跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/10 15:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳琲平
研究生(外文):Pei-ping Wu
論文名稱:串聯不同種類光纖光柵之感測器研究
論文名稱(外文):The Fiber Sensors Based on the Cascaded Different Types of Fiber Gratings
指導教授:劉文豐劉文豐引用關係
指導教授(外文):Wen-fung Liu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:95
中文關鍵詞:長週期光纖光柵布拉格光纖光柵光纖感測器光敏性光纖保偏光纖
外文關鍵詞:fiber Bragg grating (FBG)polarization maintaining fiber (PMF)long period fiber grating (LPG)fiber sensorphotosensitive fiber
相關次數:
  • 被引用被引用:0
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出利用串聯不同種類光纖光柵所完成之光纖感測器,應用於同時感測應力、溫度及折射率之物理量。在文中主要提出兩種布拉格光纖光柵串接長週期光纖光柵感測器架構,分別為以保偏布拉格光纖光柵串接光敏性光纖之長週期光纖光柵以及單模光纖之斜角布拉格光纖光柵經氫氟酸蝕刻後再串接單模光纖之長週期光纖光柵兩種架構。其感測機制為利用布拉格光柵之峰值製作於長週期光柵之損失峰的斜坡區上,當布拉格光柵波長飄移時,造成布拉格光柵之峰值因落於長週期光纖光柵損失峰之位置不同而產生布拉格光柵的能量變化。
完成此兩種串接式光纖光柵之實驗後,觀察其實驗結果靈敏度與待測物理參數之轉換矩陣式中發現,單模斜角布拉格光柵串接長週期光纖光柵之感測器因矩陣式內參數值較為相近,造成其方程式線性相依故並不完全能同時量測三種物理量,而以保偏布拉格光纖光柵串接光敏光纖之長週期光纖光柵之感測器能確實同時量測三種物理量,未來期釵b製程方面更加提升其靈敏度。
The fiber sensors based on the cascaded different types of fiber gratings is proposed in this thesis for applying in the simultaneous measurement of stress, temperature, and index. The fiber sensors are composed of the fiber Bragg grating (FBG) in polarization maintaining fiber (PMF) in series with the long period fiber grating (LPG) in photosensitive fibers and the etched tilted-fiber Bragg grating (TFBG) in series with the long period fiber grating in single mode fibers, respectively. The sensing mechanism is based on variation both of Bragg wavelength power and the Bragg wavelength corresponding to the Bragg peaks to be located on the positive or negative slope of the loss-dip of the long period fiber grating.
According to the experimental results of these two different types of the cascaded fiber sensors, the matrix determinant of the etched TFBG in series with the LPG in the single mode fiber is approximately linear independent. Therefore, this kind of structure is not suitable to be used for simultaneously measuring the three parameters of stress, temperature, and index. In the future, we expected that the fabrication process can be optimized for improving the sensitivity and repeatability.
摘 要.................................i
Abstract..............................ii
誌 謝...............................iii
目 錄................................vi
圖目錄................................ix
表目錄................................xv
第一章 緒 論.........................1
1.1 研究動機及目的.....................1
1.2 研究方法及本文架構.................2
第二章 光纖光柵之種類與特性...........3
2.1 保偏光纖之簡介[14].................3
2.2 光敏性光纖之簡介[15]...............6
2.3長週期光纖光柵與布拉格光纖光柵......7
2.3.1光纖光柵..........................7
2.3.2長週期光纖光柵....................8
2.3.3 長週期光纖光柵基本理論分析......10
2.3.4 保偏長週期光纖光柵..............12
2.3.5 布拉格光纖光柵..................12
2.3.6 布拉格光纖光柵之理論分析........14
2.3.7保偏布拉格光纖光柵...............16
2.3.8斜角型布拉格光纖光柵.............16
2.4 各項長週期光纖光柵製作方式........17
2.4.1 前言............................17
2.4.2 以KrF 248nm雷射寫製之長週期光纖光柵...17
2.4.3 以CO2 雷射寫製之長週期光纖光柵[21]....20
2.4.4 Sandwich長週期光纖光柵[22]............21
2.4.5 鋸齒狀長週期光纖光柵[23]..............22
第三章 空氣間隙型與雙面蝕刻型長週期光纖光柵之製作....24
3.1 前言.............................................24
3.2光纖單側面拋光[25]................................24
3.3光纖微影..........................................26
3.3.1光阻劑旋轉塗佈(Spin Coating)....................28
3.3.2 軟烤(Soft bake)................................29
3.3.3 曝光(Exposure).................................29
3.3.4 顯影(Development)..............................30
3.3.5 硬烤(Hard bake)................................30
3.4 光纖蝕刻.........................................30

