跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 12:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:范啟威
研究生(外文):Fan, Chi-Wei
論文名稱:應用於類比數位轉換器之時脈抖動量測與補償技術
論文名稱(外文):Clock Jitter Measurement and Compensation for Analog-to-Digital Converters
指導教授:吳介琮
指導教授(外文):Wu, Jieh-Tsorng
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:115
中文關鍵詞:類比數位轉換器背景校正時脈抖動信號重建信號取樣時間量測時間數位轉換器
外文關鍵詞:analog-to-digital converterbackground calibrationclockjittersignal reconstructionsignal samplingtime measurementtime-to-digital converter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1192
  • 評分評分:
  • 下載下載:264
  • 收藏至我的研究室書目清單書目收藏:0
在一個新式的通訊接收器中,接收到的連續類比訊號會先被一個類比數位轉換器量化成不連續的數位序列,以便在數位領域進行更複雜的訊號處理。類比數位轉換器需要一個週期性的時脈訊號做為基準以對輸入訊號進行取樣。如果取樣時脈發生抖動,類比數位轉換器會因為取樣的錯誤而造成輸出之訊號雜訊比性能下降。對於一個低速度低解析度的類比數位轉換器而言,取樣時脈抖動所造成的誤差並不是很重要。隨著通訊系統的進步,類比數位轉換器的操作速度以及解析度也隨之增加。對於一高速度高解析度的類比數位轉換器而言,準確的取樣時脈訊號是不可或缺的。
時脈訊號中之抖動可藉由一時間數位轉換器量測出來並量化成數位訊號。藉由適當的校正技術可將此數位訊號對應成時脈抖動之資訊。量測出來的抖動資訊,用在數位領域補償類比數位轉換器因取樣錯誤造成的誤差,改善輸出之訊號雜訊比。本篇論文描述一個應用於類比數位轉換器之時脈抖動量測及補償技術。
我們實現了一個65奈米互補式金氧半場效電晶體製成的7-bit、80-MS/s之時間數位轉換器。利用時間數位轉換器量測出類比數位轉換器取樣時脈之抖動。我們也提出了新的時間數位轉換器之數位校正技術。此校正技術可在背景執行,因此不會影響類比數位轉換器以及時間數位轉換器之正常工作。我們提出的技術也不會受到元件或繞線不匹配的影響,也不會對取樣時脈信號的波型敏感。我們實現之7-bit時間數位轉換器解析度為0.27ps。此時間數位轉換器佔據0.1mm^2的晶片面積,在電源供應器為1.2V下,消耗的功率為20mW。
將此時間數位轉換器應用於一16-bit類比數位轉換器之取樣時脈抖動量測與補償上,我們提出了兩種方案: 1)類比數位轉換器之取樣時脈為理想的,以及 2:)類比數位轉換器之取樣時脈訊號為主要的抖動來源。在第一種方案中,對於一個最佳化設計之鎖控延遲迴路,在類比數位轉換器之輸入為29MHz正弦波下,16-bit的類比數位轉換器可將訊號雜訊比由71.2dB改善為77.3dB。對於一個設計不良的鎖控延遲迴路則可將訊號雜訊比由60.8dB改善為74.4dB。在第二種方案中,我們提出的時脈抖動補償技術可在輸入時脈抖動之均分根值為8.2ps的情況下,達到等效於均方根值為4ps抖動之取樣效果。

In a modern communication receiver, the received continuous-time analog signal is quantized into a discrete-time digital sequence by an analog-to-digital converter (ADC)
so that the complex signal processing can be performed in the digital domain. The ADC requires a periodic clock as a timing reference for input sampling. If the sampling clock
exhibits jitter, the ADC suers from sampling errors and its signal-to-noise ratio (SNR) performance is degraded. For a low-speed low-resolution ADC, the sampling error due to clock jitter is not crucial. As the progress of advanced communication system, the operation speed and the resolution of the ADC are also increased. An accurate sampling clock is essential for a high-speed high-resolution ADC.
Clock jitter can be measured and digitized by a time-to-digital converter (TDC). With appropriate calibration technique, the output code of the TDC can be translated in to the corresponding jitter information. This jitter information is then used to compensate the ADC D s sampling error in the digital domain, improving the ADC D s SNR performance.
This thesis presents a clock jitter measurement and compensation scheme for analog-to-digital converters.
