跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 04:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇素慧
研究生(外文):Su-Hui Su
論文名稱:維生素 E 與辣木葉對炸油惡化小鼠結腸炎病程之影響
論文名稱(外文):Effects of Vitamin E and Moringa leaves on the Symptoms of DSS-induced Colitis in Oxidized Frying Oil fed Mice
指導教授:黃惠玲黃惠玲引用關係王明雄
指導教授(外文):Hui-Ling HuangMing-Shyong Wan
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:營養與保健科技研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:92
中文關鍵詞:結腸炎DSS維生素E炸油辣木葉
外文關鍵詞:Dextran sulfate sodium (DSS)-induced colitis.Moringa leavesVitamin EOxidized frying oil (OFO)
相關次數:
  • 被引用被引用:6
  • 點閱點閱:650
  • 評分評分:
  • 下載下載:87
  • 收藏至我的研究室書目清單書目收藏:0
忙碌生活中,方便快速的飲食成為人們考量的選擇,然而油炸食品充斥其中,研究指出炸油會降低體內維生素 E 含量,並顯著惡化 DSS (dextran sulfate sodium) 誘發結腸炎病程發展,有研究顯示辣木具有抗氧化功能。因此本研究目的在於探討補充維生素 E 與辣木葉對炸油惡化小鼠結腸炎病程之影響。
採用 7 週齡 C57BL/6 品系雌鼠 40 隻,體重 19.9 ± 0.7 克,隨機分成四組,包括控制組 (15% 新鮮油, C)、炸油組 (15% 炸油, O)、炸油加維生素 E 組 (15% 炸油 + 維生素 E, OE)、炸油加辣木組 (15% 炸油 + 6% moringa leaves, OM),實驗全程供應 AIN-93G 基礎飼料,令其自由攝取 (ad libitum)。飼養 6 週後於飲用水中添加 2% DSS (w/v),誘發腸道發炎,並計算疾病活動指數 (disease activity index, DAI),連續 5 天後換成去離子水 2 天後犧牲,取血液、肝臟與大腸,分析脂質過氧化指標 TBARS、抗氧化分子、酵素活性與 mRNA 基因表現。
結果顯示 O、OE、OM 組的 DAI 指數從第 4 天開始顯著高於 C 組,表示餵食炸油有惡化 DSS 誘發結腸炎,其中的第四天 DAI 指數 OM 組顯著低於 O 組;炸油餵食小鼠的血清發炎指標 Haptoglobin (Hp) 與 TNF-α 顯著升高。OE 組的 α-生育醇與 α-生育醇/Triglyceride (TG) 比例均顯著高於 C組。在大腸方面,OE 組的 TBARS 顯著低於 O 組;O 組的GR、GPx、GST 活性,CAT、GST mRNA均顯著高於 C 組,推測小鼠提高大腸之 GPx、GST 活性用以代謝脂質過氧化物、增加解毒作用,以提高結腸的保護力。炸油餵食有降低大腸 Nrf2 mRNA 含量的趨勢,O 組的 COX2 mRNA 含量顯著高於 C 組;OE 組的 NF-κB 和 COX2 mRNA 含量顯著低於 O 組;OM 組的 COX2、iNOS 和 NOX1 mRNA 含量顯著低於 O 組,可得知補充維生素 E 與辣木葉有助於降低 NF-κB 下游發炎基因之表現。肝臟方面,炸油餵食顯著升高 TBARS,但 OM 組顯著低於 O 組;餵食炸油顯著增加 CAT 抗氧化酵素活性,O 組中可看到 SOD 活性顯著下降、CAT活性顯著增加。SOD mRNA 受炸油影響有增加的趨勢,添加辣木葉會顯著增加 SOD及 PPARγ mRNA 表現。在肝臟與結腸,O 組的 α-生育醇顯著低於 C 組,而 OE、OM 組均顯著高於 O 組,因此添加維生素E與辣木葉可顯著提升組織中維生素E含量。結論:炸油可能藉由增加氧化損傷與發炎反應惡化腸炎病程,補充10倍的維生素E能有效提升體內維生素E含量,並減少脂質過氧化物之生成,但對炸油惡化腸炎病程進展無顯著緩和效應,推測維生素 E 營養狀況不良可能不是炸油惡化病程的主因;而補充辣木葉能提升大腸和肝臟中維生素E含量,並減少脂質過氧化物之生成,增加大腸抗氧化與外來物代謝作用,有緩和腸炎病程現象,推測可能與降低促發炎轉錄因子 NF-κB 活化有關。
Oxidized frying oil (OFO) diet has been reported to induce an increase in lipid per-oxidation and a reduction in vitamin E status in animal tissues. Our preliminary results showed that OFO-fed mice were more susceptible to DSS (dextran sulfate sodium)-induced colitis. We chose vitamin E and moringa leaves to test the ameliorative effects about deleterious process induced by OFO. The purpose of this study was to investigate the effects of vitamin E and moringa leaves supplementations on the symptoms of DSS-induced colitis in OFO-fed mice.
