跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/27 05:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳怡蕙
研究生(外文):I-Hui Chen
論文名稱:穿透式電子顯微鏡用於微脂粒 低溫觀察之技術開發
論文名稱(外文):The Development of Observation Technique Using Transmission Electron Microscopy for Liposome at Low Temperature
指導教授:楊永欽楊永欽引用關係
口試委員:徐永富薛韻馨
口試日期:2015-06-11
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
中文關鍵詞:低溫穿透式電子顯微鏡;微脂粒;海藻糖;氣泡
外文關鍵詞:Cryo Transmission Electron Microscopy: Liposome: Bubbling: Trehalose
相關次數:
  • 被引用被引用:0
  • 點閱點閱:515
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的進步,近三十年來低溫穿透式電子顯微鏡技術崛起,無論硬體或軟體均有極其大之發展及貢獻,尤其是在生物上之應用,已可用於一些蛋白質結構之解析,對於生物體結構之辨識,無疑是一項利器。另外,低溫電顯技術之樣品前製製備技術,將含水之生物體以快速冷凍的方法(速凍法),使樣品封存於無序冰中,最重要的一環是能夠保有生物體樣品之原始形貌,對瞭解生物樣品無疑是一大進步。
利用速凍法製成之冰樣品在電顯觀測時,由於電子束穿透樣品,會使樣品遭到電子束的破壞,可能產生氣體分子而形成氣泡;另高能量電子束也會造成冰融化而使樣品型貌改變,亦可能會直接造成樣品損傷。為解決此問題,以低電子劑量條件來做為觀察生物樣品,是操作低溫電顯的基本要求。但即使是以低電子劑量條件來拍攝低溫電顯樣品,為求得更多之影像訊息,可能把拍攝時間拉長;而拍攝時間一旦拉長,累積劑量仍會造成樣品損傷。過去文獻曾有討論利用糖類分子添加入低溫電顯樣品溶液中,可能對電顯樣品有保護作用,可降低電子束造成之損傷。本論文實驗即使想探討利用海藻糖來做為低溫電顯樣品保護劑之功效。
本實驗是以溶液中之微脂粒作為電顯樣品來進行研究,添加不同濃度之海藻糖溶液,利用速凍法製成無序冰低溫樣品,在低溫環境下改變不同之電子劑量拍攝條件,探討海藻糖添加物對延緩電子束對樣品之損傷的效用。實驗結果顯示,添加海藻糖作為低溫電顯樣品保護劑,確實可有效延遲電子輻射對樣品損傷時間。此方法應用在低溫電鏡觀測上應有其實用性。
In the past 30 years, cryo-transmission electron microscopy (cryo-EM) technology has been developed in many aspects for the applications on observing biological and medical specimens. Cryo-EM has been proven to be able to analyze some protein structures Cryo-EM allows users to quick-freeze the bio-samples in vitrified ice, observe the sample under the near-native condition, thus is a powerful tool to understand the samples in the native liquid phase. However, during cryo-EM operation, the high energy electron beam could quickly damage the ice sample. Therefore low-dosage imaging technique is usually used for cryo-EM. Even so, taking an image for a long exposure time could easily result in damaging on the icy bio-samples. Adding some sugar into bio-sample solution before TEM sample preparation was known to preserve the bio specimen better against the damage caused by the electron beam. This work aims for studying the effect of trehalose addition on preserving bio-samples under cryo-EM operation. Liposome was used as the bio-specimens for this study. In this work, various concentrations of trehalose solution were mixed with liposome solutions and made into cryo-EM specimens, then were taken images under different conditions of electron dosages used. The results show that trehalose addition is in fact effective in slowing the electron beam damaging occurring time on the cryo-EM specimen. This finding could be useful for practical applications of cryo-EM operation.
