跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 05:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳沅佑
研究生(外文):Yuan-Yo Chen
論文名稱:實驗探討ㄇ型振動管之熱傳現象
論文名稱(外文):Investigate heat transfer phenomena of a ㄇ-shaped channel under a reciprocating motion experimentally
指導教授:傅武雄傅武雄引用關係
指導教授(外文):Wu-Shung Fu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:66
中文關鍵詞:振動實驗冷卻渠道
外文關鍵詞:reciprocatingexperimentcooling channel
相關次數:
  • 被引用被引用:4
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要目的在以實驗方法探討冷卻流體在一振動渠道內對壁面熱傳效率之影響情形,並搭配數值模擬來提高實驗的可信度。實驗設備大致上可以分為三部份︰冷卻渠道、往復運動機構、溫度控制系統,工作流體為空氣。另外使用放煙線法進行流場可視化,實際觀測流場變化情形並與數值模擬之流線圖相互驗證,兩者結果一致。實驗針對不同的進口流體雷諾數和渠道無因次往復振動頻率來討論,由結果得知熱傳效率會因為渠道振動而提高,熱傳增益受到進口流體雷諾數增加影響較大,相較之下渠道低無因次振動頻率增加效果較不明顯。本實驗所得到最大熱傳增益在20%以內。
In order to investigate the heat transfer phenomena in a ㄇ-shaped channel with reciprocating motion, an experimental work is conducted and validated by an auxiliary computational procedure simultaneously. The experimental apparatus consist of three parts, a cooling channel, reciprocating mechanism and heating control. The working fluid is air and the parameters of Reynolds number and oscillating frequency are varied. In addition, a flow visualization using the Smoke-wire method is adopted to indicate the flow field and compared with the streamline of the numerical results. The comparisons between experimental and numerical results are consistent well. The results show that the heat transfer rate is mainly dominated by Reynolds number, and less affected by increasing the low oscillating frequency. The enhancement of the heat
transfer is confirmed and within 20% in this study.
頁次
中文摘要 …………………………………………………………………………… i
英文摘要 …………………………………………………………………………… ii
致謝 …………………………………………………………………………… iii
目錄 …………………………………………………………………………… iv
表目錄 …………………………………………………………………………… v
圖目錄 …………………………………………………………………………… vi
符號說明 …………………………………………………………………………… vii
一、 緒論……………………………………………………………………… 1
二、 ㄇ型振動管之熱流實驗………………………………………………… 7
2.1 實驗設備………………………………………………………………… 7
2.1.1 冷卻渠道與流量量測裝置……………………………………………… 7
2.1.2 往復運動機構…………………………………………………………… 9
2.1.3 高溫壁面加熱裝置與溫度量測裝置…………………………………… 10
2.1.4 流場可視化設備………………………………………………………… 13
2.2 實驗步驟………………………………………………………………… 14
2.2.1 進口流體雷諾數量測…………………………………………………… 14
2.2.2 啟動往復運動機構……………………………………………………… 14
2.2.3 流場可視化……………………………………………………………… 15
2.2.4 ㄇ型渠道頂部壁面溫度量測…………………………………………… 15
三、 結果與討論……………………………………………………………… 31
3.1 流場可視化結果………………………………………………………… 32
3.2 ㄇ型渠道頂部熱傳分析………………………………………………… 33
3.2.1 ㄇ型渠道靜止之頂部壁面熱傳分析…………………………………… 34
3.2.2 ㄇ型渠道往復振動之頂部壁面熱傳分析……………………………… 35
四、 結論……………………………………………………………………… 55
參考文獻 …………………………………………………………………………… 56
附錄 實驗不準度分析………………………………………………………… 58
1. P. P. Grassmann, and M. Tuma, “Applications of the Electrolytic Method-Ⅱ. Mass Transfer within a Tube for Steady, Oscillating and Pulsating Flows,” International Journal of Heat and Mass Transfer, Vol.22, pp.799-804, 1979.
2. A. T. Patera, and B. B. Mikic, “Exploiting Hydrodynamic Instabilities Resonant Heat Transfer Enhancement,” International Journal of Heat and Mass Transfer, Vol.29, No.8, pp.1127-1138, 1986.
3. S. Y. Kim, B. H. Kang, and A. E. Hyun, “Heat Transfer in the Thermally Developing Region of a Pulsating Channel Flow,” International Journal of Heat and Mass Transfer, Vol.36, No.17, pp.1257-1266, 1993.
4. A. E. Bergles, “Heat Transfer Enhancement – The Encouragement and Accommodation of High Heat Fluxes,” ASME Journal of Heat Transfer, Vol.119, pp.8-19, 1997.
5. R. L. Webb, E. R. G. Eckert, and R. J. Goldstein, “Heat Transfer and Friction in Tubes with Repeated-Rib Roughness,” International Journal of Heat and Mass Transfer, Vol.14, No.4, pp.601-617, 1971.
6. J. C. Han, “Heat Transfer and Friction in Channels with Two Opposite Rib-Roughed Walls,” ASME Journal of Heat Transfer, Vol.106, pp.774-781, 1984.
7. M. R. Mackley, G. M. Tweddle, and I. D. Wyatt, “Experimental Heat Transfer Measurements for Pulsatile Flow in Baffled Tubes,” Chemical Engineering Science, Vol.45, No.5, pp.1237-1242, 1990.
8. M. R. Mackley, and X. Ni, “Mixing and Dispersion in a Baffled Tube for Steady Laminar and Pulsatile Flow,” Chemical Engineering Science, Vol.46, No.12, pp.3139-3151, 1991.
9. S. W. Chang, and L. M. Su, “Influence of Reciprocating Motion on Heat Transfer Inside a Ribbed Duct with Application to Piston Cooling in Marine Diesel Engines,” Journal of Ship Research, Vol.41, No.4, pp.332-339, 1997.
10. 廖英皓,”活塞頂部之熱傳分析”,國立交通大學機械工程學系碩士論文,2003。
11. 連信宏,”利用多孔性介質增強活塞頂面之熱傳效率”,國立交通大學機械工程學系碩士論文,2005。
12. 余政倫,”往復式冷卻渠道之熱流實驗”,國立交通大學機械工程學系碩士論文,2006。
13. W. S. Fu, S. H. Lian, and Y. H. Liao, “An investigation of heat transfer of a reciprocating piston,” International Journal of Heat and Mass Transfer, Vol.49, pp.4360-4371, 2006.
14. T. Nishimura, A. Taurmoto, and Y. Kawamura, “Flow and Mass Transfer Characteristics in Wavy Channels for Oscillatory Flow,” International Journal of Heat Mass Transfer, Vol.30, pp.1007-1015, 1987.
15. W. J. Yang, Handbook of Flow Visualization, Hemisphere Publishing Corporation, 1989.
16. T. J. Mueller, Fluid Mechanics Measurements, R. J. Goldstein, Hemisphere Publishing Corporation, 1983.
17. S. J. Kline, “The Purpose of Uncertainty Analysis,” ASME Journal of Heat Transfer, Vol.117, pp.153-160, 1985.
18. R. J. Moffat, “Using Uncertainty Analysis in the Planning of an Experiment,” ASME Journal of Heat Transfer, Vol.117, pp.173-178, 1985.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