Forty of female 7-weeks-old C57BL/6 mice (19.9 ± 0.7 g) were randomly divided into 4 groups, including a control group (15% fresh soybean oil, C), O group (15% OFO), OE group (15% OFO + vitamin E) and OM group (15% OFO + 6% Moringa leaves). After 6 wks-feeding period, all mice were induced acute colitis by adding 2% DSS (w/v) in their drinking water for 5 days. On day 7 after receiving 2% DSS, all mice were killed, then collected blood, colon and liver. Clinical symptoms and the disease activity index (DAI) were recorded daily during acute colitis.
In OFO-fed mice, the DAI were significantly increased from day 4. The serum haptoglobin (Hp) and tumor necrosis factor alpha (TNF-α) were significantly increased in OFO-fed mice. Serum α-tocopherol and α-tocopherol/TG were significantly increased in the OE group than in the C group. In the results of colon, TBARS in OE group were significantly lower than O group; the activities of GR, GPx, GST and the mRNA abundances of CAT, GST in O group were significantly higher than the C group. The NF-κB and COX2 mRNA expression were significantly lower in the OE group than in the O group. The mRNA abundances of COX2, iNOS and NOX1 were significantly lower in the OM group than in the O group. Both of vitamin E and moringa leaves supplementations tended to reduce the NF-κB and inflammatory associated genes expression. In the results of liver, TBARS were significantly increased in OFO-fed mice. CAT activities were significantly increased; SOD activities were significantly lower in OFO-fed mice. Supplementation of moringa leaves had an significant increase in the mRNA abundances of SOD and PPARγ. In both of liver and colon, α-tocopherol were significantly lower in the O group than in the C group, but OE and OM groups had an significant increase in α-tocopherol contents compared with O group.
In conclusion, OFO-fed mice may tend to increase oxidative stress and inflammatory status with deterioration the progression of acute colitis. We suggested that poor vitamin E status is not the main reason to worse DSS-induced colitis in OFO-fed mice. Vitamin E and moringa leaves supplementations not only significantly increased the vitamin E content but also significantly reduced the TBARS contents. However, moringa leaves had DAI-lowered effect. We speculated that moringa leaves may have specifically effects on the balance of NF-κB and other transcription factors.