A 7-bit 80-MS/s TDC was fabricated using a 65 nm CMOS technology. The clock jitter of an ADC is measured by the TDC. We also demonstrate a new digital calibration
technique for the TDC. The calibration can be performed in the background without interrupting the normal ADC and TDC operation. The proposed technique is immune to device and interconnection mismatches, and is not sensitive to the waveforms of the input
clocks either. The resolution of the 7-bit TDC is 0.27 ps. The TDC occupies a die area of 0.1mm^2 while consuming 20 mW from a 1.2 V supply. The TDC is applied to a 16-bit ADC for the clock jitter measurement and compensation. Two dierent system scenarios are covered: 1) an ADC with a clean external clock and 2) an ADC with an external clock as the main jitter source. For the first scenario,
the SNR of the 16-bit ADC is improved from 71.2 dB to 77.3 dB for an optimized delay-locked loop (DLL) and 60.8 dB to 74.4 dB for an ill-conditioned DLL by the jitter correction at a sine wave input frequency of 29 MHz. For the second scenario, the proposed jitter correction technique achieves an equivalent sampling jitter root-mean-squared value (rms) of 4 ps when the jitter rms of the original sampling clock is 8.2 ps.
中文摘要 i
English Abstract iii
誌謝 v
List of Tables xi
List of Figures xiii
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Jitter Compensation 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 SNR of an ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Proposed Jitter Compensation Configuration . . . . . . . . . . . . . . . . 12
2.4 Jitter Compensation Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Non-Ideal Eects in Jitter Compensation . . . . . . . . . . . . . . . . . . 17
2.5.1 Quantization Error and Sampling Error . . . . . . . . . . . . . . 18
2.5.2 Finite Precision of the Filter Coecients hc . . . . . . . . . . . . 19
2.6 Simplified Jitter Compensation Filter . . . . . . . . . . . . . . . . . . . . 22
2.7 A 16-bit 80 MS/s ADC Design Example . . . . . . . . . . . . . . . . . . 29
2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3 Time-to-Digital Converter 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Counter-Based TDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Time-to-Amplitude Method . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Tapped Delay Line TDC . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Stochastic TDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4 Jitter Compensation with Clean External Clock 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Jitter Compensation with Clean External Clock . . . . . . . . . . . . . . 56
4.3 TDC Background Calibration Principle . . . . . . . . . . . . . . . . . . 59
4.4 Signal Reconstruction Filter . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Jitter Calibration Processor . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6 A 16-bit 80MS/s ADC Design Example . . . . . . . . . . . . . . . . . . 72
4.7 Circuit Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.7.1 Stochastic Time-to-Digital Converter . . . . . . . . . . . . . . . 75
4.7.2 Variable Delay Line . . . . . . . . . . . . . . . . . . . . . . . . 76
4.7.3 Delay-Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . 77
4.8 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5 Jitter Compensation with Jittering External Clock 87
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Jitter Compensation with Jittering External Clock . . . . . . . . . . . . . 88
5.3 A 16-bit 80MS/s ADC Design Example . . . . . . . . . . . . . . . . . . 94
5.4 Circuit Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6 Conclusions and Future Works 105
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Recommendations for Future Investigation . . . . . . . . . . . . . . . . . 106
Appendix A 107
Bibliography 109
自傳 115
Publication List 116
[1] J. Li and U.-K. Moon, “Background calibration techniques for multistage pipelined
ADCs with digital redundancey,” IEEE Trans. Circuits Syst. II, vol. 50, no. 9, pp.
531–538, September 2003.
[2] B. Murmann and B. E. Boser, “A 12-bit 75-MS/s pipelined ADC using open-loop
residue amplification,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2040–2050,
December 2003.
[3] E. Siragusa and I. Galton, “A digitally enhanced 1.8-V 15-bit 40-MSample/s CMOS
pipelined ADC,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2126–2138, December
2004.
[4] H.-C. Liu, Z.-M. Lee, and J.-T. Wu, “A 15-b 40-MS/s CMOS pipelined analog-todigital
converter with digital background calibration,” IEEE J. Solid-State Circuits,
vol. 40, no. 5, pp. 1047–1056, May 2005.
[5] J. P. Keane, P. J. Hurst, and S. H. Lewis, “Background interstage gain calibration
technique for pipelined ADCs,” IEEE Trans. Circuits Syst. I, vol. 52, no. 1, pp. 32–
43, January 2005.
[6] A. Panigada and I. Galton, “Digital background correction of harmonic distortion
in pipelined ADCs,” IEEE Trans. Circuits Syst. I, vol. 53, no. 9, pp. 1885–1895,
September 2006.
[7] J.-L. Fan, C.-Y. Wang, and J.-T. Wu, “A robust and fast digital background calibration
technique for pipelined ADCs,” IEEE Trans. Circuits Syst. I, vol. 54, no. 6, pp.
1213–1223, June 2007.
