跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.121) 您好!臺灣時間:2025/12/11 13:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:龔芳彥
研究生(外文):Fang-Yen Kung
論文名稱:以高效能平台篩選出一有效抑制腸病毒71型之生物鹼化合物
論文名稱(外文):High throughput screening identified an alkaloid compound that potently inhibits replication of enterovirus 71
指導教授:龔思豪
指導教授(外文):Szu-Hao Kung
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學生物技術暨檢驗學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:102
相關次數:
  • 被引用被引用:0
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
腸病毒71型為小RNA病毒科中腸病毒屬的ㄧ員,主要是感染幼童,而多數患者的症狀為較輕微的手足口症,然而少數的嚴重感染則會導致神經方面的併發症。目前並無臨床上所使用的抗腸病毒藥物,而腸病毒藥物的研發也持續在進行,其策略包含針對病毒本身的設計,或是透過藥物篩選的方式,另外也可藉由小兒麻痺病毒及鼻病毒相關藥物之改良與應用;然而此類抗病毒藥物的發展屬針對病毒本身進行抑制,因此具產生抗藥性病毒的可能性。病毒感染時,會誘發病毒複製所需之宿主基因表現或是相關的訊號傳遞路徑被活化,因此我們使用LOPAC化合藥庫進行抗腸病毒藥物的篩選,而LOPAC化合藥庫含1280種已知生物活性及功能的小分子化合物,藉以篩選出會抑制病毒複製所需的基因或訊號傳遞路徑之藥物。透過先前實驗室利用螢光共振能量轉移原理所建立的生物感測平台,此細胞株可穩定表現一質體,帶有綠色螢光蛋白GFP2,以及紅色螢光蛋白DsRed2,中間的多肽連結為2A蛋白酶之切點,當腸病毒71型感染時,藉螢光的偵測即可即時偵測並定量腸病毒71型於細胞中的感染情形。將此生物感測細胞株應用於高效能藥物篩選上,其Z’ factor為0.53,顯示此平台具穩定性及可信度,並篩選出15種藥物的FRET比值提升高於50%。其中,E化合物為用於治療阿米巴的臨床用藥,因此選擇此藥物進行更進一步的研究。E化合物的EC50與CC50分別是1.19 μM和大於4096 μM,經計算得知其選擇性指標,SI值高於3439.1。E化合物可減緩腸病毒71型感染所造成的細胞病變及死亡,且其抑制效率和藥物濃度也呈現正相關。經由在病毒複製週期的不同時間點加藥之試驗,得知E化合物作用於病毒感染後的0至5小時,並了解到E化合物會抑制病毒的蛋白質合成,以及病毒基因體的複製;但不會選擇性影響病毒的轉譯作用以及蛋白酶的切割能力。將E化合物創新應用於腸病毒的治療上,可提供一新的治療方式及策略以控制腸病毒71型的感染。
Enterovirus 71 (EV71), a member of the genus Enterovirus of the family Picornaviridae, is a common pathogen often associated with mild foot-and-mouth disease and occasionally severe neurological manifestations in young children. However, there have been no anti-EV71 drugs available for clinical use. Several strategies for anti-EV71 drug development have been employed, ranging from viral target-based design, compound screening, and compound series generated from antiviral developments against related poliovirus and human rhinoviruses. All these efforts exclusively focused on viral targets, which likely develop drug resistance. Viral infection can induce host genes and cellular signaling pathways that are essential for virus propagation. Therefore, we proceeded with a screen from the Library of Pharmacologically Active Compound (LOPAC; Sigma–Aldrich) that consist of 1280 small molecules with well-defined bioactivities against diverse cell functions for hits that could intervene the activated, virus-supporting cellular genes/pathways. Using fluorescence resonance energy transfer (FRET), our laboratory previously developed a genetically engineered, FRET-based biosensor achieved by stable expression of a fusion substrate construct composed of the green fluorescent protein 2 and red fluorescent protein 2, with a cleavage motif of the EV71 2A protease connected in between. The HeLa cell based-FRET biosensor showed a real-time and quantifiable impairment of FRET proportional to EV71 replication. We first assessed the adaptability of the FRET-biosensor as a high-throughput drug screen platform, and showed its rapidity and robustness with a Z’ value at 0.53. Among fifteen compounds that significantly (>50%) elevated the FRET ratio, E compound, a clinical drug for treating amebiasis, was chosen for further study. The 50% effective concentration (EC50) and 50% cytotoxicity concentration (CC50) are 1.19 μM and >4096 μM, respectively, making the selectivity index >3439.1. E compound significantly protected the infected cells from the cytopathic effect and cell death caused by EV71 in a dose-dependent manner. From the time-of-addition experiment, we identified the E compound action time at about 0~5 h pi. We further showed that the compound effectively intervened the virus lifecycle at the stages of the viral protein synthesis, genome replication but not the viral translation initiation and protease activity. This new use of E compound may provide new perspectives for therapeutic strategies for controlling EV71 infections and their consequences.