3.5保偏光纖之空氣間隙型長週期光纖光柵................31
3.6保偏光纖之雙面蝕刻長週期光纖光柵..................33
第四章 實驗架構與實驗結果...........................34
4.1 三種保偏長週期光纖光柵感測折射率實驗.............34
4.1.1 實驗原理.......................................34
4.1.2 實驗架構.......................................34
4.1.3 實驗結果與分析.................................35
4.2 保偏光纖寫製之斜角式布拉格光纖光柵蝕刻實驗.......42
4.2.1 前言...........................................42
4.2.2實驗架構與結果..................................42
4.3 保偏布拉格光纖光柵串接光敏性光纖之長週期光纖光柵實 驗…………………………………………………………46
4.3.1保偏布拉格光纖光柵串接光敏性光纖之長週期光纖光柵.46
4.3.2 實驗原理........................................47
4.3.3保偏布拉格光纖光柵串接光敏性光纖之長週期光纖光柵對折射率感測實驗............................................48
4.3.3.1 實驗架構.....................................48
4.3.3.2 實驗結果.....................................48

4.3.4保偏布拉格光纖光柵串接光敏性光纖之長週期光纖光柵對溫度感測實驗..............................................51
4.3.4.1 實驗架構.....................................51
4.3.4.2 實驗結果.....................................52
4.3.5保偏布拉格光纖光柵串接光敏性光纖之長週期光纖光柵對應力感測實驗..............................................55
4.3.5.1 實驗架構.....................................55
4.3.5.2 實驗結果.....................................56
4.3.6 總結............................................59
4.4 單模斜角式布拉格光纖光柵串接長週期光纖光柵實驗....62
4.4.1單模斜角布拉格光纖光柵串接長週期光纖光柵.........62
4.4.2 實驗原理........................................64
4.4.3 蝕刻之單模斜角布拉格光纖光柵串接長週期光纖光柵
對折射率感測實驗......................................65
4.4.3.1 實驗架構.....................................65
4.4.3.2 實驗結果.....................................66
4.4.4 蝕刻之單模斜角布拉格光纖光柵串接長週期光纖光柵對溫度感測實驗................................................68
4.4.4.1 實驗架構.....................................68
4.4.4.2 實驗結果.....................................69
4.4.5 蝕刻之單模斜角布拉格光纖光柵串接長週期光纖光柵對應力感測實驗................................................71
4.4.5.1 實驗架構.....................................71
4.4.5.2 實驗結果.....................................72
4.4.6 總結............................................75
第五章 結論與未來展望.................................77
參考文獻
[1] Z. C. Zhuo, B. S. Ham, “A temperature-insensitive strain sensor using a fiber Bragg grating,” Optical Fiber Technology, Vol. 15, pp. 442–444, 2009.

[2]Y. Wang, W. Jin, D. N. Wang, “Unique temperature sensing characteristics of CO2-laser-notched long-period fiber gratings,” Optics and Lasers in Engineering, Vol. 47, pp. 1044–1048, 2009.

[3] K. T. Kim, H. S. Song, J. P. Mah, K. B. Hong, K. Im, S. J. Baik, and Y. I. Yoon, “Hydrogen sensor based on Palladium coated side-polished single-mode fiber”, IEEE Sensors Journal, Vol. 7, No. 12, pp. 1767-1771, 2007.

[4] T. Zhu, Y. J. Rao, J. L. Wang, Y. Song, “A highly sensitive fiber-optic refractive index sensor based on an edge-written long-period fiber grating,” IEEE Photonics Technology Letters, Vol. 19, No. 24, pp. 1946-1948, 2007.

[5] F. J. Arregui, I. R. Matías, K. L. Cooper, R. O. Claus, “Simultaneous measurement of humidity and temperature by combining a reflective intensity-based optical fiber sensor and a fiber Bragg grating,” IEEE Sensors Journal, Vol. 2, No. 5, pp.482-487, 2002.

[6] B. O. Guan, H. Y. Tam, X. M. Tao, and X. Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photonics Technology Letters, Vol. 12, No. 6, pp. 675-677, 2000.

