[1] P. Blennow, A. Hagen, K.K. Hansen, L.R. Wallenberg, M. Mogensen, Defect and electrical transport properties of Nb-doped SrTiO3, Solid State Ionics 179 (35–36) (2008) 2047-2058.
[2] Y. Guan, Y. Gong, W. Li, J. Gelb, L. Zhang, G. Liu, X. Zhang, X. Song, C. Xia, Y. Xiong, H. Wang, Z. Wu, Y. Tian, Quantitative analysis of micro structural and conductivity evolution of Ni-YSZ anodes during thermal cycling based on nano-computed tomography, Journal of Power Sources 196 (24) (2011) 10601-10605.
[3] C.-H. Lee, C.-H. Lee, H.-Y. Lee, S.M. Oh, Microstructure and anodic properties of Ni/YSZ cermets in solid oxide fuel cells, Solid State Ionics 98 (1–2) (1997) 39-48.
[4] T. Klemenso, C. Chung, P.H. Larsen, M. Mogensen, The mechanism behind redox instability of anodes in high-temperature SOFCs, Journal of The Electrochemical Society 152 (11) (2005) A2186-A2192.
[5] S. McIntosh, R.J. Gorte, Direct hydrocarbon solid oxide fuel cells, Chemical Reviews-Columbus 104 (10) (2004) 4845-4866.
[6] C. Sun, U. Stimming, Recent anode advances in solid oxide fuel cells, Journal of Power Sources 171 (2) (2007) 247-260.
[7] S. Hui, Evaluation of yttrium-doped SrTiO3 as a solid oxide fuel cell anode, in, Vol. Doctor of Philosophy, McMaster University, 2000.
[8] R.J. Gorte, J.M. Vohs, Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons, Journal of Catalysis 216 (1–2) (2003) 477-486.
[9] M. Brown, S. Primdahl, M. Mogensen, Structure/Performance relations for Ni/yttria‐stabilized zirconia anodes for solid oxide fuel cells, Journal of The Electrochemical Society 147 (2) (2000) 475-485.
[10] C.W. Tanner, K.Z. Fung, A.V. Virkar, The effect of porous composite electrode structure on solid oxide fuel cell performance I. Theoretical analysis, Journal of The Electrochemical Society 144 (1) (1997) 21-30.
[11] J.R. Wilson, W. Kobsiriphat, R. Mendoza, H.-Y. Chen, J.M. Hiller, D.J. Miller, K. Thornton, P.W. Voorhees, S.B. Adler, S.A. Barnett, Three-dimensional reconstruction of a solid-oxide fuel-cell anode, Nature materials 5 (7) (2006) 541-544.
[12] N.P. Brandon, S. Skinner, B.C.H. Steele, Recent advances in materials for fuel cells, Annual Review of Materials Research 33 (1) (2003) 183-213.
[13] Y. Matsuzaki, I. Yasuda, The poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part I. Dependence on temperature, time, and impurity concentration, Solid State Ionics 132 (3–4) (2000) 261-269.
[14] A. Atkinson, S. Barnett, R.J. Gorte, J. Irvine, A.J. McEvoy, M. Mogensen, S.C. Singhal, J. Vohs, Advanced anodes for high-temperature fuel cells, Nature materials 3 (1) (2004) 17-27.
[15] J.W. Fergus, Oxide anode materials for solid oxide fuel cells, Solid State Ionics 177 (17–18) (2006) 1529-1541.
[16] N.V. Skorodumova, S.I. Simak, B.I. Lundqvist, I.A. Abrikosov, B. Johansson, Quantum origin of the oxygen storage capability of ceria, Physical Review Letters 89 (16) (2002) 166601.
[17] B.C.H. Steele, I. Kelly, H. Middleton, R. Rudkin, Oxidation of methane in solid state electrochemical reactors, Solid State Ionics 28–30, Part 2 (0) (1988) 1547-1552.
[18] M. Mogensen, T. Lindegaard, U.R. Hansen, G. Mogensen, Physical properties of mixed conductor solid oxide fuel cell anodes of doped CeO2, Journal of The Electrochemical Society 141 (8) (1994) 2122-2128.
[19] W.Z. Zhu, S.C. Deevi, A review on the status of anode materials for solid oxide fuel cells, Materials Science and Engineering: A 362 (1–2) (2003) 228-239.
[20] A. Rachel, S.G. Ebbinghaus, M. Gungerich, P.J. Klar, J. Hanss, A. Weidenkaff, A. Reller, Tantalum and niobium perovskite oxynitrides: Synthesis and analysis of the thermal behaviour, Thermochimica Acta 438 (1–2) (2005) 134-143.