目錄
目錄 i
中文摘要 iv
Abstract v
第一章 緒論 1
第一節 腸病毒71型的發現 1
第二節 腸病毒之分類及特性 1
第三節 腸病毒的基因體結構與蛋白質 2
第四節 病毒的複製週期 3
第五節 腸病毒71型的流行病學及臨床概況 4
第六節 臨床概況與抗病毒藥物及治療之發展 5
第七節 LOPAC化合物藥物庫之簡介與應用 8
第八節 穩定表現螢光共振能量轉移之細胞株 9
第九節 研究動機與目的 11
第二章 材料與方法 12
第一節 細胞株的培養與操作 12
第二節 病毒來源、培養與定量 15
第三節 LOPAC化合物藥庫之篩選 18
第四節 E化合物濃度和FRET Ratio間之相關性 20
第五節 E化合物和腸病毒71型感染所造成細胞死亡之間的關係 22
第六節 觀察E化合物對於病毒感染所造成之細胞病變的影響 24
第七節 E化合物對腸病毒71型抑制之EC50 26
第八節 E化合物之細胞毒性試驗及CC50之計算 28
第九節 利用免疫螢光探討不同時間點下處理E化合物對於腸病毒71型複
製週期之影響 30
第十節 探討E化合物對於轉染表現之腸病毒71型IRES活性之影響 33
第十一節 利用細胞外轉譯試驗鑑定腸病毒71型IRES和E化合物之交
互作用 36
第十二節 研究E化合物與腸病毒71型2A蛋白酶之切割能力間的關係
42
第十三節 研究E化合物與腸病毒71型3C蛋白酶之切割能力間的關係
48
第十四節 探討E化合物對腸病毒71型RNA的影響 52
第十五節 E化合物處理對病毒蛋白質合成的影響 57
第三章 實驗結果 62
第一節 自LOPAC化合藥物找尋有效抑制腸病毒71型之藥物 62
第二節 E化合物之有效抑制濃度及細胞毒性並評估其選擇性指數 64
第三節 E化合物對於腸病毒71型複製週期的影響 66
第四章 討論 70
第五章 圖表 73
圖一、篩選策略及藥物篩選平台的穩定性 75
圖二、LOPAC1280化合藥庫篩選結果及藥物分類 76
圖三、E化合物濃度與FRET ratio呈正相關 77
圖四、E化合物可抑制病毒感染所造成的細胞死亡 78
圖五、E化合物可減緩病毒所造成的細胞病變 79
圖六、根據選擇性指數的評估,E化合物使用的安全性高 80
圖七、免疫螢光試驗分析不同病毒複製時間點加藥之影響 81
圖八、E化合物與腸病毒71型IRES活性之相關性 82
圖九、E化合物對於2A蛋白酶的切割活性無抑制作用 83
圖十、3C蛋白酶之切割能力不會受到E化合物的影響 84
圖十一、病毒RNA受到E化合物的抑制 85
圖十二、E化合物之濃度與病毒蛋白表現量的抑制效果呈正相關 86
第六章 參考文獻 87
第七章 附錄 95
附錄一、微小核糖核酸病毒分類 95
附錄二、腸病毒71型病毒結構 96
附錄三、腸病毒71型基因體及其蛋白質 96
附錄四、腸病毒71型生活史 97
附錄五、腸病毒71型動力學於人類橫紋肌肉瘤細胞株 97
附錄六、台灣腸病毒流行現況 98
附錄七、2012-2013年台灣腸病毒重症疫情趨勢圖 98
附錄八、腸病毒的感染途徑 99
附錄九、抗腸病毒71型之藥物相關結構 99
附錄十、腸病毒71型抑制劑作用機制之概要 100
附錄十一、GFP2-DsRed2融合螢光蛋白經病毒感染後螢光變化之概念圖 101
附錄十二、GFP2與DsRed2激發及放射光譜 102
附錄十三、E化合物之化學結構 102
1. Muir, P. and A.M. van Loon, Enterovirus infections of the central nervous system. Intervirology, 1997. 40(2-3): p. 153-66.
