跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/30 10:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊雅婷
研究生(外文):Ya-Ting Yang
論文名稱:石墨烯於有機太陽能電池電極及電洞傳輸層之應用
論文名稱(外文):Application of Graphene as Electrodes and Hole Transport Layer for Polymer Solar Cells
指導教授:陳俊維陳俊維引用關係
指導教授(外文):Chun-Wei Chen
口試委員:陳學禮吳季珍
口試日期:2012-06-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:76
中文關鍵詞:石墨烯電洞傳輸層電極摻雜
外文關鍵詞:graphenehole transport layerelectrodedope
相關次數:
  • 被引用被引用:0
  • 點閱點閱:635
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究為石墨烯於有機太陽能電池中電極及電洞傳輸層之應用。主要分為三部分。第一部分延續實驗室─石墨烯透明電極於雙面入光倒置結構太陽能電池之應用。製程加入溶劑蒸氣退火處理,以提升兩面的光電轉換效率。
第二部分透過化學摻雜,藉摻雜物與石墨烯之間表面電荷轉移,改變石墨烯功函數和主要傳輸載子。使用了PEI、TiOx、BCP、TPBi做為N-摻雜物, F4-TCNQ為P-摻雜物,並將摻雜之石墨烯作為負極與正極。由實驗結果,知N-摻雜石墨烯作為P3HT系統之有機太陽能電池負極目前仍是個挑戰,而PEI摻雜之石墨烯是效果最佳之負極。
最後一部分,利用石墨烯作為倒置結構之電洞傳輸層。其乾式轉印製程與有機太陽能電池現有溶液製程具有高的相容性。本研究結果顯示,石墨烯除了可作為一般倒置結構之電洞傳輸層;在使用低功函數鋁作為電極時,可將鋁的費米能階固定在石墨烯費米能階附近,克服了鋁電極功函數與光吸收層材料P3HT的HOMO能階不匹配導致效率不彰之狀況。這是需水溶性製程、且強酸性的PEDOT:PSS電洞傳輸層所無法克服的。而使用鋁電極/石墨烯電洞傳輸層元件具優良的光電轉換效率,達2.9%。因此,可用成本較低的鋁電極取代原本成本較高的銀電極。

In this thesis, the graphene was applied as transparent electrodes and the hole transport layer in organic solar cells (OPVs). The first part was the graphene transparent electrode as the top anode of bifacial semitransparent inverted OPVs. Solvent vapor annealing process could enhance power conversion efficiency of both sides. In the second part, by chemical doping of graphene, the surface charge transfer between the dopant and the graphene changed the graphene work function and the majority carrier. The N-dopants PEI, TiOx, BCP, TPBi and P-dopant the F4-TCNQ were used. Furthermore, N-doped and P-doped graphene were applied as cathode and anode respectively. From the experimental results, the N-doped graphene as a cathode of OPVs based on P3HT:PCBM was still a challenge, and PEI-doped graphene was a more effective cathode. The final part was graphene hole transport layer of inverted OPVs. There was high compatibility of dry transfer process of graphene and solution process of OPVs. The results shown that graphene as a hole transport layer of inverted OPVs, not only worked under the general high work function electrode as anode but also worked under low work function aluminum electrode as anode. The aluminum Fermi level was pinned near the graphene Fermi level, which overcame the mismatch of the aluminum electrode work function and light absorption layer material P3HT HOMO energy level that caused low power generation efficiency. And it exhibited a high power conversion efficiency of 2.9%. Therefore, the lower-cost aluminum electrode was available to replace the original high cost of silver electrode.