中文摘要..................................................I
英文摘要................................................III
目錄......................................................V
表目錄..................................................VII
圖目錄.................................................VIII
縮寫表...................................................IX

第一章 緒言...............................................1
第一節 前言.............................................1
第二節 文獻回顧.........................................2
一、腸炎盛行率與腸癌相關性............................2
二、誘導發炎性腸道疾病之動物模式......................3
三、飲食因子:炸油....................................3
四、轉錄因子 Nrf2、NF-B 與腸炎......................5
五、維生素 E、辣木與結腸炎之關係.....................10

第二章 材料與方法........................................13
第一節 研究假說與設計..................................13
第二節 飼料組成及製備..................................16
一、炸油製備.........................................16
二、試驗飼料的配製...................................17
三、辣木葉乾燥粉末...................................18

第三節 動物飼養和犧牲..................................19
一、動物飼養.........................................19
二、動物犧牲.........................................19

第四節 分析項目與方法..................................21
一、油脂品質分析.....................................21
二、血清分析.........................................22
三、組織分析.........................................29
四、統計分析.........................................46

第三章 實驗結果..........................................47
第四章 討論..............................................53
第五章 結論..............................................62

參考文獻.................................................64
附表.....................................................75
附圖.....................................................85
1. 劉珍芳。炸油餵食對老鼠體內維生素 E 代謝的影響。國立台灣大學農業化學系博士論文。1993。
2. 張廉筠。飲食炸油對小鼠腎臟抗氧化狀況與組織損傷之影響。嘉南藥理科技大學營養與保健科技研究所碩士論文。2009。
3. 王正一。慢性潰瘍性結腸炎在台灣的發生概況。台灣發炎性腸道疾病病友會 http://www.ibdpg.tw/health.php。2009。
4. Itzkowitz SH, Yio X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol. 2004;287:G7–17.
5. Boismenu R and Chen Y. Insights from mouse models of colitis. J Leukoc Biol. 2000;67: 267–278.
6. Melgar S, Karlsson A, Michaelsson E. Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation. Am J Physiol Gastrointest Liver Physiol. 2005 Jun; 288(6):G1328-38. Epub 2005 Jan 6.
7. Melgar S, Bjursell M, Gerdin AK, Svensson L, Micha?sson E, Bohlooly-Y M. Mice with experimental colitis show an altered metabolism with decreased metabolic rate. Am J Physiol Gastrointest Liver Physiol. 2007 Jan;292(1):G165-72. Epub 2006 Jul 13.
8. Clapper ML, Cooper HS, Chang WC. Dextran sulfate sodium-induced colitis-associated neoplasia: a promising model for the development of chemopreventive interventions. Acta Pharmacol Sin. 2007;28(9):1450-9.
9. Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98(3):694-702.
10. White PJ. 1991. Methods for measuring changes in deep-fat frying oils. Food Technology 45:75.
11. 趙蓓敏。氧化炸油活化 PPAR之探討。國立台灣大學農業化學研究所博士論文。2002。
12. Liao CH, Shaw HM, Chao PM. Impairment of glucose metabolism in mice induced by dietary oxidized frying oil is different from that induced by conjugated linoleic acid. Nutrition. 2008;24(7-8):744-52.
13. Chen YY, Liu JF, Chen CM, Chao PY, Chang TJ. A study of the antioxidative and antimutagenic effects of Houttuynia cordata Thunb. using an oxidized frying oil-fed model. J Nutr Sci Vitaminol (Tokyo). 2003;49(5):327-333.
14. Izaki Y, Yoshikawa S, Uchiyama M. Effect of ingestion of thermally oxidized frying oil on peroxidative criteria in rats. Lipids. 1984;19(5):324-331.
15. Liu JF, Huang CJ. Tissue alpha-tocopherol retention in male rats is compromised by feeding diets containing oxidized frying oil. J Nutr. 1995; 125(12):3071-80.
16. Liu JF, Huang CJ. Dietary oxidized frying oil enhances tissue alpha-tocopherol depletion and radioisotope tracer excretion in vitamin E-deficient rats. HJ Nutr.H 1996 Sep;126(9):2227-35.
17. Totani N, Ojiri Y. Mild ingestion of used frying oil damages hepatic and renal cells in Wistar rats. J Oleo Sci. 2007;56(5):261-267.
18. 鄭瑋宜。飲食炸油對鈉鉀平衡及前列腺素合成之影響。國立台灣大學農業化學研究所碩士論文。2001。
19. 湯雅理。飲食炸油與腎臟前列腺素 E2合成。國立台灣大學農業化學系博士論文。2000。
20. Huang CJ. Effects of deteriorated frying oil and dietary protein levels on liver microsomal enzymes in rats. JAOCS. 1988;65(11):1796-1803.