2. Lashkevich, V.A., [100 years of studying poliomyelitis virus and nonpoliomyelitis enteroviruses]. Vopr Virusol, 2008. 53(4): p. 41-4.
3. Paul, J.R. and J.D. Trask, A Comparative Study of Recently Isolated Human Strains and a Passage Strain of Poliomyelitis Virus. J Exp Med, 1933. 58(5): p. 513-29.
4. Enders, J.F., T.H. Weller, and F.C. Robbins, Cultivation of the Lansing Strain of Poliomyelitis Virus in Cultures of Various Human Embryonic Tissues. Science, 1949. 109(2822): p. 85-7.
5. Lu, C.Y., et al., Incidence and case-fatality rates resulting from the 1998 enterovirus 71 outbreak in Taiwan. J Med Virol, 2002. 67(2): p. 217-23.
6. Rotbart, H.A., Treatment of picornavirus infections. Antiviral Res, 2002. 53(2): p. 83-98.
7. De Palma, A.M., et al., Selective inhibitors of picornavirus replication. Med Res Rev, 2008. 28(6): p. 823-84.
8. Bedard, K.M. and B.L. Se mler, Regulation of picornavirus gene expression. Microbes Infect, 2004. 6(7): p. 702-13.
9. Strebel, K. and E. Beck, A second protease of foot-and-mouth disease virus. J Virol, 1986. 58(3): p. 893-9.
10. Svitkin, Y.V., et al., Encephalomyocarditis virus-specific polypeptide p22 possessing a proteolytic activity: preliminary mapping on the viral genome. FEBS Lett, 1979. 108(1): p. 6-9.
11. Toyoda, H., et al., A second virus-encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell, 1986. 45(5): p. 761-70.
12. Aldabe, R., A. Barco, and L. Carrasco, Membrane permeabilization by poliovirus proteins 2B and 2BC. J Biol Chem, 1996. 271(38): p. 23134-7.
13. de Jong, A.S., et al., Determinants for membrane association and permeabilization of the coxsackievirus 2B protein and the identification of the Golgi complex as the target organelle. J Biol Chem, 2003. 278(2): p. 1012-21.
14. van Kuppeveld, F.J., et al., Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. EMBO J, 1997. 16(12): p. 3519-32.
15. De Jesus, N.H., Epidemics to eradication: the modern history of poliomyelitis. Virol J, 2007. 4: p. 70.
16. Choe, S.S., D.A. Dodd, and K. Kirkegaard, Inhibition of cellular protein secretion by picornaviral 3A proteins. Virology, 2005. 337(1): p. 18-29.
17. Paul, A.V., et al., Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature, 1998. 393(6682): p. 280-4.
18. Nishimura, Y. and H. Shimizu, Cellular receptors for human enterovirus species a. Front Microbiol, 2012. 3: p. 105.
19. Nishimura, Y., et al., Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med, 2009. 15(7): p. 794-7.
20. Yamayoshi, S., et al., Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med, 2009. 15(7): p. 798-801.
21. Pelletier, J. and N. Sonenberg, Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 1988. 334(6180): p. 320-5.
22. Thompson, S.R. and P. Sarnow, Enterovirus 71 contains a type I IRES element that functions when eukaryotic initiation factor eIF4G is cleaved. Virology, 2003. 315(1): p. 259-66.