中文摘要.......................................i
英文摘要.......................................iii
誌謝..........................................v
目錄..........................................vi
表目錄........................................viii
圖目錄........................................ix
第一章 緒論....................................1
1.1 研究背景.............................1
1.2 研究方向及目的........................3
第二章 理論基礎與文獻回顧.........................4
2.1 低溫電子顯微鏡技術.....................4
2.2 生物顯微樣品製備技術...................5
2.3 電顯樣品冷凍技術之冷凍劑................6
2.4 微脂粒...............................7
2.5 生物電顯樣品保護劑.....................8
2.5.1 海藻糖.............................8
第三章 實驗方法.................................12
3.1 藥品及儀器...........................12
3.2 實驗流程與製備方法.....................14
3.2.1 製備海藻糖溶液與不同海藻糖濃度之含微脂粒混合
糖溶液.............................14
3.2.2 樣品製備與鑑定流程...................17
3.3 Cro-TEM冷凍樣品......................18
3.3.1 冷凍樣品之製備流程...................18
3.3.2 多孔洞支撐碳網銅網前處理..............19
3.3.3 速凍法樣品之製備.....................19
第四章 結果與討論................................30
4.1 冰晶.................................30
4.2 海藻糖在無序冰中之微脂粒形貌.............31
4.3 控制電子束在拍照前對樣品照射時間~0秒,電子破壞最低的狀況下微脂粒在海藻糖不同濃度無序冰中之形貌.......32
4.4 電子劑量1.8e-/Å2條件下拍攝之微脂粒形貌及電子束
照射時間破壞性探討......................34
4.5 電子劑量3.8e-/Å2條件下拍攝之微脂粒形貌及電子束
照射時間破壞性探討......................41
4.6 以海藻糖作為低溫電顯保護劑添加在微脂粒溶液中之濃
度探討................................47
4.8 實驗結果...............................48
第五章 結論......................................50
參考文獻.........................................51
1. 陳家全、李家維、楊瑞森,生物電子顯微鏡學,3-5,39-49,
61-71。
2. 鮑中興、劉思謙,近代穿透式電子顯微鏡實務,2-4,20-22。
3. Ohi, M, Li, Y, Cheng, Y, Walz, T.‟ Negative
Staining and Image Classification-Powerful
Tools in Modern Electron Microscopy”, Biol.
Proced. nline, 2004, 6,23–34.
4. http://faculty.washington.edu/lw32/cryoem_home.
html
5. Werner Kühlbrandt, ‟ Microscopy : Cryo-EM
enters a new era”, Cite as eLife, 2014, 3,
e03678.
6. Po-Lin Chiu, Deborah F. Kelly, Thomas Walza,
&;quot;The use of trehalose in the preparation of
specimens for molecular electron microscopy&;quot;,
Micron, 2011, 42, 762-772.
7. Maofu Liao, Erhu Cao, David Julius, Yifan
Cheng, &;quot;Structure of the TRPV1 ion
channel determined by electron cryo-
microscopy&;quot;, Nature, 2013, 504, 107–112.
8. Dubochet J, &;quot;Cryo-EM-the first thirty years&;quot;,
Journal of Microscopy. 2012 Mar, 245 (3):221-4.
9. R Henderson, &;quot;The potential and limitations of
neutrons, electrons and X-rays for atomic
resolution microscopy of unstained biological
molecules&;quot;, Quarterly Reviews of Biophysics,
1995, 28, 171-193.
10. Guenter P. Resch, Marlene Brandstetter, Lisa
Königsmaier, Edit Urban, Angela M. Pickl-Herk,
&;quot;Immersion Freezing of Suspended Particles and
Cells for Cryo-Electron Microscopy&;quot;, Cold
Spring Harb Protoc, 2011, doi:10.1101/pdb.
prot5642.
11. 蔡耀輝,以PLGA/Liposomes微粒包覆去氧核醣核酸水解酶之
研究,大同大學生物工程研究所碩士論文,2008。
12. Mats Almgren, Katarina Edwards, Go¨ran
Karlsson, &;quot;Cryo transmission electron
microscopy of liposomes and related
structures&;quot;, Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 2003,
174, 3–21.
