|
[1] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials 7 (2008) 845-854. [2] M. Sahoo, S. Ramaprabhu, Effect of wrinkles on electrochemical performance of multiwalled carbon nanotubes as anode material for Li ion battery, Journal of the Electrochemical Society 186 (2015) 142–150. [3] Y. S. Kim, G. Shoorideh, Y. Zhmayev, J. Lee, Z. Li, B. Patel, S. Chakrapani, J. H. Park, S. Lee, Y. L. Joo, The critical contribution of unzipped grapheme nanoribbons to scalable silicon–carbon fiber anodes in rechargeable Li-ion batteries, Nano Energy 16 (2015) 446-457. [4] M. Gattrell, J. Park, B. MacDougall, J. Apte, S. McCarthy and C. W. Wu, Study of the Mechanism of the Vanadium 4+/5+ Redox Reaction in Acidic Solutions, Journal of the Electrochemical Society 151 (2004) 123-130. [5] E. Sum, M. Rychcik, M. Skyllas-kazacos, Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery, Journal of Power Sources 16 (1985) 85-95 [6] M.H. Chakrabarti, N.P. Brandon, S.A. Hajimolana, F. Tariq, V. Yufit, M.A. Hashim, M.A. Hussain, C.T.J. Low, P.V. Aravind, Application of carbon materials in redox flow batteries Journal of Power Sources 253 (2014) 150-166 [7] W. Zhang, J. Xi, Z. Li, H. Zhou, L. Liu, Z. Wu, X. Qiu, Electrochemical activation of graphite felt electrode for VO^(2+)/VO_2^+ redox couple application, Electrochimica Acta 89 (2013) 429-435. [8] G. Oriji, Y. Katayama, T. Miura, Investigations on V(IV)/V(V) and V(II)/V(III) redox reactions by various electrochemical methods, Journal of Power Sources 139 (2005) 321-324. [9] M. Chakrabarti, R. Dryfe, E. Roberts, Evaluation of electrolytes for redox flow battery applications, Electrochimica Acta 52 (2007) 2189-2195. [10] S. Zhong, M. Skyllas-Kazacos, Electrochemical behaviour of vanadium(V)/ vanadium(IV) redox couple at graphite electrodes, Journal of Power Sources 39 (1992) 1-9. [11] Z. Gonza´ lez, C. Botas, P. A´ lvarez, S. Rolda´ n, C. Blanco, R. Santamarı´a, M. Granda, R. Mene´ndez, Thermally reduced graphite oxide as positive electrode in Vanadium Redox Flow Batteries, Carbon 50 (2012) 828–834. [12] J. Ye, H. Zhang, Y. Chen, Z. Cheng, L. Hu, Q. Ran, Supercapacitors based on low-temperature partially exfoliated and reduced graphite oxide, Journal of Power Sources 212 (2012) 105-110. [13] B. Zhao, P. Liu, Y. Jiang, D. Pan, H. Tao, J. Song, T. Fang, W. Xu, Supercapacitor performances of thermally reduced graphene oxide, Journal of Power Sources 198 (2012) 423-427. [14] X. Wu, H. Xu, Y. Shen, P. Xu, L. Lu, J. Fu, H. Zhao, Treatment of graphite felt by modified Hummers method for thepositive electrode of vanadium redox flow battery, Electrochimica Acta 138 (2014) 264-269. [15] B. Sun, M. Skyllas-Kazacos, Chemical Modification of Graphite Electrode Materials for Vanadium Redox Flow Battery-II. Acid Treatment, Electrochimica Acta 37 (1992) 2459-2465. [16] L. Yue, W. Li, F. Sun, L. Zhao, L. Xing, Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery, Carbon 48 (2010) 3079-3090. [17] X.G. Li, K.L. Huang, S.Q. Liu, N. Tan, L.Q. Chen, Characteristics of graphite felt electrode electrochemically oxidized for vanadium redox battery application, Transactions of Nonferrous Metals Society of China 17 (2007) 195-199. [18] B. Sun, M. Skyllas-Kazakos, Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution, Electrochimica Acta 36 (1991) 513-517. [19] X. Li, K. Horita, Electrochemical characterization of carbon black subjected to RF oxygen plasma, Carbon 38 (2000) 