23. Lu, J., et al., Viral kinetics of enterovirus 71 in human abdomyosarcoma cells. World J Gastroenterol, 2011. 17(36): p. 4135-42.
24. Ho, M., et al., An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N Engl J Med, 1999. 341(13): p. 929-35.
25. Chang, L.Y., Y.C. Huang, and T.Y. Lin, Fulminant neurogenic pulmonary oedema with hand, foot, and mouth disease. Lancet, 1998. 352(9125): p. 367-8.
26. McMinn, P.C., An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol Rev, 2002. 26(1): p. 91-107.
27. Lin, T.Y., et al., Enterovirus 71 outbreaks, Taiwan: occurrence and recognition. Emerg Infect Dis, 2003. 9(3): p. 291-3.
28. Wang, S.M., et al., Clinical spectrum of enterovirus 71 infection in children in southern Taiwan, with an emphasis on neurological complications. Clin Infect Dis, 1999. 29(1): p. 184-90.
29. Racaniello, V.R., One hundred years of poliovirus pathogenesis. Virology, 2006. 344(1): p. 9-16.
30. Lee, P.I., C.Y. Lee, and T.R. Wang, Recommendations for management of severe enterovirus infection in Taiwan. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi, 1998. 39(4): p. 217.
31. Kuo, R.L. and S.R. Shih, Strategies to develop antivirals against enterovirus 71. Virol J, 2013. 10: p. 28.
32. Zhang, G., et al., In vitro and in vivo evaluation of ribavirin and pleconaril antiviral activity against enterovirus 71 infection. Arch Virol, 2012. 157(4): p. 669-79.
33. Shia, K.S., et al., Design, synthesis, and structure-activity relationship of pyridyl imidazolidinones: a novel class of potent and selective human enterovirus 71 inhibitors. J Med Chem, 2002. 45(8): p. 1644-55.
34. Senior, K., FDA panel rejects common cold treatment. Lancet Infect Dis, 2002. 2(5): p. 264.
35. Shih, S.R., et al., Mutation in enterovirus 71 capsid protein VP1 confers resistance to the inhibitory effects of pyridyl imidazolidinone. Antimicrob Agents Chemother, 2004. 48(9): p. 3523-9.
36. Weng, T.Y., et al., Lactoferrin inhibits enterovirus 71 infection by binding to VP1 protein and host cells. Antiviral Res, 2005. 67(1): p. 31-7.
37. Yen, M.H., et al., Effects of lactoferrin-containing formula in the prevention of enterovirus and rotavirus infection and impact on serum cytokine levels: a randomized trial. Chang Gung Med J, 2011. 34(4): p. 395-402.
38. Matthews, D.A., et al., Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes. Proc Natl Acad Sci U S A, 1999. 96(20): p. 11,000-7.
39. Lee, J.C., et al., A mammalian cell-based reverse two-hybrid system for functional analysis of 3C viral protease of human enterovirus 71. Anal Biochem, 2008. 375(1): p. 115-23.
40. Lu, G., et al., Enterovirus 71 and coxsackievirus A16 3C proteases: binding to rupintrivir and their substrates and anti-hand, foot, and mouth disease virus drug design. J Virol, 2011. 85(19): p. 10319-31.
41. Tsai, M.T., et al., Real-time monitoring of human enterovirus (HEV)-infected cells and anti-HEV 3C protease potency by fluorescence resonance energy transfer. Antimicrob Agents Chemother, 2009. 53(2): p. 748-55.
42. Binford, S.L., et al., Conservation of amino acids in human rhinovirus 3C protease correlates with broad-spectrum antiviral activity of rupintrivir, a novel human rhinovirus 3C protease inhibitor. Antimicrob Agents Chemother, 2005. 49(2): p. 619-26.
43. Patick, A.K., et al., In vitro antiviral activity of AG7088, a potent inhibitor of human rhinovirus 3C protease. Antimicrob Agents Chemother, 1999. 43(10): p. 2444-50.
