1. 劉鐘軒, 蔡正中, and 陳海雄, 肝癌的診斷及治療最新發展. 內科學誌,2013. 24(2): p. 85-94.2. 張育霖 and 曹書儀, 概述非酒精性脂肪肝病與肝癌之關聯. 內科學誌, 2016. 27(4): p. 195-201.3. 林志陵 , 高., 肝癌的流行病學. 中華民國癌症醫學會雜誌, 2008. 24: p.277-281.
4. Kumari, A., S.K. Yadav, and S.C. Yadav, Biodegradable polymeric
nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces,
2010. 75(1): p. 1-18.
5. Bosch, F.X., et al., Primary liver cancer: Worldwide incidence and trends.Gastroenterology, 2004. 127(5): p. S5-S16.
6. Marrero, J.A., et al., Prognosis of hepatocellular carcinoma: comparison of 7 staging systems in an American cohort. Hepatology, 2005. 41(4): p. 707-16.
7. Li, J., et al., Nomograms for survival prediction in patients undergoing liver resection for hepatitis B virus related early stage hepatocellular carcinoma.Eur J Cancer, 2016. 62: p. 86-95.
8. Pusen Wang, H.L., Baojie Shi, Weitao Que, Chunguang Wang, Junwei and Z.P.
Fan, Lin Zhong, Prognostic factors in patients with recurrent hepatocellular
carcinoma treated with salvage liver transplantation a singlecenter study.
Oncotarget, 2016. 7.
9. Lin, S.-M., Percutaneous radiofrequency ablation for hepatocellular
carcinoma. J Chin Oncol Soc, 2008. 24: p. 289-94.
10. HUANG, Z.-q., Radiofrequency ablation for hepatocellular carcinoma:
surgeon’s views. Medical Journal of Chinese People's Liberation Army, 2013.
38(5): p. 339-341.
11. Livraghi, T., et al., Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: Is resection still the treatment of choice? Hepatology, 2008. 47(1): p. 82-9.
12. Kajihara, J., et al., The Clinical Impact of Transcatheter Arterial
Chemoembolization (TACE)-Induced c-Met Upregulation on TACE
Refractoriness in Hepatocellular Carcinoma. Dig Dis Sci, 2016. 61(6): p.
1572-81.
13. Chong, D.Q., et al., The evolving landscape of therapeutic drug development for hepatocellular carcinoma. Contemp Clin Trials, 2013. 36(2): p. 605-15.
14. 陳昭姿, Sorafenib (Nexavar®)-台灣第一個晚期肝癌治療藥物. 當代醫學, 2010(441): p. 515-518.15. 汪徽五, <抗癌藥品的奈米給藥傳輸 - 財團法人醫藥品查驗中心.pdf>.RegMed, 2012. 26.
16. Tan, M.L., P.F. Choong, and C.R. Dass, Review: doxorubicin delivery systems based on chitosan for cancer therapy. J Pharm Pharmacol, 2009. 61(2): p.131-42.
17. Tewey, K.M., et al., Intercalative antitumor drugs interfere with the
breakage-reunion reaction of mammalian DNA topoisomerase II. Journal of
Biological Chemistry, 1984. 259(14): p. 9182-9187.
18. Deffie, A.M., J.K. Batra, and G.J. Goldenberg, Direct correlation between DNA topoisomerase II activity and cytotoxicity in adriamycin-sensitive and-resistant P388 leukemia cell lines. Cancer research, 1989. 49(1): p. 58-62.
19. Soares, P.I., et al., Chitosan-based nanoparticles as drug delivery systems for doxorubicin: Optimization and modelling. Carbohydr Polym, 2016. 147: p.304-12.
20. Kang, Y.J., et al., Overexpression of metallothionein in the heart of transgenic mice suppresses doxorubicin cardiotoxicity. Journal of Clinical Investigation,1997. 100(6): p. 1501.
21. Ascensão, A., et al., Endurance training attenuates doxorubicin-induced
cardiac oxidative damage in mice. International journal of cardiology, 2005.
100(3): p. 451-460.
22. Songsurang, K., et al., Electrospray fabrication of doxorubicin-chitosan-tripolyphosphate nanoparticles for delivery of
doxorubicin. Arch Pharm Res, 2011. 34(4): p. 583-92.
23. 張立德, 奈米材料. 2002: 五南圖書出版股份有限公司.
24. 高逢時, 奈米科技. 科學發展, 第三百八十六期, 第 66-71 頁, 2005.
25. 尹邦躍, 奈米時代. 2002: 五南圖書出版股份有限公司.
26. Paszko, E., et al., Nanodrug applications in photodynamic therapy.
Photodiagnosis Photodyn Ther, 2011. 8(1): p. 14-29.