口試委員會審定書 #
誌謝 I
中文摘要 III
ABSTRACT IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池簡介 2
1.3 有機太陽能電池 4
1.4 混摻異質接面元件 6
1.4.1 一般結構 6
1.4.2 倒置結構 6
1.4.3 光主動層 7
1.4.4 電子傳輸層 8
1.4.5 電洞傳輸層 9
1.4.6 電極 9
1.5 石墨烯 12
1.6 石墨烯在有機太陽能電池上的運用 14
1.7 研究動機 15
1.8 參考文獻 16
第二章 實驗設備 20
2.1 A M 1.5太陽光譜 20
2.2 外部量子效率(EQE) 22
2.3 片電阻量測 23
2.4 霍爾量測(Hall measurement) 26
第三章 石墨烯於《雙面入光倒置有機太陽能電池》上電極(正極)之應用 28
3.1 石墨烯透明電極 28
3.1.1 石墨烯於銅箔之合成方法 28
3.2 石墨烯電極光學性質及電性 30
3.3 雙面透光半透明倒置結構有機太陽能電池 33
3.3.1 元件製作 33
3.3.2 元件特性 37
3.3.3 溶劑蒸氣退火處理 38
3.4 參考文獻 41
第四章 石墨烯N-摻雜與P-摻雜的應用 43
4.1 石墨烯化學摻雜原理 43
4.2 N摻雜石墨烯於一般結構太陽能電池負極(上電極)之應用 45
4.2.1 PEI摻雜石墨烯於負極之應用 45
4.2.2 TPBi、BCP摻雜石墨烯於負極之應用 48
4.2.3 TiOx摻雜石墨烯於負極之應用 50
4.3 P摻雜石墨烯於雙面入光倒置結構正極(上電極)之應用 52
4.4 結論 55
4.5 參考文獻 56
第五章 石墨烯於有機太陽能電池中電洞傳輸層的應用 59
5.1 電洞傳輸層材料 59
5.2 乾式轉印法製備石墨烯電洞傳輸層 60
5.3 石墨烯電洞傳輸層於銀電極倒置元件中的應用 62
5.3.1 元件製備 62
5.3.2 元件效率分析 62
5.4 石墨烯電洞傳輸層於鋁電極倒置元件中的應用 65
5.4.1 鋁電極倒置元件的效率分析 65
5.4.2 載子再結合速率分析 69
5.5 石墨烯電洞傳輸層的層數與元件表現 71
5.6 結論 73
5.7 參考文獻 74
第六章 總結與未來展望 75

1.Solar cell efficiency tables (version 39)
2.National Renewable Energy Laboratory
3.M. Pope, C. E. Swenberg, Electronic Processes in organic crystals and polymers, 2nd ed., Oxford University Press, New York 1999
4.S. Barth, H Bassler, Phys. Rev. Lett. 1997 79 4445
5.P. G. Dacosta, E.M. Conwell, phys. Rev. B 1993, 48.
6.Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J., Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Advanced Functional Materials 2005, 15 (10), 1617-1622.
7.Li, G.; Yao, Y.; Yang, H.; Shrotriya, V.; Yang, G.; Yang, Y., “Solvent Annealing” Effect in Polymer Solar Cells Based on Poly(3-hexylthiophene) and Methanofullerenes. Advanced Functional Materials 2007, 17 (10), 1636-1644.
8.C. Lin, Y. Lin, S. Li, C. Yu, C. Huabg, S. Lee, C. Du, J. Lee, H. Chen and CC Chen, Energy environment science 4,2134-2139, 2011
9. Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T.-Q.; Dante, M.; Heeger, A. J., Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing. Science 2007, 317 (5835), 222-225.
10. Sista, S.; Park, M.-H.; Hong, Z.; Wu, Y.; Hou, J.; Kwan, W. L.; Li, G.; Yang, Y., Highly Efficient Tandem Polymer Photovoltaic Cells. Advanced Materials 2010, 22 (3), 380-383.
11.Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P., Hybrid Nanorod-Polymer Solar Cells. Science 2002, 295 (5564), 2425-2427.