[21] H. Kurokawa, L. Yang, C.P. Jacobson, L.C. De Jonghe, S.J. Visco, Y-doped SrTiO3 based sulfur tolerant anode for solid oxide fuel cells, Journal of Power Sources 164 (2) (2007) 510-518.
[22] J.C. Ruiz-Morales, J. Canales-Vazquez, C. Savaniu, D. Marrero-Lopez, W. Zhou, J.T. Irvine, Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation, Nature 439 (7076) (2006) 568-571.
[23] O.A. Marina, N.L. Canfield, J.W. Stevenson, Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate, Solid State Ionics 149 (1–2) (2002) 21-28.
[24] R. Mukundan, E.L. Brosha, F.H. Garzon, Sulfur tolerant anodes for SOFCs, Electrochemical and solid-state letters 7 (1) (2004) A5-A7.
[25] Z. Cheng, S. Zha, M. Liu, Stability of materials as candidates for sulfur-resistant anodes of solid oxide fuel cells, Journal of The Electrochemical Society 153 (7) (2006) A1302-A1309.
[26] J.F. Scott, High-dielectric constant thin films for dynamic random access memories (DRAM), Annual Review of Materials Science 28 (1) (1998) 79-100.
[27] J. Siddiqui, E. Cagin, D. Chen, J.D. Phillips, ZnO thin-film transistors with polycrystalline (Ba,Sr)TiO3 gate insulators, Applied Physics Letters 88 (21) (2006) -.
[28] K. Ueno, W. Sakamoto, T. Yogo, S.-i. Hirano, Processing of novel strontium titanate-based thin-film varistors by chemical solution deposition, Journal of the American Ceramic Society 86 (1) (2003) 99-104.
[29] N. Yamaoka, SrTiO3-based boundary-layer capacitors, American Ceramic Society Bulletin 65 (8) (1986) 1149-1152.
[30] N.Q. Minh, Ceramic fuel cells, Journal of the American Ceramic Society 76 (3) (1993) 563-588.
[31] W. Kingery, H. Bowen, D. Uhlmann, Introduction to ceramics, 1976, New York 788-1016.
[32] P.M. Raccah, J.B. Goodenough, First-order localized-electron ⇆ collective-electron transition in LaCoO3, Physical Review 155 (3) (1967) 932-943.
[33] R.D. Leapman, L.A. Grunes, P.L. Fejes, Study of the L23 edges in the 3d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory, Physical Review B 26 (2) (1982) 614-635.
[34] R.O. Bell, G. Rupprecht, Elastic constants of strontium titanate, Physical Review 129 (1) (1963) 90-94.
[35] A. Okazaki, M. Kawaminami, Lattice constant of strontium titanate at low temperatures, Materials Research Bulletin 8 (5) (1973) 545-550.
[36] M.J. Weber, R.R. Allen, Nuclear magnetic resonance study of the phase transition in strontium titanate, The Journal of Chemical Physics 38 (3) (1963) 726-729.
[37] A.C.L.S. Marques, Advanced Si pad detector development and SrTio3 studies by emission channeling and hyperfine interaction experiments, (2009).
[38] R. Roy, Phase diagrams for ceramists, American Ceramic Society, Columbus, Ohio, 1964.
[39] S.-J. Shih, Nanometre-scaled structural studies of strontium titanate by electron microscopy and microanalysis, in, Vol. Doctor of Philosophy, University of Oxford, 2009.
[40] N.H. Chan, R. Sharma, D.M. Smyth, Nonstoichiometry in SrTiO3, Journal of The Electrochemical Society 128 (8) (1981) 1762-1769.
[41] S. Witek, D.M. Smyth, H. Piclup, Variability of the Sr/Ti Ratio in SrTiO3, Journal of the American Ceramic Society 67 (5) (1984) 372-375.
[42] S.N. Ruddlesden, P. Popper, The compound Sr3Ti2O7 and its structure, Acta Crystallographica 11 (1) (1958) 54-55.
[43] C. Noguera, Theoretical investigation of the Ruddlesden-Popper compounds Srn+1TinO3n+1 (n=1-3), Philosophical Magazine Letters 80 (3) (2000) 173-180.
[44] M.A. Mccoy, R.W. Grimes, W.E. Lee, Phase stability and interfacial structures in the SrO–SrTiO3 system, Philosophical Magazine A 75 (3) (1997) 833-846.
