跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/09/30 05:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:房家弘
研究生(外文):Jia-Hong Fang
論文名稱:全釩液流電池石墨氈改質之研究
論文名稱(外文):Research on Modification of Graphite Felt of an All Vanadium Redox Flow Battery
指導教授:王行達
指導教授(外文):Shing-Dar Wang
口試委員:陳文照吳成有
口試委員(外文):Wen-Jauh ChenCheng-Yeou Wu
口試日期:2016-01-20
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:材料科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:68
中文關鍵詞:芬頓試劑石墨氈全釩液流電池
外文關鍵詞:Fenton’s reagentgraphite feltall vanadium redox flow battery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:438
  • 評分評分:
  • 下載下載:91
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的在於對石墨氈進行改質,降低其電荷轉移阻抗能增加其作為全釩液流電池的電極時,全釩液流電池的庫倫效率和能量效率。因為碳本身是疏水性,會使得硫酸氧釩電解液不易進入石墨氈內部,電極與電解液接觸面積變小,電荷不易轉移,電荷轉移阻抗就相對的大,電池的庫倫效率與能量效率也會相對變差。本實驗使用芬頓試劑,利用其中的羥基自由基的強氧化性來氧化石墨氈的碳而接上親水基團,如羥基與羧基。添加石墨烯粉末以及提高雙氧水的濃度來增加芬頓試劑的羥基自由基,希望能使石墨氈接上更多的羥基自由基使其活性面積更大。
從XPS分析中得知石墨氈中O-H比例增加,從CV實驗中可以發現釩離子氧化還原反應更容易發生,從EIS實驗中看到阻抗也確實降低,而最重要的電池庫倫效率、能量效率及伏特效率在100 mA/cm^2條件下也從未處理的96.7%、67.3%和69.9%提高到98.5%、75.2%和76.3%。

The graphite felt was used as a part of the electrode of vanadium redox flow battery. The graphite felt was modified to reduce its charge transfer resistance and increases Coulomb efficiency and energy efficiency. Since untreated graphite is hydrophobic, vanadyl sulfate electrolyte is hardly to flow into the graphite electrode. The charge transfer resistance between graphite felt and the electrolyte is very large, and Coulomb efficiency and energy efficiency of the battery is deteriorated. Fenton's reagent was used and the strong oxidation ability of hydroxyl radical (OH •) was utilized to oxidize carbon and hydroxyl and carboxyl groups were bonded. In order to induce larger active surface area on the graphite felt, graphene powder was added and the concentration of hydrogen peroxide was increased to increase the hydroxyl radical concentration of Fenton reagent.
XPS analysis proved that OH group in the graphite felt was increased. Vanadium redox reaction was inclined to take place as proved by CV experiments. The charge transfer resistance was lowered as seen from the EIS experiments. Under condition of 100 mA/cm^2, the Coulomb efficiency, energy efficiency and voltage efficiency of the battery with untreated graphite felt of 96.7%, 67.3% and 69.9% were increased to 98.5%, 75.2% and 76.3% respectively.

摘要
Abstract
目錄
表目錄
圖目錄
第一章 緒論
1-1前言
1-2研究動機與目的
第二章 理論與文獻回顧
2-1全釩液流電池簡介
2-2 石墨氈改質法概述
2-2-1氧化法
2-2-2表面沉積法
2-3芬頓試劑
2-4三極式量測
2-5交流阻抗分析
第三章 實驗方法與步驟
3-1 研究內容
3-2實驗藥品及設備
3-3 實驗步驟
3-4 檢測儀器與方法
第四章 結果與討論
4-1 XPS分析
4-2 循環伏安測試
4-3 EIS分析
4-4 充放電表現
第五章 結論
參考文獻