27. Liu, Z., et al., Polysaccharides-based nanoparticles as drug delivery systems.Advanced drug delivery reviews, 2008. 60(15): p. 1650-1662.
28. Agnihotri, S.A., N.N. Mallikarjuna, and T.M. Aminabhavi, Recent advances
on chitosan-based micro- and nanoparticles in drug delivery. J Control
Release, 2004. 100(1): p. 5-28.
29. Gharsallaoui, A., et al., Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 2007. 40(9): p.1107-1121.
30. Huang, K.S., et al., Microfluidic controlling monodisperse microdroplet for 5-fluorouracil loaded genipin-gelatin microcapsules. J Control Release, 2009.137(1): p. 15-9.
31. Almeria, B., T.M. Fahmy, and A. Gomez, A multiplexed electrospray process for single-step synthesis of stabilized polymer particles for drug delivery. JControl Release, 2011. 154(2): p. 203-10.
32. Zamani, M., M.P. Prabhakaran, and S. Ramakrishna, Advances in drug
delivery via electrospun and electrosprayed nanomaterials. Int J
Nanomedicine, 2013. 8: p. 2997-3017.
33. Nam, J.P., et al., Targeting delivery of tocopherol and doxorubicin
grafted-chitosan polymeric micelles for cancer therapy: In vitro and in vivo
evaluation. Colloids Surf B Biointerfaces, 2015. 133: p. 254-62.
34. Balan, V., et al., Doxorubicin-loaded magnetic nanocapsules based on
N-palmitoyl chitosan and magnetite: Synthesis and characterization. Chemical
Engineering Journal, 2015. 279: p. 188-197.
35. Chiu, Y.L., et al., pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: in vitro characteristics and in vivo biocompatibility. Biomaterials, 2009. 30(28): p. 4877-88.
36. Chiu, Y.-L., et al., Rapidly in situ forming hydrophobically-modified chitosan hydrogels via pH-responsive nanostructure transformation. Soft Matter, 2009.5(5): p. 962.
37. Thorek, D.L., et al., Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng, 2006. 34(1): p. 23-38.
38. Chen, Y.W., et al., Specific detection of CD133-positive tumor cells with iron oxide nanoparticles labeling using noninvasive molecular magnetic resonanceimaging. Int J Nanomedicine, 2015. 10: p. 6997-7018.
39. Belin, T., et al., Influence of Grain Size, Oxygen Stoichiometry, and Synthesis Conditions on the γ-Fe2O3 Vacancies Ordering and Lattice Parameters.Journal of Solid State Chemistry, 2002. 163(2): p. 459-465.
40. Wang, Y.-X.J., S.M. Hussain, and G.P. Krestin, Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. European radiology, 2001. 11(11): p. 2319-2331.
41. Arruebo, M., et al., Magnetic nanoparticles for drug delivery. Nano today,2007. 2(3): p. 22-32.
42. Mahmoudi, M., et al., Superparamagnetic iron oxide nanoparticles (SPIONs):development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev, 2011. 63(1-2): p. 24-46.
43. Du, J.Z., et al., Tailor-made dual pH-sensitive polymer-doxorubicin
nanoparticles for efficient anticancer drug delivery. J Am Chem Soc, 2011.
133(44): p. 17560-3.
44. Ganta, S., et al., A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release, 2008. 126(3): p. 187-204.
45. Zong, W., et al., Polydopamine-coated liposomes as pH-sensitive anticancer drug carriers. J Microencapsul, 2016. 33(3): p. 257-62.
46. Tığlı Aydın, R.S. and M. Pulat, 5-Fluorouracil Encapsulated Chitosan
Nanoparticles for pH-Stimulated Drug Delivery: Evaluation of Controlled
Release Kinetics. Journal of Nanomaterials, 2012. 2012: p. 1-10.
47. Cai, G. and C. Mao, A facile way to fabricate pH-sensitive charge-conversion polymeric nanoparticles with tunable pH conversion point. RSC Advances, 2016. 6(37): p. 31410-31416.
48. Gui, R., Y. Wang, and J. Sun, Embedding fluorescent mesoporous silica
nanoparticles into biocompatible nanogels for tumor cell imaging and
thermo/pH-sensitive in vitro drug release. Colloids and Surfaces B:
Biointerfaces, 2014. 116: p. 518-525.
49. Jin, Y.-H., et al., pH-sensitive chitosan-derived nanoparticles as doxorubicin carriers for effective anti-tumor activity: preparation and in vitro evaluation. Colloids and Surfaces B: Biointerfaces, 2012. 94: p. 184-191.
50. Li, F., et al., Antitumor drug Paclitaxel-loaded pH-sensitive nanoparticles targeting tumor extracellular pH. Carbohydrate Polymers, 2009. 77(4): p.773-778.