[45] M. Paranthaman, A. Aruchamy, G. Aravamudan, G.V.S. Rao, Photoelectrochehical studies on the mixed oxides, SrTiO3, Sr2TiO4 and Sr3Ti2O7, Materials Chemistry and Physics 14 (4) (1986) 349-365.
[46] C.-J. Peng, Y.-M. Chiang, Grain growth in donor-doped SrTiO3, Journal of Materials Research 5 (06) (1990) 1237-1245.
[47] S.-Y. Chung, S.-J.L. Kang, Intergranular amorphous films and dislocations-promoted grain growth in SrTiO3, Acta Materialia 51 (8) (2003) 2345-2354.
[48] S.-Y. Chung, S.-J.L. Kang, Effect of dislocations on grain growth in strontium titanate, Journal of the American Ceramic Society 83 (11) (2000) 2828-2832.
[49] S.G. Cho, P.F. Johnson, Evolution of the microstructure of undoped and Nb-doped SrTiO3, Journal of Materials Science 29 (18) (1994) 4866-4874.
[50] P. Cox, Transition metal oxides: An Introduction to their electronic structure and properties, in, Clarendon Press, Oxford, 1992.
[51] U. Balachandran, N. Eror, Electrical conductivity in lanthanum‐doped strontium titanate, Journal of The Electrochemical Society 129 (5) (1982) 1021-1026.
[52] H. Yamada, G.R. Miller, Point defects in reduced strontium titanate, Journal of Solid State Chemistry 6 (1) (1973) 169-177.
[53] R. Astala, P.D. Bristowe, Ab initio and classical simulations of defects in SrTiO3, Computational Materials Science 22 (1–2) (2001) 81-86.
[54] C.-D. Savaniu, D.N. Miller, J.T.S. Irvine, Scale up and anode development for La-doped SrTiO3 anode-supported SOFCs, Journal of the American Ceramic Society (2013) n/a-n/a.
[55] S. Hui, A. Petric, Electrical properties of yttrium-doped strontium titanate under reducing conditions, Journal of The Electrochemical Society 149 (1) (2002) J1-J10.
[56] S. Hui, A. Petric, Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells, Journal of the European Ceramic Society 22 (9–10) (2002) 1673-1681.
[57] Q. Ma, F. Tietz, Comparison of Y and La-substituted SrTiO3 as the anode materials for SOFCs, Solid State Ionics 225 (0) (2012) 108-112.
[58] X. Li, H. Zhao, F. Gao, N. Chen, N. Xu, La and Sc co-doped SrTiO3 as novel anode materials for solid oxide fuel cells, Electrochemistry Communications 10 (10) (2008) 1567-1570.
[59] X. Li, H. Zhao, N. Xu, X. Zhou, C. Zhang, N. Chen, Electrical conduction behavior of La, Co co-doped SrTiO3 perovskite as anode material for solid oxide fuel cells, International Journal of Hydrogen Energy 34 (15) (2009) 6407-6414.
[60] C. Kjolseth, H. Fjeld, O. Prytz, P.I. Dahl, C. Estournes, R. Haugsrud, T. Norby, Space–charge theory applied to the grain boundary impedance of proton conducting BaZr0.9Y0.1O3−δ, Solid State Ionics 181 (5–7) (2010) 268-275.
[61] P. Mondal, A. Klein, W. Jaegermann, H. Hahn, Enhanced specific grain boundary conductivity in nanocrystalline Y2O3-stabilized zirconia, Solid State Ionics 118 (3–4) (1999) 331-339.
[62] H.L. Tuller, Ionic conduction in nanocrystalline materials, Solid State Ionics 131 (1–2) (2000) 143-157.
[63] M. Hillert, On the theory of normal and abnormal grain growth, Acta Metallurgica 13 (3) (1965) 227-238.
[64] G. Hasson, J.Y. Boos, I. Herbeuval, M. Biscondi, C. Goux, Theoretical and experimental determinations of grain boundary structures and energies: Correlation with various experimental results, Surface Science 31 (0) (1972) 115-137.
[65] H.-K. Kim, W.-S. Ko, H.-J. Lee, S.G. Kim, B.-J. Lee, An identification scheme of grain boundaries and construction of a grain boundary energy database, Scripta Materialia 64 (12) (2011) 1152-1155.
[66] F. Ernst, M.L. Mulvihill, O. Kienzle, M. Ruhle, Preferred grain orientation relationships in sintered perovskite ceramics, Journal of the American Ceramic Society 84 (8) (2001) 1885-1890.