133-138. [20] C. Yao, H. Zhang, T. Liu, X. Li, Z. Liu, Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery, Journal of Power Sources 218 (2012) 455-461. [21] W.H. Wang, X.D. Wang, Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery, Electrochimica Acta 52 (2007) 6755-6762. [22] B. Li, M. Gu, Z. Nie, Y. Shao, Q. Luo, X. Wei, X. Li, J. Xiao, C. Wang, V. Sprenkle, W. Wang, Bismuth Nanoparticle Decorating Graphite Felt as a High- Performance Electrode for an All-Vanadium Redox Flow Battery, Nano Lett. 13 (2013) 1330−1335 [23] P. Zhao, H. M. Zhang, H. T. Zhou, B. L. Yi, Study on negative electrode materials for sodium polysulfide/bromine redox energy storage battery, Chemical research 16 (2005) 49-51. [24] Z. González, A. Sánchez, C. Blanco, M. Granda, R. Menéndez, R. Santamaría, Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery, Electrochemistry Communications 13 (2011) 1379-1382. [25] W. H. Wang, F. Q. Xue, X. D. Wang, Electrocatalytic activity of Ir-modified carbon felt for VO^(2+)/VO_2^+ redox reaction, Chinese Journal of materials research 21 (2007) 542-546.
[26] M.M.E. Duarte, A.S. Pilla, C.E. Mayer, Electro-oxidation of Mn(II) to MnO2 on graphite fibre electrodes, Journal of Applied Electrochemistry 33 (2003) 387-392 [27] Y. Shen, H. Xu, P. Xu, X. Wu, Y. Dong, L. Lu, Electrochemical catalytic activity of tungsten trioxide- modified graphite felt toward VO^(2+)/VO_2^+ redox reaction, Electrochimica Acta 132 (2014) 37–41. [28] A. C. Affam, M. Chaudhuri, S. R. M. Kutty, K. Muda, UV Fenton and sequencing batch reactor treatment of chlorpyrifos, cypermethrin and chlorothalonil pesticide wastewater, International Biodeterioration & Biodegradation 93(2014) 195-201. [29] Y. Wang, Y. Sun, W. Li, W. Tian, A. Irini, High performance of nanoscaled Fe_2 O_3catalyzing UV-Fenton under neutral condition with a low stoichiometry of H_2 O_2: Kinetic study and mechanism, Chemical Engineering Journal 267 (2015) 1-8. [30] M. S. Çelebi, N. Oturan, H. Zazou, M. Hamdani, M. A. Oturan, Electrochemical oxidation of carbaryl on platinum and boron-doped diamond anodes using electro-Fenton technology, Separation and Purification Technology 156 (2015) 996-1002. [31] M. Sun, N. N. Wu, L. F. Zhai, X. R. Ru, Manipulate an air–cathode fuel cell toward recovering highly active heterogeneous electro-Fenton catalyst from the Fe(II) in acid mine drainage, Minerals Engineering 84 (2015) 1-7. [32] C. Gao, N. F. Wang, S. Peng, S. Q. Liu, Y. Lei , X. X. Liang, S. S. Zeng, H. F. Zi, Influence of Fenton’s reagent treatment on electrochemical properties of graphite felt for all vanadium redox flow battery, Electrochimica Acta 88 (2013) 193– 202 [33] A. B. Kharitonov, L. Alfonta, E. Katz, I. Willner, Probing of bioaffinity interactions at interfaces using impedance spectroscopy and chronopotentiometry, Journal of Electroanalytical Chemistry 487 (2000) 133-141. [34] S. Klinka, E. Madej, E. Ventosa, A. Lindner, W. Schuhmann, F. L. Mantia , The importance of cell geometry for electrochemical impedance spectroscopy in three-electrode lithium ion battery test cells, Electrochemistry Communications 22 (2012) 120-123. [35] C. N. Cao, J. C. JHANG, An introduction to electrochemical impedance spectroscopy, 2002. [36] K. R. Paton, E. Varrla,C. Backes, R. J. Smith, U. Khan, A. O’Neill, C. Boland et al. , Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids, Nature Materials 13 (2014) 624-630. [37] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of XPS, Physical Electronics, Inc. , 1995.
|