12.Chang, C.-H.; Huang, T.-K.; Lin, Y.-T.; Lin, Y.-Y.; Chen, C.-W.; Chu, T.-H.; Su, W.-F., Improved charge separation and transport efficiency in poly(3-hexylthiophene)-TiO2 nanorod bulk heterojunction solar cells. Journal of Materials Chemistry 2008, 18 (19), 2201-2207.
13.Huang, J.; Li, G.; Yang, Y., A Semi-transparent Plastic Solar Cell Fabricated by a Lamination Process. Advanced Materials 2008, 20 (3), 415-419.
14.Irwin, M. D.; Buchholz, D. B.; Hains, A. W.; Chang, R. P. H.; Marks, T. J., p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proceedings of the National Academy of Sciences 2008, 105 (8), 2783-2787.
15.Shrotriya, V.; Li, G.; Yao, Y.; Chu, C.-W.; Yang, Y., Transition metal oxides as the buffer layer for polymer photovoltaic cells. Applied Physics Letters 2006, 88 (7), 073508.
16.Girotto, C.; Voroshazi, E.; Cheyns, D.; Heremans, P.; Rand, B. P., Solution-Processed MoO3 Thin Films As a Hole-Injection Layer for Organic Solar Cells. ACS Applied Materials & Interfaces 2011, 3 (9), 3244-3247.
17.Li, S.-S.; Tu, K.-H.; Lin, C.-C.; Chen, C.-W.; Chhowalla, M., Solution-Processable Graphene Oxide as an Efficient Hole Transport Layer in Polymer Solar Cells. ACS Nano 2010, 4 (6), 3169-3174.
18.Tomita, Y.; May, C.; Toerker, M.; Amelung, J.; Eritt, M.; Loeffler, F.; Luber, C.; Leo, K.; Walzer, K.; Fehse, K.; Huang, Q., Highly efficient p-i-n-type organic light emitting diodes on ZnO:Al substrates. Applied Physics Letters 2007, 91 (6), 063510-063510-3.
19.Tu, K.-H.; Li, S.-S.; Li, W.-C.; Wang, D.-Y.; Yang, J.-R.; Chen, C.-W., Solution processable nanocarbon platform for polymer solar cells. Energy & Environmental Science 2011, 4 (9), 3521-3526.
20.Lee, Y.-Y.; Tu, K.-H.; Yu, C.-C.; Li, S.-S.; Hwang, J.-Y.; Lin, C.-C.; Chen, K.-H.; Chen, L.-C.; Chen, H.-L.; Chen, C.-W., Top Laminated Graphene Electrode in a Semitransparent Polymer Solar Cell by Simultaneous Thermal Annealing/Releasing Method. ACS Nano 2011, 5 (8), 6564-6570.
21.Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A., Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438 (7065), 197-200.
22.P. Avouris, Z. Chen, V. Perebeinos, Nat. Nanotechnol. 2007, 2,605
23.Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat Mater 2007, 6 (3), 183-191.
24.Charlier, J.-C.; Eklund, P.C.; Zhu, J. and Ferrari, A.C.. Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes. from Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, Ed. A. Jorio, G. Dresselhaus, and M.S. Dresselhaus. Berlin/Heidelberg: Springer-Verlag. 2008.
25.Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A., Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438 (7065), 197-200.
26.Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K., Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Physical Review Letters 2008, 100 (1), 016602.
27.Chen, J.-H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S., Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nano 2008, 3 (4), 206-209.
28.Physicists Show Electrons Can Travel More Than 100 Times Faster in Graphene,
University of Maryland
29.Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S., Detection of individual gas molecules adsorbed on graphene. Nat Mater 2007, 6 (9), 652-655.
30.Adam, S. et al.. A self-consistent theory for graphene transport (free-download pdf). Proc. Nat. Acad. Sci. USA. 2007, 104 (47): 18392
31.Wikipedia
32.Wang, Y.; Tong, S. W.; Xu, X. F.; Ozyilmaz, B.; Loh, K. P., Interface Engineering of Layer-by-Layer Stacked Graphene Anodes for High-Performance Organic Solar Cells. Advanced Materials 2011, 23 (13), 1514-1518.