[1] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials 7
(2008) 845-854.
[2] M. Sahoo, S. Ramaprabhu, Effect of wrinkles on electrochemical performance of
multiwalled carbon nanotubes as anode material for Li ion battery, Journal of the Electrochemical Society 186 (2015) 142–150.
[3] Y. S. Kim, G. Shoorideh, Y. Zhmayev, J. Lee, Z. Li, B. Patel, S. Chakrapani,
J. H. Park, S. Lee, Y. L. Joo, The critical contribution of unzipped grapheme
nanoribbons to scalable silicon–carbon fiber anodes in rechargeable Li-ion
batteries, Nano Energy 16 (2015) 446-457.
[4] M. Gattrell, J. Park, B. MacDougall, J. Apte, S. McCarthy and C. W. Wu, Study of
the Mechanism of the Vanadium 4+/5+ Redox Reaction in Acidic Solutions,
Journal of the Electrochemical Society 151 (2004) 123-130.
[5] E. Sum, M. Rychcik, M. Skyllas-kazacos, Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery, Journal of Power Sources 16 (1985) 85-95
[6] M.H. Chakrabarti, N.P. Brandon, S.A. Hajimolana, F. Tariq, V. Yufit, M.A. Hashim,
M.A. Hussain, C.T.J. Low, P.V. Aravind, Application of carbon materials in redox flow batteries Journal of Power Sources 253 (2014) 150-166
[7] W. Zhang, J. Xi, Z. Li, H. Zhou, L. Liu, Z. Wu, X. Qiu, Electrochemical activation of graphite felt electrode for VO^(2+)/VO_2^+ redox couple application, Electrochimica Acta 89 (2013) 429-435.
[8] G. Oriji, Y. Katayama, T. Miura, Investigations on V(IV)/V(V) and V(II)/V(III)
redox reactions by various electrochemical methods, Journal of Power Sources
139 (2005) 321-324.
[9] M. Chakrabarti, R. Dryfe, E. Roberts, Evaluation of electrolytes for redox flow
battery applications, Electrochimica Acta 52 (2007) 2189-2195.
[10] S. Zhong, M. Skyllas-Kazacos, Electrochemical behaviour of vanadium(V)/
vanadium(IV) redox couple at graphite electrodes, Journal of Power Sources 39 (1992) 1-9.
[11] Z. Gonza´ lez, C. Botas, P. A´ lvarez, S. Rolda´ n, C. Blanco, R. Santamarı´a,
M. Granda, R. Mene´ndez, Thermally reduced graphite oxide as positive electrode
in Vanadium Redox Flow Batteries, Carbon 50 (2012) 828–834.

[12] J. Ye, H. Zhang, Y. Chen, Z. Cheng, L. Hu, Q. Ran, Supercapacitors based on low-temperature partially exfoliated and reduced graphite oxide, Journal of Power Sources 212 (2012) 105-110.
[13] B. Zhao, P. Liu, Y. Jiang, D. Pan, H. Tao, J. Song, T. Fang, W. Xu, Supercapacitor performances of thermally reduced graphene oxide, Journal of Power Sources 198 (2012) 423-427.
[14] X. Wu, H. Xu, Y. Shen, P. Xu, L. Lu, J. Fu, H. Zhao, Treatment of graphite felt by modified Hummers method for thepositive electrode of vanadium redox flow battery, Electrochimica Acta 138 (2014) 264-269.
[15] B. Sun, M. Skyllas-Kazacos, Chemical Modification of Graphite Electrode Materials for Vanadium Redox Flow Battery-II. Acid Treatment,
Electrochimica Acta 37 (1992) 2459-2465.
[16] L. Yue, W. Li, F. Sun, L. Zhao, L. Xing, Highly hydroxylated carbon fibres as
electrode materials of all-vanadium redox flow battery, Carbon 48 (2010)
3079-3090.
[17] X.G. Li, K.L. Huang, S.Q. Liu, N. Tan, L.Q. Chen, Characteristics of graphite felt electrode electrochemically oxidized for vanadium redox battery application,
Transactions of Nonferrous Metals Society of China 17 (2007) 195-199.
[18] B. Sun, M. Skyllas-Kazakos, Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution, Electrochimica Acta 36 (1991) 513-517.
[19] X. Li, K. Horita, Electrochemical characterization of carbon black subjected to RF oxygen plasma, Carbon 38 (2000) 133-138.
[20] C. Yao, H. Zhang, T. Liu, X. Li, Z. Liu, Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery, Journal of Power Sources 218 (2012) 455-461.
[21] W.H. Wang, X.D. Wang, Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery, Electrochimica Acta 52 (2007) 6755-6762.
[22] B. Li, M. Gu, Z. Nie, Y. Shao, Q. Luo, X. Wei, X. Li, J. Xiao, C. Wang, V. Sprenkle, W. Wang, Bismuth Nanoparticle Decorating Graphite Felt as a High-
Performance Electrode for an All-Vanadium Redox Flow Battery, Nano Lett. 13 (2013) 1330−1335
[23] P. Zhao, H. M. Zhang, H. T. Zhou, B. L. Yi, Study on negative electrode materials for sodium polysulfide/bromine redox energy storage battery, Chemical research 16 (2005) 49-51.