13. Mats Almgren, Katarina Edwards, Goran
Karlsson, &;quot;Cryo transmission electron
microscopy of liposomes and related
structures&;quot;, Colloids and Surfaces A:
Physiconchemical and Engineering Aspects.2000,
174, 1-2, 3–21.
14. Peter M. Frederik, D.H.W.Hubert, &;quot;Cryo
electron microscopy of liposomes&;quot;, Methods in
Enzymology, 2005, 391, 431–448.
15. Narumon Changsan , Hak-Kin Chan, Frances
Separovic, Teerapol Srichana, &;quot;Physicochemical
characterization and stability of rifampicin
liposome dry powder formulations for
inhalation&;quot;, Journal of Pharmaceutical
Sciences, 2009, 98, 628–639.
16. Nancy Dos Santos, Lawrence D. Mayer, Sheela
A.Abraham,Ryan C. Gallagher, Kelly A. K. Cox,
Paul G. Tardi, Marcel B.Bally, &;quot;Improved
retention of idarubicin after intravenous
injection obtained for cholesterol-free
liposomes&;quot;, Biochimica et Biophysica Acta
Biomembranes, 2002, 1561, 2, 12, 188–201.
17. N Kaiser, A Kimpfler, U Massing, A.M Burger,
H.H Fiebig, M Brandl, R Schubert, &;quot;5-
Fluorouracil in vesicular phospholipid gels
for anticancer treatment: entrapment and
release properties&;quot;, Internationa Jounal of
Pharmaceutics, 2003, 256, 123–131.
18. Igor V Zhigaltsev, Norbert Maurer, Katarina
Edwards, Goran Karlsson, Pieter P Cullis,
&;quot;Formation of drug–arylsulfonate complexes
inside liposomes: a novel approach to improve
drug retention&;quot;, Journal of Controlled
Release, 2006, 110, 378–386.
19. Semple, S.C., Leone, R., Wang, J., Leng, E.C.,
Klimuk, S.K., Eisenhardt, M.L., Yuan, Z.N.,
Edwards, K. Maurer, N. Hope, M.J., Cullis,
P.R., Ahkong, Q.F, &;quot;Optimizationand
characterization of a sphingomyelin /
cholesterol liposome formulation of
vinorelbine with promising antitumor
activity&;quot;, Journal of Pharmaceutical
Science, 2005. 94, 1024–1038.
20. H.A.L.Wiggers, &;quot;Untersuchung uber das
Mutterkorn, Secale cornutum&;quot;, Ann Pharm. 1832,
1, 129–182.
21. Teruhisa Hirai, Kazuyoshi Murata, Kaoru
Mitsuoka, Yoshiaki Kimura, Yoshinori
Fujiyoshi, &;quot;Trehalose embedding technique for
high-resolution electron crystallography:
application tostructural study on
bacteriorhodopsin&;quot;, Journal of Electron
Microscopy (Tokyo) 1999, 48, 653–658.
22. 余文青,利用SulfolobussolfataricusATCC35092之原
生型與突變型麥芽寡糖苷海藻糖生成酶及麥芽寡糖苷海藻糖
水解酶由澱粉生產海藻糖之研究,國立臺灣海洋大學食品科學
系碩士論文,2006。
23. Camilo Colace, Shevanti Sen, Madan
Thangavelu,Stephen Pinder, bruce Roser,
&;quot;Extraordinary stability of enzymes dried in
trehalose: Simplified molecular biology&;quot;,
Natrue Biotechnology ,(New York), 1992, 10,
1007–1011.
24. Nishant Kumar Jain, Ipsita Roy, &;quot;Effect of
trehalose on protein structure&;quot;. Protein
Science. 2009, 18, 24–36.
