus replication. J Virol, 2011. 85(13): p. 6381-9. 92. Patel, D.A., et al., High throughput screening for small molecule enhancers of the interferon signaling pathway to drive next-generation antiviral drug discovery. PLoS One, 2012. 7(5): p. e36594. 93. Zhang, J.H., T.D. Chung, and K.R. Oldenburg, A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen, 1999. 4(2): p. 67-73. 94. Chesnokov, V.N. and N.P. Mertvetsov, [The effect of translation inhibitor cycloheximide on expression of mammalian genes]. Biokhimiia, 1990. 55(7): p. 1276-8. 95. Barton, D.J. and J.B. Flanegan, Synchronous replication of poliovirus RNA: initiation of negative-strand RNA synthesis requires the guanidine-inhibited activity of protein 2C. J Virol, 1997. 71(11): p. 8482-9. 96. Bienz, K., et al., Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region. J Virol, 1990. 64(3): p. 1156-63. 97. Caliguiri, L.A. and I. Tamm, Action of guanidine on the replication of poliovirus RNA. Virology, 1968. 35(3): p. 408-17. 98. Bonneau, A.M. and N. Sonenberg, Proteolysis of the p220 component of the cap-binding protein complex is not sufficient for complete inhibition of host cell protein synthesis after poliovirus infection. J Virol, 1987. 61(4): p. 986-91. 99. Joachims, M., P.C. Van Breugel, and R.E. Lloyd, Cleavage of poly(A)-binding protein by enterovirus proteases concurrent with inhibition of translation in vitro. J Virol, 1999. 73(1): p. 718-27. 100. Grollman, A.P., Inhibitors of protein biosynthesis. V. Effects of emetine on protein and nucleic acid biosynthesis in HeLa cells. J Biol Chem, 1968. 243(15): p. 4089-94. 101. Wink, M., Molecular modes of action of cytotoxic alkaloids: from DNA intercalation, spindle poisoning, topoisomerase inhibition to apoptosis and multiple drug resistance. Alkaloids Chem Biol, 2007. 64: p. 1-47. 102. Boon-Unge, K., et al., Emetine regulates the alternative splicing of Bcl-x through a protein phosphatase 1-dependent mechanism. Chem Biol, 2007. 14(12): p. 1386-92. 103. Pan, D., et al., Emetine regulates the alternative splicing of caspase 9 in tumor cells. Oncol Lett, 2011. 2(6): p. 1309-1312. 104. Knight, R., The chemotherapy of amoebiasis. J Antimicrob Chemother, 1980. 6(5): p. 577-93. 105. Panettiere, F. and C.A. Coltman, Jr., Experience with emetine hydrochloride (NSC 33669) as an antitumor agent. Cancer, 1971. 27(4): p. 835-41. 106. Solomon, T., et al., Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis, 2010. 10(11): p. 778-90. 107. Lin, J.Y., et al., Viral and host proteins involved in picornavirus life cycle. J Biomed Sci, 2009. 16: p. 103. 108. Lim, T., et al., Antisense DNA and RNA agents against picornaviruses. Front Biosci, 2008. 13: p. 4707-25.
|