33.Liu, Z.; Liu, Q.; Huang, Y.; Ma, Y.; Yin, S.; Zhang, X.; Sun, W.; Chen, Y., Organic Photovoltaic Devices Based on a Novel Acceptor Material: Graphene. Advanced Materials 2008, 20 (20), 3924-3930.
34.Valentini, L.; Cardinali, M.; Bittolo Bon, S.; Bagnis, D.; Verdejo, R.; Lopez-Manchado, M. A.; Kenny, J. M., Use of butylamine modified graphene sheets in polymer solar cells. Journal of Materials Chemistry 2010, 20 (5), 995-1000.
35.Lee, Y.-Y.; Tu, K.-H.; Yu, C.-C.; Li, S.-S.; Hwang, J.-Y.; Lin, C.-C.; Chen, K.-H.; Chen, L.-C.; Chen, H.-L.; Chen, C.-W., Top Laminated Graphene Electrode in a Semitransparent Polymer Solar Cell by Simultaneous Thermal Annealing/Releasing Method. ACS Nano 2011, 5 (8), 6564-6570.
36.Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324 (5932), 1312-1314.
37.Unidirectional arrays of vertically standing graphenes in reactive plasmas. Nanoscale 2011, 3 (10), 4296.
38.S. Reich and C. Thomsen. "Raman apectroscopy of graphic", Phil. Trans. R. SOc. Lond. A, vol. 362, p. 2271-2288, 2004
39.Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K., Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters 2006, 97 (18), 187401.
40.Hirata, M.; Gotou, T.; Horiuchi, S.; Fujiwara, M.; Ohba, M., Thin-film particles of graphite oxide 1:: High-yield synthesis and flexibility of the particles. Carbon 2004, 42 (14), 2929-2937.
41.Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I.; Kim, Y.-J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J.-H.; Hong, B. H.; Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano 2010, 5 (8), 574-578.
42.Li, G.; Yao, Y.; Yang, H.; Shrotriya, V.; Yang, G.; Yang, Y., “Solvent Annealing” Effect in Polymer Solar Cells Based on Poly(3-hexylthiophene) and Methanofullerenes. Advanced Functional Materials 2007, 17 (10), 1636-1644.
43.Bull, T. A.; Pingree, L. S. C.; Jenekhe, S. A.; Ginger, D. S.; Luscombe, C. K., The Role of Mesoscopic PCBM Crystallites in Solvent Vapor Annealed Copolymer Solar Cells. ACS Nano 2009, 3 (3), 627-636.
44.Ho, P.-H.; Yeh, Y.-C.; Wang, D.-Y.; Li, S.-S.; Chen, H.-A.; Chung, Y.-H.; Lin, C.-C.; Wang, W.-H.; Chen, C.-W., Self-Encapsulated Doping of n-Type Graphene Transistors with Extended Air Stability. ACS Nano 2012.
45.Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat Mater 2007, 6 (3), 183-191.
46.Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M., Charged-impurity scattering in graphene. Nat. Phys. 2008, 4 (5), 377-381.
47.Farmer, D. B.; Golizadeh-Mojarad, R.; Perebeinos, V.; Lin, Y.-M.; Tulevski, G. S.; Tsang, J. C.; Avouris, P., Chemical Doping and Electron−Hole Conduction Asymmetry in Graphene Devices. Nano Lett. 2008, 9 (1), 388-392.
48.Chen, W.; Chen, S.; Qi, D. C.; Gao, X. Y.; Wee, A. T. S., Surface Transfer p-Type Doping of Epitaxial Graphene. J. Am. Chem. Soc. 2007, 129, 10418-10422.
49.Guo, B.; Liu, Q.; Chen, E.; Zhu, H.; Fang, L.; Gong, J. R., Controllable N-Doping of Graphene. Nano Lett. 2010, 10, 4975-4980.