[8] H. V. de Vel, B. A. J. Buter, H. van der Ploeg, M. Vertregt, G. J. G. M. Geelen, and
E. J. F. Paulus, “A 1.2-V 250-mW 14-b 100-MS/s digitally calibrated pipeline ADC
in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1047–1056, 2009.
[9] C.-C. Huang and J.-T.Wu, “A background comparator calibration technique for flash
analog-to-digital converters,” IEEE Trans. Circuits Syst. I, vol. 52, no. 9, pp. 1732–
1740, September 2005.
[10] G. V. der Plas, S. Decoutere, and S. Donnay, “A 0.16pJ/conversion-step 2.5mW
1.25GS/s 4b ADC in a 90nm digital CMOS process,” in IEEE International Solid-
State Circuits Conference Digest of Technical Papers, February 2006, pp. 566–567.
[11] S. Park, Y. Palaskas, and M. P. Flynn, “A 4GS/s 4b flash ADC in 0.18m CMOS,”
in IEEE International Solid-State Circuits Conference Digest of Technical Papers,
February 2006, pp. 570–571.
[12] Y.-Z. Lin, C.-W. Lin, and S.-J. Chang, “A 2-GS/s 6-bit flash ADC with oset calibration,”
in IEEE Asian Solid-State Circuits Conference, November 2008, pp. 385–388.
[13] Y.-H. Chung and J.-T. Wu, “A CMOS 6-mW 10-bit 100-MS/s two-step ADC,” in
IEEE Asian Solid-State Circuits Conference, November 2009, pp. 137–140.
[14] M. Shinagawa, Y. Akazawa, and T. Wakimoto, “Jitter analysis of high-speed sampling
systems,” IEEE J. Solid-State Circuits, vol. 25, no. 1, pp. 220–224, February
1990.
[15] H. Kobayashi, M. Morimura, K. Kobayashi, and Y. Onaya, “Aperture jitter eects
in wideband sampling systems,” in Proc. IEEE Instrumentation and Measurement
Tech. Conf., vol. 2, May 1999, pp. 880–885.
[16] M. Gustavsson, J. J. Wikner, and N. N. Tan, CMOS Data Converters for Communications.
Boston, MA: Kluwer, 2000.
[17] B. Brannon and R. Reeder, Understanding High Speed ADC Testing and Evaluation.
Norwood, MA: Analog Devices, Inc., Application Note AN-835, April 2006.
[18] K. Lim, C.-H. Park, D.-S. Kim, and B. Kim, “A low-noise phase-locked loop design
by loop bandwidth optimization,” IEEE J. Solid-State Circuits, vol. 35, no. 6, pp.
807–815, June 2000.
[19] C.-H. Lee, K. McClellan, and J. John Choma, “A supply-noise-insensitive CMOS
PLL with a voltage regulator using DC–DC capacitive converter,” IEEE J. Solid-
State Circuits, vol. 36, no. 10, pp. 1453–1463, October 2001.
[20] V. von Kaenel, D. Aebischer, C. Piguet, and E. Dijkstra, “A 320 MHz, 1.5
mW@1.35V CMOS PLL for microprocessor clock generation,” IEEE J. Solid-State
Circuits, vol. 31, no. 11, pp. 1715–1722, November 1996.
[21] S. Sidiropoulos, D. Liu, J. Kim, G. Wei, and M. Horowitz, “Adaptive bandwidth
DLLs and PLLs using regulated supply CMOS buers,” in Symposium on VLSI
Circuits Digest of Technical Papers, June 2000, pp. 124–127.
[22] M. Brownlee, P. K. Hanumolu, K. Mayaram, and U.-K. Moon, “A 0.5-GHz to 2.5-
GHz PLL with fully dierential supply regulated tuning,” IEEE J. Solid-State Circuits,
vol. 41, no. 12, pp. 2720–2728, December 2006.
[23] E. Alon, J. Kim, S. Pamarti, K. Chang, and M. Horowitz, “Replica compensated
linear regulators for supply-regulated phase-locked loops,” IEEE J. Solid-State Circuits,
vol. 41, no. 2, pp. 413–424, Feburary 2006.
[24] T. H. Lee and A. Hajimiri, “Oscillator phase noise: A tutorial,” IEEE J. Solid-State
Circuits, vol. 35, no. 3, pp. 326–336, March 2000.
[25] R. Aparicio and A. Hajimiri, “A noise-shifting dierential Colpitts VCO,” IEEE J.
Solid-State Circuits, vol. 37, no. 12, pp. 1728–1736, December 2002.