21. Sulzle A, Hirche F, Eder K. Thermally oxidized dietary fat upregulates the expression of target genes of PPAR alpha in rat liver. J Nutr. 2004; 134(6) : 1375-1383.
22. Totani N, Ojiri Y. Thermal deterioration of oil and frying foodstuffs. J Oleo Sci. 2007;56(10):543-551.
23. 黃惠玲。膳食油脂與 clofibrate 改變大鼠鐵代謝及其相關蛋白質表現.國立台灣大學農業化學研究所博士論文。2001。
24. Narasimhamurthy K, Raina PL. Long term feeding effects of heated and fried oils on lipids and lipoproteins in rats. Mol Cell Biochem. 1999; 195(1-2) : 143-153.
25. Braun S, Hanselmann C, Gassmann MG, et al. Nrf2 transcription factor, a novel target of keratinocyte growth factor action which regulates gene expression and inflammation in the healing skin wound. Mol Cell Biol. 2002 Aug; 22(15):5492-5505.
26. Li W, Kong AN. Molecular mechanisms of Nrf2-mediated antioxidant response. Mol. Carcinog. 2009;48 (2): 91–104.
27. Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem. 2009;284 (20): 13291–13295.
28. Surh YJ, Na HK. NF-kappaB and Nrf2 as prime molecular targets for chemoprevention and cytoprotection with anti-inflammatory and antioxidant phytochemicals. Genes Nutr. 2008 Feb;2(4):313-317.
29. Itoh K, Wakabayashi N, Katoh Y, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999;13 (1): 76–86.
30. Jaiswal AK. Antioxidant response element. Biochem Pharmacol. 1994 Aug 3;48(3):439-444.
31. Zhu H, Zhang L, Amin AR, Li Y. Coordinated upregulation of a series of endogenous antioxidants and phase 2 enzymes as a novel strategy for protecting renal tubular cells from oxidative and electrophilic stress. Exp Biol Med. (Maywood). 2008;233(6):753-765.
32. Itoh K, Chiba T, Takahashi S, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997; 236(2): 313-322.
33. Li W, Khor TO, Xu C, et al. Activation of Nrf2-antioxidant signaling attenuates NF-kappa B-inflammatory response and elicits apoptosis. Biochem Pharmacol. 2008;76(11):1485-1489.
34. Osburn WO, Karim B, Dolan PM, et al. Increased colonic inflammatory injury and formation of aberrant crypt foci in Nrf2-deficient mice upon dextran sulfate treatment. Int J Cancer. 2007;121(9):1883-1891.
35. Khor TO, Huang MT, Kwon KH, Chan JY, Reddy BS, Kong AN. Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis. Cancer Res. 2006;66 (24):11580-11584.
36. Chan K, Kan YW. Nrf2 is essential for protection against acute pulmonary injury in mice. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12731-6.
37. Enomoto A, Itoh K, Nagayoshi E, et al. High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes. Toxicol Sci. 2001 Jan;59(1):169-177.
38. McMahon M, Itoh K, Yamamoto M, et al. The Cap''n''Collar basic leucine zipper transcription factor Nrf2 (NF-E2 p45-related factor 2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes. Cancer Res. 2001; 61(8): 3299-3307.
39. Ramos-Gomez M, Kwak MK, Dolan PM, et al. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in Nrf2 transcription factor-deficient mice. Proc Natl Acad Sci USA. 2001; 98(6): 3410-3415.
40. HSzeto FLH, HSun JH, HKong J,H et al. Involvement of the vitamin D receptor in the regulation of NF-kappaB activity in fibroblasts. HJ Steroid Biochem Mol Biol.H 2007 Mar;103(3-5):563-6.
41. Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene. 2006;25 (51): 6680–6684.
42. Nelson DE, Ihekwaba AE, Elliott M, et al. Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science 2004;306 (5696): 704–708.
43. Brasier AR. The NF-κB regulatory network. Cardiovasc. Toxicol. 2006; 6 (2): 111–130.
44. Perkins ND. Integrating cell-signalling pathways with NF-κB and IKK function. Nat. Rev. Mol. Cell Biol. 2007; 8 (1): 49–62.