44. Zhang, K.E., et al., Liquid chromatography-mass spectrometry and liquid chromatography-NMR characterization of in vitro metabolites of a potent and irreversible peptidomimetic inhibitor of rhinovirus 3C protease. Drug Metab Dispos, 2001. 29(5): p. 729-34.
45. Patick, A.K., et al., In vitro antiviral activity and single-dose pharmacokinetics in humans of a novel, orally bioavailable inhibitor of human rhinovirus 3C protease. Antimicrob Agents Chemother, 2005. 49(6): p. 2267-75.
46. Dragovich, P.S., et al., Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 8. Pharmacological optimization of orally bioavailable 2-pyridone-containing peptidomimetics. J Med Chem, 2003. 46(21): p. 4572-85.
47. Patick, A.K., Rhinovirus chemotherapy. Antiviral Res, 2006. 71(2-3): p. 391-6.
48. Cui, S., et al., Crystal structure of human enterovirus 71 3C protease. J Mol Biol, 2011. 408(3): p. 449-61.
49. Goris, N., et al., 2'-C-methylcytidine as a potent and selective inhibitor of the replication of foot-and-mouth disease virus. Antiviral Res, 2007. 73(3): p. 161-8.
50. Harki, D.A., et al., Synthesis and antiviral activity of 5-substituted cytidine analogues: identification of a potent inhibitor of viral RNA-dependent RNA polymerases. J Med Chem, 2006. 49(21): p. 6166-9.
51. Kishimoto, C., C.S. Crumpacker, and W.H. Abelmann, Ribavirin treatment of murine coxsackievirus B3 myocarditis with analyses of lymphocyte subsets. J Am Coll Cardiol, 1988. 12(5): p. 1334-41.
52. Graci, J.D., et al., Lethal mutagenesis of picornaviruses with N-6-modified purine nucleoside analogues. Antimicrob Agents Chemother, 2008. 52(3): p. 971-9.
53. Chen, T.C., et al., Novel antiviral agent DTriP-22 targets RNA-dependent RNA polymerase of enterovirus 71. Antimicrob Agents Chemother, 2009. 53(7): p. 2740-7.
54. Wikel, J.H., et al., Synthesis of syn and anti isomers of 6-[[(hydroxyimino)phenyl]methyl]-1-[(1-methylethyl)sulfonyl]-1H-benzimidazol-2-am ine. Inhibitors of rhinovirus multiplication. J Med Chem, 1980. 23(4): p. 368-72.
55. Heinz, B.A. and L.M. Vance, The antiviral compound enviroxime targets the 3A coding region of rhinovirus and poliovirus. J Virol, 1995. 69(7): p. 4189-97.
56. Hope, D.A., S.E. Diamond, and K. Kirkegaard, Genetic dissection of interaction between poliovirus 3D polymerase and viral protein 3AB. J Virol, 1997. 71(12): p. 9490-8.
57. Giachetti, C., S.S. Hwang, and B.L. Se mler, cis-acting lesions targeted to the hydrophobic domain of a poliovirus membrane protein involved in RNA replication. J Virol, 1992. 66(10): p. 6045-57.
58. Phillpotts, R.J., et al., The activity of enviroxime against rhinovirus infection in man. Lancet, 1981. 1(8234): p. 1342-4.
59. Arita, M., et al., A bifunctional anti-enterovirus compound that inhibits replication and the early stage of enterovirus 71 infection. J Gen Virol, 2010. 91(Pt 11): p. 2734-44.
60. Novina, C.D., et al., siRNA-directed inhibition of HIV-1 infection. Nat Med, 2002. 8(7): p. 681-6.
61. Jacque, J.M., K. Triques, and M. Stevenson, Modulation of HIV-1 replication by RNA interference. Nature, 2002. 418(6896): p. 435-8.
62. Gitlin, L., S. Karelsky, and R. Andino, Short interfering RNA confers intracellular antiviral immunity in human cells. Nature, 2002. 418(6896): p. 430-4.
63. Kapadia, S.B., A. Brideau-Andersen, and F.V. Chisari, Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc Natl Acad Sci U S A, 2003. 100(4): p. 2014-8.