51. Vivek, R., et al., pH-responsive drug delivery of chitosan nanoparticles as Tamoxifen carriers for effective anti-tumor activity in breast cancer cells. Colloids and Surfaces B: Biointerfaces, 2013. 111: p. 117-123.
52. Aydin, R. and M. Pulat, 5-Fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: evaluation of controlled release kinetics. Journal of Nanomaterials, 2012. 2012: p. 42.
53. Saboktakin, M.R., et al., Synthesis and characterization of pH-dependent
glycol chitosan and dextran sulfate nanoparticles for effective brain cancer
treatment. International journal of biological macromolecules, 2011. 49(4): p. 747-751.
54. Sahu, S.K., et al., In vitro evaluation of folic acid modified carboxymethyl chitosan nanoparticles loaded with doxorubicin for targeted delivery. Journal of Materials Science: Materials in Medicine, 2010. 21(5): p. 1587-1597.
55. Madhusudhan, A., et al., Efficient pH Dependent Drug Delivery to Target
Cancer Cells by Gold Nanoparticles Capped with Carboxymethyl Chitosan.International Journal of Molecular Sciences, 2014. 15(5): p. 8216.
56. Hu, X., Y. Wang, and B. Peng, Chitosan‐Capped Mesoporous Silica
Nanoparticles as pH‐Responsive Nanocarriers for Controlled Drug Release.
Chemistry–An Asian Journal, 2014. 9(1): p. 319-327.
57. Lim, E.-K., et al., Chitosan-based intelligent theragnosis nanocomposites enable pH-sensitive drug release with MR-guided imaging for cancer therapy.Nanoscale research letters, 2013. 8(1): p. 1.
58. Zhang, J., et al., Self-assembled nanoparticles based on hydrophobically
modified chitosan as carriers for doxorubicin. Nanomedicine:
Nanotechnology, Biology and Medicine, 2007. 3(4): p. 258-265.
59. Qiu, G.H., et al., Distinctive pharmacological differences between liver cancer cell lines HepG2 and Hep3B. Cytotechnology, 2015. 67(1): p. 1-12.
60. van Meerloo, J., G.J. Kaspers, and J. Cloos, Cell sensitivity assays: the MTT assay. Methods Mol Biol, 2011. 731: p. 237-45.
61. Ragona, L., et al., Bovine [beta]-lactoglobulin: Interaction studies with palmitic acid. Protein Science, 2000. 9(07): p. 1347-1356.
62. Boonsongrit, Y., B.W. Mueller, and A. Mitrevej, Characterization of
drug–chitosan interaction by 1H NMR, FTIR and isothermal titration
calorimetry. European Journal of Pharmaceutics and Biopharmaceutics, 2008.
69(1): p. 388-395.
63. Kulkarni, N., P. Wakte, and J. Naik, Development of floating chitosan-xanthan beads for oral controlled release of glipizide. Int J Pharm Investig, 2015. 5(2): p. 73-80.
64. Naghibi, S., et al., Mortality response of folate receptor-activated,
PEG–functionalized TiO2 nanoparticles for doxorubicin loading with andwithout ultraviolet irradiation. Ceramics International, 2014. 40(4): p.
5481-5488.
65. Chen, L., et al., A redox stimuli-responsive superparamagnetic nanogel with chemically anchored DOX for enhanced anticancer efficacy and low systemic adverse effects. Journal of Materials Chemistry B, 2015. 3(46): p. 8949-8962.
66. Smith, B.C., Group Wavenumbers and an Introduction to the Spectroscopy of Benzene Rings. Spectroscopy, 2016. 31(3): p. 34-37.
67. Arya, N., et al., Electrospraying: a facile technique for synthesis of
chitosan-based micro/nanospheres for drug delivery applications. J Biomed
Mater Res B Appl Biomater, 2009. 88(1): p. 17-31.
68. Zhang, M., et al., Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials, 2002. 23(13): p. 2641-2648.
69. Chakraborty, S., et al., Electrohydrodynamics: a facile technique to fabricate
drug delivery systems. Advanced drug delivery reviews, 2009. 61(12): p.
1043-1054.
70. Xu, X., et al., Ultrafine PEG–PLA fibers loaded with both paclitaxel and
doxorubicin hydrochloride and their in vitro cytotoxicity. European Journal of Pharmaceutics and Biopharmaceutics, 2009. 72(1): p. 18-25.
71. Torchilin, V.P., Structure and design of polymeric surfactant-based drug
delivery systems. Journal of Controlled Release, 2001. 73(2–3): p. 137-172.
72. Iversen, T.-G., T. Skotland, and K. Sandvig, Endocytosis and intracellulartransport of nanoparticles: Present knowledge and need for future studies.Nano Today, 2011. 6(2): p. 176-185.73. Verma, A. and F. Stellacci, Effect of surface properties on nanoparticle-cell interactions. Small, 2010. 6(1): p. 12-21.