45. Yanai A, Maeda S, Shibata W, et al. Activation of IkappaB kinase and NF-kappaB is essential for Helicobacter pylori-induced chronic gastritis in Mongolian gerbils. Infect Immun. 2008 Feb;76(2):781-7. Epub 2007 Dec 10.
46. Janssen-Heininger YM, Poynter ME, Aesif SW, et al. Nuclear factor kappaB, airway epithelium, and asthma: avenues for redox control. Proc Am Thorac Soc. 2009 May 1;6(3):249-55.
47. 謝文亮、陳瑞瑩、黃莉蓉。NF-B 訊息傳遞抑制劑之治療潛力。台灣醫學。2003;7(1)。
48. Albensi BC, Mattson MP. Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity. Synapse. 2000; 35 (2): 151–159.
49. 葉獻詞、吳正祥。蛋白?§珧囧? 2、NF-B 在潰瘍性結腸炎腸黏膜的表達及其與肥大細胞相關性研究。胃腸病學和肝病學雜誌。2009 Feb;138-141。
50. 劉元山、陳劍群、朱炳喜。細胞因數表達與 NF-κB 活化在潰瘍性結腸炎發病中的意義。徐州醫學院學報。2009;553-556。
51. Marrero JA, Matkowskyj KA, Yung K, Hecht G, Benya RV. Dextran sulphate sodium-induced murine colitis activates NF-kappaB and increases galanin-1 receptor expression. Am J Physiol Gastrointest Liver Physiol. 2000; 278:G797-804.
52. Rojas-Cartagena C, Flores I, Appleyard CB. Role of tumor necrosis factor receptors in an animal model of acute colitis. Cytokine. 2005;32: 85–93.
53. Kinoshita K, Hori M, Fujisawa M, et al. Role of TNF-alpha in muscularis inflammation and motility disorder in a TNBS-induced colitis model: clues from TNF-alpha-deficient mice. Neurogastroenterol Motil. 2006;18(7): 578–588.
54. Kurtovic J, Segal I. Recent advances in biological therapy for inflammatory bowel disease. Trop Gastroenterol. 2004;25(1): 9–14.
55. Packer L, Weber SU, Rimbach G. Molecular aspects of alpha-tocotrienol antioxidant action and cell signalling. J Nutr. 2001 Feb;131(2):369S-73S.
56. National Institute of Health. Vitamin E Fact Sheet. 2009. http://ods.od.nih.gov/factsheets/VitaminE.asp.
57. Herrera; Barbas, C. Vitamin E: action, metabolism and perspectives. Journal of physiology and biochemistry.2001; 57 (2): 43–56.
58. Traber; Atkinson, J. Vitamin E, antioxidant and nothing more. Free radical biology & Medicine. 2007; 43 (1): 4–15.
59. Brigelius-Flohe, Regina; Traber, M. Vitamin E: function and metabolism. The FASEB Journal. 1999; 13 (10): 1145. http://www.fasebj.org/cgi/content/short/13/10/1145.
60. Fernandez-Banares F, Abad-Lacruz A, Xiol X, et al. Vitamin status in patients with inflammatory bowel disease. HAm J Gastroenterol.H 1989 Jul;84(7):744-8.
61. Bousvaros A, Zurakowski D, Duggan C, et al. Vitamins A and E serum levels in children and young adults with inflammatory bowel disease: effect of disease activity. J. Pediatr. Gastroenterol. Nutr. 1998; 26: 129–135.
62. Buffinton GD and Doe WF. Depleted mucosal antioxidant defenses in inflammatory bowel disease. Free Radic. Biol. Med. 1995; 19: 911–918.
63. Suzuki YJ and Packer L. Inhibition of NF-kappaB activation by vitamin E derivatives. Biochem. Biophys. Res. Commun. 1993; 193(1): 277–283.