[7] M. Song, S. B. Lee, S. S. Choi, and B. Lee, “Simultaneous measurement of temperature and strain using two fiber Bragg gratings embedded in a glass tube, ”Optical Fiber Technology, Vol. 3, pp. 194-196, 1997.

[8] B. Yang, X. M. TAO, and J. Y. Yu, “Fibre Bragg grating sensor for
simultaneous measurement of strain and temperature, ” Journal of Industrial Textiles, Vol. 34, No. 2, pp. 97-115, 2004.

[9]X.W. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement, ” Optics Letters, Vol. 26, No. 11, pp. 774-776, 2001.

[10]C. C. Ye, S. W. James, and R. P. Tatam, “Simultaneous temperature and bend sensing with long-period fiber gratings, ” Optics Letters, Vol. 25, No. 14, pp. 1007-1009, 2000.

[11]S. M. Lee, S. S. Saini, and M. Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors, ” IEEE Phtonics Technology Letters, Vol. 22, No. 19, pp. 1431-1433, 2010.

[12]I. Abe, H. J Kalinowski, O. Fraz˜ao, Jos′e L Santos, Rog′erio N Nogueira and Jo˜ao L Pinto, “Superimposed Bragg gratings in high-birefringence fibre optics: three-parameter simultaneous measurements, ” Measurement Science Technology, Vol. 15, pp. 1453–1457, 2004.

[13]S. F. O. Silva, J. L. Santos, J. Kobelke, K. Schuster, and O. Fraz˜ao, “Simultaneous measurement of three parameters using an all-fiber Mach–Zehnder interferometer based on suspended twin-core fibers, ” SPIE, Vol. 50(3), pp. 030501-1-3, 2011.

[14]J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” Journal of Lightwave Technology, Vol. LT-4, No. 8, pp. 1071-1089, 1986.

[15]G. Yandonga, L. Tangjuna, C. Qingb, L. Qinb, W. Zhia, G. Yalia, Z. Jinsonga, and J. Shuishenga, “Novel B/Ge codoped photosensitive fiber and dispersion compensation in an 8*10 Gbit/s DWDM system,” Optics & Laser Technology, Vol. 32, pp. 23-31, 2000.

[16]K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” Journal of Lightwave Technology, Vol. 15, No. 8, pp. 1263-1276, 1997.

[17]A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filter,” Journal of Lightwave Technology, Vol. 14, No. 1, pp. 58-65, 1996.

[18] Y. Zhou, K. Gao, R. Huang, R. Qu, and Z. Fang, “Temperature and stress tuning characteristics of long-period gratings imprinted in panda fiber,” IEEE Photonics Technology Letters, Vol. 15, No. 12, pp. 1728-1730, 2003.

[19] C. R. Dennison and P. M. Wild, “Sensitivity of Bragg gratings in birefringent optical fiber to transverse compression between conforming materials,” Applied Optics, Vol. 49, No. 12, pp. 2250-2261, 2010.

[20]G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating induced coupling to cladding modes for accurate refractometry,” Measurement Science Technology, Vol. 12, pp. 765–770, 2001.

[21]L. Su, K. S. Chiang, and C. Lu, “CO2-laser-induced long-period gratings in graded-index multimode fibers for sensor applications,” IEEE Photonics Technology Letters, Vol. 18, No. 1, pp. 190-192, 2006.

[22]C. C. Chiang, “Fabrication and characterization of sandwiched optical fibers with periodic gratings,” Applied Optics, Vol. 49, No. 22, pp. 4175-4181, 2010.

[23]L. A. Wang, C. Y. Lin and G. W. Chern, “A torsion sensor made of a corrugated long period fibre grating, ” Measurement Science Technology, Vol. 12, pp. 793–799, 2001.

[24]詹文霖, “對稱以及非對稱鋸齒狀長週期光纖光柵之新製法及光學特性”2008.

[25]S. M . Tseng, and C. L. Chen, “Side-polished fibers,” Applied Optics, Vol. 31, No. 18, pp. 3438-3447, 1992.

[26]I. Abe, O. Fraz˜ao, M. W. Schiller, R. N. Nogueira, H. J. Kalinowski and J. L. Pinto, “Bragg gratings in normal and reduced diameter high birefringence fibre optics, ” Measurement Science Technology, Vol. 17, pp. 1477–1484, 2006.

[27]J. C. Schlesinger, “Optical fibers research advances,” chapter 3, pp.83-117, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