[26] L. Dai and R. Harjani, “Design of low-phase-noise CMOS ring oscillators,” IEEE
Trans. Circuits Syst. II, vol. 49, no. 5, pp. 328–338, May 2002.
[27] J. Tourabaly and A. Osseiran, “A jittered-sampling correction technique for ADCs,”
in IEEE International Symposium on Electronic Design, Test and Applications, January
2008, pp. 249–252.
[28] V. Gutnik and A. Chandrakasan, “On-chip picosecond time measurement,” in Symposium
on VLSI Circuits Digest of Technical Papers, June 2000, pp. 52–53.
[29] T. M. Apostol, “A proof that Euler missed: evaluating (2) the easy way,” The Mathematical
Intelligencer, vol. 5, no. 3, pp. 59–60, September 1983.
[30] P. Napolitano, A. Moschitta, and P. Carbone, “A survey on time interval measurement
techniques and testing methods,” in IEEE Instrumentation and Measurement
Technology Conference (I2MTC), May 2010, pp. 181–186.
[31] P. Dudek, S. Szczepa´nski, and J. V. Hatfield, “A high-resolution CMOS time-todigital
converter utilizing a vernier delay line,” IEEE J. Solid-State Circuits, vol. 35,
no. 2, pp. 240–247, February 2000.
[32] J.-P. Jansson, A. M¨antyniemi, and J. Kostamovaara, “A CMOS time-to-digital converter
with better than 10 ps single-shot precision,” IEEE J. Solid-State Circuits,
vol. 41, no. 6, pp. 1286–1296, June 2006.
[33] A. K. M. K. Mollah, R. Rosales, S. Tabatabaei, J. Cicalo, and A. Ivanov, “Design
of a tunable dierential ring oscillator with short start-up and switching transients,”
IEEE J. Solid-State Circuits, vol. 54, no. 12, pp. 2669–2682, December 2007.
[34] T. Xia and J.-C. Lo, “Time-to-voltage converter for on-chip jitter measurement,”
IEEE Trans. Instrum. Meas., vol. 52, no. 6, pp. 1738–1748, December 2003.
[35] M. Ishida, K. Ichiyama, T. J. Yamaguchi, M. Soma, M. Suda, T. Okayasu, D.Watanabe,
and K. Yamamoto, “A programmable on-chip picosecond jitter measurement
circuit without a reference-clock input,” in IEEE International Solid-State Circuits
Conference Digest of Technical Papers, February 2005, pp. 512–513.
[36] J. Kalisz, “Review of methods for time interval measurements with picosecond resolution,”
Metrologia, vol. 41, pp. 17–32, 2004.
[37] Fundamentals of Time Interval Measurements. Santa Clara, CA: Agilent Technologies,
Inc, Application Note 200-3, June 1997.
[38] J. Kostamovaara and R. Myllyl¨a, “Time-to-digital converter with an analog interpolation
circuit,” Review of Scientific Instruments, vol. 57, no. 11, pp. 2880–2885,
November 1986.
[39] E. R¨ais¨anen-Ruotsalainen, T. Rahkonen, and J. Kostamovaara, “A time digitizer with
interpolation based on time-to-voltage conversion,” in Proceedings of the 40th Midwest
Symposium on Circuits and Systems, vol. 1, August 1997, pp. 197–200.
[40] K. M¨a¨att¨a and J. Kostamovaara, “A high-precision time-to-digital converter for
pulsed time-of-flight laser radar applications,” IEEE Trans. Instrum. Meas., vol. 47,
no. 2, pp. 521–536, April 1998.
[41] J.-P. Jansson, A. M¨antyniemi, and J. Kostamovaara, “A CMOS time-to-digital converter
with better than 10 ps single-shot precision,” IEEE J. Solid-State Circuits,
vol. 41, no. 6, pp. 1286–1296, June 2006.
[42] M. Lee and A. A. Abidi, “A 9 b, 1.25 ps resolution coarse-fine time-to-digital converter
in 90 nm CMOS that amplifies a time residue,” IEEE J. Solid-State Circuits,
vol. 43, no. 4, pp. 769–777, April 2008.
[43] J. Yu, F. F. Dai, and R. C. Jaeger, “A 12-bit vernier ring time-to-digital converter
in 0.13m CMOS technology,” in Symposium on VLSI Circuits Digest of Technical
Papers, June 2009, pp. 232–233.
[44] R. Rashidzadeh, M. Ahmadi, and W. C. Miller, “An all-digital self-calibration
method for a vernier-based time-to-digital converter,” IEEE Trans. Instrum. Meas.,
vol. 2, no. 2, pp. 463–469, February 2010.