50.Usachov, D.; Vilkov, O.; Gruneis, A.; Haberer, D.; Fedorov, A.; Adamchuk, V. K.; Preobrajenski, A. B.; Dudin, P.; Barinov, A.; Oehzelt, M.; et al. Nitrogen-Doped Graphene: Efficient Growth, Structure, and Electronic Properties. Nano Lett. 2011, 11, 5401-5407.
51.Panchakarla, L. S.; Subrahmanyam, K. S.; Saha, S. K.; Govindaraj, A.; Krishnamurthy, H. R.; Waghmare, U. V.; Rao, C. N. R., Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene. Adv. Mater. 2009, 21 (46), 4726-4730.
52.Mistry, K. S.; Larsen, B. A.; Bergeson, J. D.; Barnes, T. M.; Teeter, G.; Engtrakul, C.; Blackburn, J. L., n-Type Transparent Conducting Films of Small Molecule and Polymer Amine Doped Single-Walled Carbon Nanotubes. ACS Nano 2011, 5 (5), 3714-3723.
53.Kasry, A.; Kuroda, M. A.; Martyna, G. J.; Tulevski, G. S.; Bol, A. A., Chemical Doping of Large-Area Stacked Graphene Films for Use as Transparent, Conducting Electrodes. ACS Nano 2010, 4 (7), 3839-3844.
54.Guneş, F.; Shin, H.-J.; Biswas, C.; Han, G. H.; Kim, E. S.; Chae, S. J.; Choi, J.-Y.; Lee, Y. H., Layer-by-Layer Doping of Few-Layer Graphene Film. ACS Nano 2010, 4 (8), 4595-4600.
55.LeeEduardo, J. H.; Balasubramanian, K.; Weitz, R. T.; Burghard, M.; Kern, K., Contact and edge effects in graphene devices. Nat Nano 2008, 3 (8), 486-490.
56.Kim, J. Y.; Kim, S. H.; Lee, H. H.; Lee, K.; Ma, W.; Gong, X.; Heeger, A. J., New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer. Advanced Materials 2006, 18 (5), 572-576.
57.Chen, W.; Chen, S.; Qi, D. C.; Gao, X. Y.; Wee, A. T. S., Surface Transfer p-Type Doping of Epitaxial Graphene. Journal of the American Chemical Society 2007, 129 (34), 10418-10422.
58.Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A., Electron Transport Materials for Organic Light-Emitting Diodes. Chemistry of Materials 2004, 16 (23), 4556-4573.
59.Cox, M.; Gorodetsky, A.; Kim, B.; Kim, K. S.; Jia, Z.; Kim, P.; Nuckolls, C.; Kymissis, I., Single-layer graphene cathodes for organic photovoltaics. Applied Physics Letters 2011, 98 (12), 123303-123303-3.
60.Design of new anchored p-dopants for high power efficiency OLEDs Proc. of SPIE Vol. 7415 741505-1
61.Goh, C.; Scully, S. R.; McGehee, M. D., Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells. Journal of Applied Physics 2007, 101 (11), 114503-114503-12.
62.O''Regan, B. C.; Scully, S.; Mayer, A. C.; Palomares, E.; Durrant, J., The Effect of Al2O3 Barrier Layers in TiO2/Dye/CuSCN Photovoltaic Cells Explored by Recombination and DOS Characterization Using Transient Photovoltage Measurements. The Journal of Physical Chemistry B 2005, 109 (10), 4616-4623.
63.Li, S.-S.; Tu, K.-H.; Lin, C.-C.; Chen, C.-W.; Chhowalla, M., Solution-Processable Graphene Oxide as an Efficient Hole Transport Layer in Polymer Solar Cells. ACS Nano 2010, 4 (6), 3169-3174.
64.Li, G.; Chu, C.-W.; Shrotriya, V.; Huang, J.; Yang, Y., Efficient inverted polymer solar cells. Applied Physics Letters 2006, 88 (6), 253503-253503-3.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