64. Suzuki YJ and Packer L. Inhibition of NF-kappa B DNA binding activity by -tocopheryl succinate. Biochem. Mol. Biol. Int. 1993; 31(4): 693–700.
65. Blackwell TS, Blackwell TR, Holden EP, Christman BW, Christman JW. In vivo antioxidant treatment suppresses nuclear factor-kappa B activation and neutrophilic lung inflammation. J Immunol. 1996; 157: 1630-1637
66. Naraghi M, Deroee AF, Ebrahimkhani M, Kiani S, Dehpour A. Nitric oxide: a new concept in chronic sinusitis pathogenesis. Am J Otolaryngol. 2007; 28(5): 334-337
67. Sato K, Kanazawa A, Ota N, Nakamura T, Fujimoto K. Dietary supplementation of catechins and -tocopherol accelerate healing of trinitrobenzene sulfonic acid-induced ulcerative colitis. J. Nutr. Sci. Vitaminol. 1998; 44: 769–778.
68. Ademoglu E, Erbil Y, Tam B, et al. Do vitamin E and selenium have beneficial effects on trinitrobenzenesulfonic acid-induced experimental colitis. Dig Dis Sci. 2004; 49(1): 102-108
69. 陳惠民。植物中的鑽石-高經濟價值的辣木。商周出版。2005。
70. Muyibi SA, Evison LM. Moringa oleifera seeds for softening hardwater. Wat. Res. 1994;29:1099-1105.
71. 陳澤琪。奇蹟之樹-辣木。旗林出版社,台北。2003。
72. 康淑敏。辣木組成分與生理活性之探討。國立台灣海洋大學食品科學系碩士論文。2006。
73. Tarwadi K, Agte V. Potential of commonly consumed green leafy vegetables for their antioxidant capacity and its linkage with the micronutrient profile. Int J Food Sci Nutr. 2003;54(6):417-425.
74. Ross IA. Medicinal Plant of the World: Chemical Constituents, Traditional and Modern Medicinal Uses. Humana Press, Totowa, New Jersey. 1999; 231–239.
75. 段瓊芬、李迅、陳思多、李馬一、安鑫南。辣木營養價值的開發利用。安徽農業科學。2008;36:12670-72。
76. Crawford JM. Robbin’s Pathologic Basis of Disease. New Delhi, India, Saunders. 2003;787-802.
77. V.C. Devaraj, Mohammed Asad, and Satya Prasad. Effect of leaves and fruits of moringa oleifera on gastric and duodenal ulcers. Pharm Biol.2007; 45(4) :332–338
78. Ezeamuzle IC, Ambadederomo AW, Shode FO, Ekwebelem SC. Anti-inflammatory effects of Moringa oleifera root extract. Int J Pharmacogn. 1996;34: 207–212.
79. Limaye DA, Nimbkar AY, Jain R, Ahmad M. Cardiovascular effects of the aqueous extract of Moringa pterygosperma. Phytother Res. 1995;9:37-40.
80. 李宜靜。尿中 -CEHC 對飲食維生素 E 攝取量之反應評估。國立
台灣大學微生物與生化學研究所碩士論文。2004。
81. Tatum VL, Changchit C, Chow CK. Measurement of malondialdehyde by high performance liquid chromatography with fluorescence detection. Lipids. 1990;25:226-229
82. Sedlak J, Lindsay RH. Estimation of total, protein-bound, and non protein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 1968;25:192-205
83. Omaye ST, Turubull JD, Sauberlich HE. Selected methods for the determination of ascorbic acid in animal cells, tissue, and fluids. Method Enzymol. 1979;62:3-11.
84. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-126.
85. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70:158-169.
86. 陳慧琳。大蒜精油及其活性成分—二烯丙基硫化物、二烯丙基二硫化物對大白鼠肝癌形成、血脂質、紅血球GSH及GSH相關代謝酵素活性之影響。中山醫學院營養科學研究所碩士論文。1996。
87. Flohe L, Otting F. Superoxide dismutase assays. Methods Enzymol. 1984;105:93-105.
88. Akcan A, Muhtaroglu S, Akgun H, et al. Ameliorative effects of bombesin and neurotensin on trinitrobenzene sulphonic acid-induced colitis, oxidative damage and apoptosis in rats. World J Gastroenterol. 2008; 14(8): 1222-30.
89. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem.1951;193(1):265-275.
90. 莊榮輝。水稻蔗糖合成?﹞妞膍s。國立台灣大學農業化學研究所博士論文。1985。
91. 黃曉婷。炸油對大鼠腹部脂質堆積、脂肪細胞分化及胰島素敏感性研究。中國醫藥大學營養所碩士論文。2005。
92. 牟宗怡。炸油與維生素E 對卵蛋白致敏 BALB/c 鼠過敏免疫反應之影響。國立台灣大學農業化學研究所碩士論文。1998。
93. 陳美伶。不同飽和程度油脂經油炸處理對老鼠小腸及肝臟維生素 A、維生素 E 及微粒體酵素系統 Cytochrome P-450 的影響。國立台灣大學農業化學研究所碩士論文。1996。
94. Chao PM, Yang MF, Tseng YN, Chang KM, Lu KS, Huang CJ. Peroxisome proliferation in liver of rats fed oxidized frying oil. J Nutr Sci Vitaminol (Tokyo). 2005;51(5):361-368.
95. 戚祖沅。黃豆油含量與炸油攝取對 NZB/W F1 自體免疫鼠病情發展之影響探討。台大農化所碩士論文。1996。
96. Asleh R, Levy AP. In vivo and in vitro studies establishing haptoglobin as a major susceptibility gene for diabetic vascular disease. Vasc Health Risk Manag. 2005; 1 (1): 19–28.
97. Papp M, Lakatos PL, Palatka K, et al. Haptoglobin polymorphisms are associated with Crohn''s disease, disease behavior, and extraintestinal manifestations in Hungarian patients. Dig. Dis. Sci. 2007; 52 (5): 1279–84.
98. Costa-Mallen P, Checkoway H, Zabeti A, et al. The functional polymorphism of the hemoglobin-binding protein haptoglobin influences susceptibility to idiopathic Parkinson''s disease. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008; 147B (2): 216–22.
99. Balkwill F. Tumour necrosis factor and cancer. Nature Reviews Cancer. 2009 May; 9(5):361-71. Epub 2009 Apr 3.
100. Ishiguro Y. Mucosal proinflammarory cytokine production correlates with endoscopic activity of ulcerative colitis. J Gastroenterol. 1999;34(1):66-74.
101. Murch SH, Lamkin VA, Savage MO, Walker-Smith JA, MacDonald TT. Serum concentrations of tumour necrosis factor alpha in childhood chronic inflammatory bowel disease. Gut. 1991 Aug;32(8):913-7.
102. Kliewer SA. The nuclear pregnane X receptor regulates xenobiotic detoxification. J Nutr. 2003;133(7 Suppl):2444S-2447S.
103. 黃玟綺。氧化炸油對大鼠維生素 E 代謝相關蛋白質與基因表現之影響。嘉南藥理科技大學營養與保健科技研究所碩士論文。2008。
104. Burton GW, Joyce A, Ingold KU. Is vitamin E the only lipid-soluble, chain-breaking antioxidant in human blood plasma and erythrocyte membranes? Arch Biochem Biophys. 1983 Feb 15;221(1):281-90.
105. 方素琦。餵食高量維生素E對於 MRL/lpr 自體免疫鼠病情影響之探討。台大農化所碩士論文。1998。
106. Cross RK, Wilson KT. Nitric oxide in inflammatory bowel disease. Inflamm Bowel Dis. 2003;9:179-89.
107. Logan RF. Inflammatory bowel disease incidence: up, down or unchanged? Gut. 1998;42:309-11.
108. Ringseis R, Piwek N, Eder K. Oxidized fat induces oxidative stress but has no effect on NF-kappaB-mediated proinflammatory gene transcription in porcine intestinal epithelial cells. Inflamm Res. 2007;56(3):118-125.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top