[45] P. M. Levine and G. W. Roberts, “A high-resolution flash time-to-digital converter
and calibration scheme,” in Proceedings of International Test Conference, October
2004, pp. 1148–1157.
[46] R. B. Staszewski, S. Vemulapalli, P. Vallur, J. Wallberg, and P. T. Balsara, “1.3 V 20
ps time-to-digital converter for frequency synthesis in 90-nm CMOS,” IEEE Trans.
Circuits Syst. II, vol. 53, no. 3, pp. 220–224, March 2006.
[47] T. Hashimoto, H. Yamazaki, A. Muramatsu, T. Sato, and A. Inoue, “Time-to-digital
converter with vernier delay mismatch compensation for high resolution on-die
clock jitter measurement,” in Symposium on VLSI Circuits Digest of Technical Papers,
June 2008, pp. 166–167.
[48] V. Kratyuk, P. K. Hanumolu, K. Ok, U.-K. Moon, and K. Mayaram, “A digital PLL
with a stochastic time-to-digital converter,” IEEE Trans. Circuits Syst. I, vol. 56,
no. 8, pp. 1612–1621, August 2009.
[49] C.-C. Huang, “Digitally-calibrated comparator and its application in flash analog-todigital
converters,” Ph.D. dissertation, Department of Electronics Engineering and
Institute of Electronics, National Chiao-Tung University, Hsin-Chu, Taiwan, January
2010.
[50] J. Rivoir, “Fully-digital time-to-digital converter for ATE with autonomous calibration,”
in EEE International Test Conference, October 2006, pp. 1–10.
[51] ——, “Statistical linearity calibration of time-to-digital converters using a freerunning
ring oscillator,” in 15th Asian Test Symposium, November 2006, pp. 45–50.
[52] I. Nissinen and J. Kostamovaara, “On-chip voltage reference-based time-to-digital
converter for pulsed time-of-flight laser radar measurements,” IEEE Trans. Instrum.
Meas., vol. 58, no. 6, pp. 1938–1948, June 2009.
[53] F. Baronti, D. Lunardini, R. Roncella, and R. Saletti, “A non-linearity selfcalibration
technique for delay-locked loop delay-lines,” in IEEE Instrumentation
and Measurement Technology Conference, May 2002, pp. 1007–1010.
[54] M.-J. E. Lee, W. J. Dally, T. Greer, H.-T. Ng, R. Farjad-Rad, J. Poulton, and R. Senthinathan,
“Jitter transfer characteristics of delay-locked loops - theories and design
techniques,” IEEE J. Solid-State Circuits, vol. 38, no. 4, pp. 614–621, April 2003.
[55] Analog Devices, “AD9446 Datasheet,” [Online]. Available:
http://www.analog.com/static/imported-files/data sheets/AD9446.pdf.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 7. 周賓凰、張宇志、林美珍,2007,「投資人情緒與股票報酬互動關係」,證券市場發展季刊, 第十九卷第二期,頁153-190。
2. 5. 李春安、類惠貞,2008,「衝擊事件下投資人情緒與股價指數動能之研究」,東海管理評論,第十卷第一期,頁1-45。
3. 4. 李顯儀、吳幸姬,2007,「台灣股票市場共移現象之研究」,管理研究學報,第七卷第二期,頁257-283。
4. 3. 李春安、羅進水、蘇永裕,2006,「動能策略報酬投資人情緒與景氣循環之研究」,財務金融學刊,第十四卷第二期,頁73-109。
5. 1. 王明昌、朱榕屏、王弘志,2010,「台灣股市不存在中期動能效應?」,東吳經濟商學學報,第六十八期,頁91-120。
6. 9. 陳振遠、周賢榮、王朝仕,2008,「投資人情緒風險與新上市公司股票的異常績效-陽光效應之應用」,輔仁管理評論,第十五卷第一期,頁43-72。
7. 10. 葉智丞、朱靜眉、李春安,2008,「臺灣股市投資人情緒持續反應與股票報酬關係之研究」,嶺東通識教育研究學刊,第二卷第四期,頁121-142。
8. 12. 鄭高輯、林泉源,2010,「投資人情緒對投機型股票報酬之影響」,商略學報,第二卷第一期,頁21-35。
9. 13. 韓千山,2009,「股價動量現象之研究:理論與實證」,輔仁管理評論,第十六卷第二期,頁25-42。
10. 14. 蕭朝興、尤靜華、簡靖萱,2008,「台灣股市的動能效應投資人的下單策略」,交大管理學報,第二十八卷第一期,頁131-168。
11. 15. 羅進水、李春安,2009,「從眾與非從眾行為對市場報酬衝擊之研究」,管理評論,第二十八卷第三期,頁21-41。