25. JH Crowe, F A Hoekstra,L M Crows,
&;quot;Anhydrobiosis&;quot;, Annual Review of Physiology,
1992,54, 579–599.
26. Lois M Crowe, &;quot;Lessons from nature: the role
of sugars in anhydrobiosis&;quot;, Comparative
Biochemistry and Physiology A : Molecular &;
Integrative Physiology, 2002, 131, 3, 505–513.
27. Carolyn W.B.Lee, John S.Waugh,Robert G.
Griffin, &;quot;Solid-state NMR study of
trehalose / 1,2-dipalmitoy
l-sn-phosphatidylcholine interactions&;quot;,
Biochemistry, 1986, 25, 13, 3737–3742.
28. Niahant Kumar Jain, Ipsita Roy, &;quot;Trehalose and
Protein Stability&;quot;, Currrent Protoccols in
Protein Science, 2010, 4, 4.9.1–4.9.12.
29. Kilburn, D., Townrow, S., Meunier, V.,
Richardson, R. Alam, A., Ubbink, J.,
&;quot;Organization and mobility of water in
amorphous and crystalline trehalose&;quot;, Nature
Materials, 2006, 5, 632–635.
30. Sola-Penna, M., Meyer-Fernandes, J.R.,
&;quot;Stabilization against thermal inactivation
promoted by sugars on enzyme structure and
function: why is trehalose more effective than
other sugars&;quot;, Archives of Biochemistry and
Biophysics, 1998 360,10–14.
31. Xueming Li,Paul Mooney,Shawn Zheng,
Christopher R Booth,Michael B Braunfeld,
Sander Gubbens,David A Agard , Yifan Cheng,
&;quot;Electron counting and beam-induced motion
correction enable near-atomic-resolution
single-particle cryo-EM&;quot;, Nature Methods,
2013, 10, 584–590, doi:10.1038/nmeth.2472.
32. Edyta Zielinska, &;quot;Cryo-electron microscopists
exploit an artifact to probe protein
structure&;quot;, Science, 335:182, 2012.
33. Friedrich, H., Frederik, P.M., de With, G.,
Sommerdijk, N.A.J.M., &;quot;Imaging of self-
assembled structures: interpretation of TEM
and cryo-TEM images&;quot;, Angewandte Chemie
International Edition, 2010, 49, 7850–7858.
34. Christina J. Newcomb, Tyson J. Moyer, Sungsoo
S. Lee, Samuel I. Stupp, &;quot;Advances in
cryogenic transmission electron microscopy for
the characterization of dynamic self-
assembling nanostructures&;quot;, Current Opinion in
Colloid &; Interface Sicence, 2012, 17,350-359.
35. &;quot;How to use th Vitrobot ,A theoretical and
practical guide to vitrfying speciments for
cryo-TEM&;quot;,FEI Applications Laboratory Acht,
The Netherlands V6.0.
36. J. R. Bellare, H. T. Davies, L. E. Scriven,
Y. Talmon, &;quot;Controlled environment
vitrification system: an improved sample
preparation technique&;quot;, Journal of Electron
Microscopy Technique, 1988, 10:87-111.
37. Akira Fukami, Kόichi Adachi, &;quot;A new method of
preparation of a self-perforated micro plastic
grid and its application&;quot;, Journal of Electron
Microscopy, 1965, 14, 2, 112-118.
38. Rudo Grimm, Hapreet Singh, Reinhard Rachel,
Dieter Typke, Wolfram Zillig, Wolfgang
Baumeister, &;quot;Electron tomography of ice-
embedded prokaryotic cells&;quot;, Biophysical
Journal, 1998 Feb; 74(2Pt1):1031–1042.
39. Marc Adrian, Jacques Dubochet, Jean Lepault,
Alasdair W. Mcdowall, &;quot;Cryo-electron
microscopy of viruses&;quot;, Nature, 1984,
308:32–36.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top