[24] Z. González, A. Sánchez, C. Blanco, M. Granda, R. Menéndez, R. Santamaría, Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery, Electrochemistry Communications 13 (2011) 1379-1382.
[25] W. H. Wang, F. Q. Xue, X. D. Wang, Electrocatalytic activity of Ir-modified carbon felt for VO^(2+)/VO_2^+ redox reaction, Chinese Journal of materials research 21 (2007) 542-546.

[26] M.M.E. Duarte, A.S. Pilla, C.E. Mayer, Electro-oxidation of Mn(II) to MnO2 on graphite fibre electrodes, Journal of Applied Electrochemistry 33 (2003) 387-392
[27] Y. Shen, H. Xu, P. Xu, X. Wu, Y. Dong, L. Lu, Electrochemical catalytic activity of tungsten trioxide- modified graphite felt toward VO^(2+)/VO_2^+ redox reaction, Electrochimica Acta 132 (2014) 37–41.
[28] A. C. Affam, M. Chaudhuri, S. R. M. Kutty, K. Muda, UV Fenton and sequencing batch reactor treatment of chlorpyrifos, cypermethrin and chlorothalonil pesticide wastewater, International Biodeterioration & Biodegradation 93(2014) 195-201.
[29] Y. Wang, Y. Sun, W. Li, W. Tian, A. Irini, High performance of nanoscaled Fe_2 O_3catalyzing UV-Fenton under neutral condition with a low stoichiometry of H_2 O_2: Kinetic study and mechanism, Chemical Engineering Journal 267 (2015) 1-8.
[30] M. S. Çelebi, N. Oturan, H. Zazou, M. Hamdani, M. A. Oturan, Electrochemical oxidation of carbaryl on platinum and boron-doped diamond anodes using electro-Fenton technology, Separation and Purification Technology 156 (2015) 996-1002.
[31] M. Sun, N. N. Wu, L. F. Zhai, X. R. Ru, Manipulate an air–cathode fuel cell toward recovering highly active heterogeneous electro-Fenton catalyst from the Fe(II) in acid mine drainage, Minerals Engineering 84 (2015) 1-7.
[32] C. Gao, N. F. Wang, S. Peng, S. Q. Liu, Y. Lei , X. X. Liang, S. S. Zeng, H. F. Zi, Influence of Fenton’s reagent treatment on electrochemical properties of graphite felt for all vanadium redox flow battery, Electrochimica Acta 88 (2013) 193– 202
[33] A. B. Kharitonov, L. Alfonta, E. Katz, I. Willner, Probing of bioaffinity interactions at interfaces using impedance spectroscopy and chronopotentiometry, Journal of Electroanalytical Chemistry 487 (2000) 133-141.
[34] S. Klinka, E. Madej, E. Ventosa, A. Lindner, W. Schuhmann, F. L. Mantia , The importance of cell geometry for electrochemical impedance spectroscopy in three-electrode lithium ion battery test cells, Electrochemistry Communications 22 (2012) 120-123.
[35] C. N. Cao, J. C. JHANG, An introduction to electrochemical impedance spectroscopy, 2002.
[36] K. R. Paton, E. Varrla,C. Backes, R. J. Smith, U. Khan, A. O’Neill, C. Boland et al. , Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids, Nature Materials 13 (2014) 624-630.
[37] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of XPS, Physical Electronics, Inc. , 1995.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top