64. Yuan, J., et al., Inhibition of coxsackievirus B3 replication by small interfering RNAs requires perfect sequence match in the central region of the viral positive strand. J Virol, 2005. 79(4): p. 2151-9.
65. Merl, S., et al., Targeting 2A protease by RNA interference attenuates coxsackieviral cytopathogenicity and promotes survival in highly susceptible mice. Circulation, 2005. 111(13): p. 1583-92.
66. Tan, E.L., A.P. Wong, and C.L. Poh, Development of potential antiviral strategy against coxsackievirus B4. Virus Res, 2010. 150(1-2): p. 85-92.
67. Sim, A.C., et al., RNA interference against enterovirus 71 infection. Virology, 2005. 341(1): p. 72-9.
68. Lu, W.W., et al., Selective inhibition of enterovirus 71 replication by short hairpin RNAs. Biochem Biophys Res Commun, 2004. 325(2): p. 494-9.
69. Tan, E.L., et al., Inhibition of enterovirus 71 in virus-infected mice by RNA interference. Mol Ther, 2007. 15(11): p. 1931-8.
70. Merl, S. and R. Wessely, Anti-coxsackieviral efficacy of RNA interference is highly dependent on genomic target selection and emergence of escape mutants. Oligonucleotides, 2007. 17(1): p. 44-53.
71. Liu, M.L., et al., Type I interferons protect mice against enterovirus 71 infection. J Gen Virol, 2005. 86(Pt 12): p. 3263-9.
72. Yi, L., et al., Potent inhibition of human enterovirus 71 replication by type I interferon subtypes. Antivir Ther, 2011. 16(1): p. 51-8.
73. Lei, X., et al., Cleavage of the adaptor protein TRIF by enterovirus 71 3C inhibits antiviral responses mediated by Toll-like receptor 3. J Virol, 2011. 85(17): p. 8811-8.
74. Lei, X., et al., The 3C protein of enterovirus 71 inhibits retinoid acid-inducible gene I-mediated interferon regulatory factor 3 activation and type I interferon responses. J Virol, 2010. 84(16): p. 8051-61.
75. Lei, X., et al., Cleavage of interferon regulatory factor 7 by enterovirus 71 3C suppresses cellular responses. J Virol, 2013. 87(3): p. 1690-8.
76. Lu, J., et al., Enterovirus 71 disrupts interferon signaling by reducing the level of interferon receptor 1. J Virol, 2012. 86(7): p. 3767-76.
77. Kota, S., et al., A time-resolved fluorescence-resonance energy transfer assay for identifying inhibitors of hepatitis C virus core dimerization. Assay Drug Dev Technol, 2010. 8(1): p. 96-105.
78. Mukherjee, S., et al., Identification and analysis of hepatitis C virus NS3 helicase inhibitors using nucleic acid binding assays. Nucleic Acids Res, 2012. 40(17): p. 8607-21.
79. Kremb, S., et al., EASY-HIT: HIV full-replication technology for broad discovery of multiple classes of HIV inhibitors. Antimicrob Agents Chemother, 2010. 54(12): p. 5257-68.
80. Che, P., L. Wang, and Q. Li, The development, optimization and validation of an assay for high throughput antiviral drug screening against Dengue virus. Int J Clin Exp Med, 2009. 2(4): p. 363-73.
81. Eidne, K.A., K.M. Kroeger, and A.C. Hanyaloglu, Applications of novel resonance energy transfer techniques to study dynamic hormone receptor interactions in living cells. Trends Endocrinol Metab, 2002. 13(10): p. 415-21.
82. Jares-Erijman, E.A. and T.M. Jovin, FRET imaging. Nat Biotechnol, 2003. 21(11): p. 1387-95.
83. Pollok, B.A. and R. Heim, Using GFP in FRET-based applications. Trends Cell Biol, 1999. 9(2): p. 57-60.
84. Wu, P. and L. Brand, Resonance energy transfer: methods and applications. Anal Biochem, 1994. 218(1): p. 1-13.
85. Tsien, R.Y., B.J. Bacskai, and S.R. Adams, FRET for studying intracellular signalling. Trends Cell Biol, 1993. 3(7): p. 242-5.
86. Demchenko, A.P., The concept of lambda-ratiometry in fluorescence sensing and imaging. J Fluoresc, 2010. 20(5): p. 1099-128.
87. Srikun, D., et al., An ICT-based approach to ratiometric fluorescence imaging of hydrogen peroxide produced in living cells. J Am Chem Soc, 2008. 130(14): p. 4596-7.
88. Hsu, Y.Y., et al., In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair. Biochem Biophys Res Commun, 2007. 353(4): p. 939-45.
89. Byrd, C.M., et al., Novel benzoxazole inhibitor of dengue virus replication that targets the NS3 helicase. Antimicrob Agents Chemother, 2013. 57(4): p. 1902-12.
90. Kaur, P., et al., Inhibition of chikungunya virus replication by harringtonine, a novel antiviral that suppresses viral protein expression. Antimicrob Agents Chemother, 2013. 57(1): p. 155-67.
91. Cencic, R., et al., Blocking eIF4E-eIF4G interaction as a strategy to impair coronavirus replication. J Virol, 2011. 85(13): p. 6381-9.
92. Patel, D.A., et al., High throughput screening for small molecule enhancers of the interferon signaling pathway to drive next-generation antiviral drug discovery. PLoS One, 2012. 7(5): p. e36594.
93. Zhang, J.H., T.D. Chung, and K.R. Oldenburg, A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen, 1999. 4(2): p. 67-73.
94. Chesnokov, V.N. and N.P. Mertvetsov, [The effect of translation inhibitor cycloheximide on expression of mammalian genes]. Biokhimiia, 1990. 55(7): p. 1276-8.
95. Barton, D.J. and J.B. Flanegan, Synchronous replication of poliovirus RNA: initiation of negative-strand RNA synthesis requires the guanidine-inhibited activity of protein 2C. J Virol, 1997. 71(11): p. 8482-9.
96. Bienz, K., et al., Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region. J Virol, 1990. 64(3): p. 1156-63.
97. Caliguiri, L.A. and I. Tamm, Action of guanidine on the replication of poliovirus RNA. Virology, 1968. 35(3): p. 408-17.
98. Bonneau, A.M. and N. Sonenberg, Proteolysis of the p220 component of the cap-binding protein complex is not sufficient for complete inhibition of host cell protein synthesis after poliovirus infection. J Virol, 1987. 61(4): p. 986-91.
99. Joachims, M., P.C. Van Breugel, and R.E. Lloyd, Cleavage of poly(A)-binding protein by enterovirus proteases concurrent with inhibition of translation in vitro. J Virol, 1999. 73(1): p. 718-27.
100. Grollman, A.P., Inhibitors of protein biosynthesis. V. Effects of emetine on protein and nucleic acid biosynthesis in HeLa cells. J Biol Chem, 1968. 243(15): p. 4089-94.
101. Wink, M., Molecular modes of action of cytotoxic alkaloids: from DNA intercalation, spindle poisoning, topoisomerase inhibition to apoptosis and multiple drug resistance. Alkaloids Chem Biol, 2007. 64: p. 1-47.
102. Boon-Unge, K., et al., Emetine regulates the alternative splicing of Bcl-x through a protein phosphatase 1-dependent mechanism. Chem Biol, 2007. 14(12): p. 1386-92.
103. Pan, D., et al., Emetine regulates the alternative splicing of caspase 9 in tumor cells. Oncol Lett, 2011. 2(6): p. 1309-1312.
104. Knight, R., The chemotherapy of amoebiasis. J Antimicrob Chemother, 1980. 6(5): p. 577-93.
105. Panettiere, F. and C.A. Coltman, Jr., Experience with emetine hydrochloride (NSC 33669) as an antitumor agent. Cancer, 1971. 27(4): p. 835-41.
106. Solomon, T., et al., Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis, 2010. 10(11): p. 778-90.
107. Lin, J.Y., et al., Viral and host proteins involved in picornavirus life cycle. J Biomed Sci, 2009. 16: p. 103.
108. Lim, T., et al., Antisense DNA and RNA agents against picornaviruses. Front Biosci, 2008. 13: p. 4707-25.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