[67] D.M. Saylor, B. El Dasher, T. Sano, G.S. Rohrer, Distribution of grain boundaries in SrTiO3 as a function of five macroscopic parameters, Journal of the American Ceramic Society 87 (4) (2004) 670-676.
[68] G.S. Rohrer, V. Randle, C.-S. Kim, Y. Hu, Changes in the five-parameter grain boundary character distribution in α-brass brought about by iterative thermomechanical processing, Acta Materialia 54 (17) (2006) 4489-4502.
[69] D. Wolf, Correlation between structure, energy, and ideal cleavage fracture for symmetrical grain boundaries in fcc metals, Journal of Materials Research 5 (08) (1990) 1708-1730.
[70] C. Herring, Some theorems on the free energies of crystal surfaces, Physical Review 82 (1) (1951) 87-93.
[71] T. Sano, D.M. Saylor, G.S. Rohrer, Surface energy anisotropy of SrTiO3 at 1400°C in air, Journal of the American Ceramic Society 86 (11) (2003) 1933-1939.
[72] T. Sano, C.-S. Kim, G.S. Rohrer, Shape evolution of SrTiO3 crystals during coarsening in a titania-rich liquid, Journal of the American Ceramic Society 88 (4) (2005) 993-996.
[73] C. Bae, J.-G. Park, Y.-H. Kim, H. Jeon, Abnormal grain growth of niobium-doped strontium titanate ceramics, Journal of the American Ceramic Society 81 (11) (1998) 3005-3009.
[74] S.B. Lee, W. Sigle, W. Kurtz, M. Ruhle, Temperature dependence of faceting in Σ5(310)[001] grain boundary of SrTiO3, Acta Materialia 51 (4) (2003) 975-981.
[75] S.B. Lee, W. Sigle, M. Ruhle, Faceting behavior of an asymmetric SrTiO3 Σ5 [001] tilt grain boundary close to its defaceting transition, Acta Materialia 51 (15) (2003) 4583-4588.
[76] V. Randle, Twinning-related grain boundary engineering, Acta Materialia 52 (14) (2004) 4067-4081.
[77] M. Kronberg, F. Wilson, Secondary recrystallization in copper, AIME TRANS 185 (1949) 501-514.
[78] D.G. Brandon, B. Ralph, S. Ranganathan, M.S. Wald, A field ion microscope study of atomic configuration at grain boundaries, Acta Metallurgica 12 (7) (1964) 813-821.
[79] D.G. Brandon, The structure of high-angle grain boundaries, Acta Metallurgica 14 (11) (1966) 1479-1484.
[80] Y.-J. You, Investigation of Sr/Ti ratio on microstructure and electrical properties of SrTiO3, in, Vol. Master, National Taiwan University of Science and Technology, 2012.
[81] M.J. Weins, H. Gleiter, B. Chalmers, Computer calculations of the structure and energy of high‐angle grain boundaries, Journal of Applied Physics 42 (7) (1971) 2639-2645.
[82] G. Dimou, K.T. Aust, Relative energies of grain boundaries near a coincidence orientation relationship in high-purity lead, Acta Metallurgica 22 (1) (1974) 27-32.
[83] D.C. Hinz, J.A. Szpunar, Modeling the effect of coincidence site lattice boundaries on grain growth textures, Physical Review B 52 (14) (1995) 9900-9909.
[84] M. Leonhardt, J. Jamnik, J. Maier, In situ monitoring and quantitative analysis of oxygen diffusion through schottky‐barriers in SrTiO3 bicrystals, Electrochemical and solid-state letters 2 (7) (1999) 333-335.
[85] I. Denk, J. Claus, J. Maier, Electrochemical investigations of SrTiO3 boundaries, Journal of The Electrochemical Society 144 (10) (1997) 3526-3536.
[86] R. Waser, The role of grain boundaries in conduction and breakdown of perovskite-type titanates, Ferroelectrics 133 (1) (1992) 109-114.
[87] O. Kienzle, F. Ernst, Effect of shear stress on the atomistic structure of a grain boundary in strontium titanate, Journal of the American Ceramic Society 80 (7) (1997) 1639-1644.
[88] F. Ernst, O. Kienzle, M. Ruhle, Structure and composition of grain boundaries in ceramics, Journal of the European Ceramic Society 19 (6–7) (1999) 665-673.
[89] S.-J. Shih, C. Bishop, D.J.H. Cockayne, Distribution of Σ3 misorientations in polycrystalline strontium titanate, Journal of the European Ceramic Society 29 (14) (2009) 3023-3029.
[90] J.K. Mackenzie, The distribution of rotation axes in a random aggregate of cubic crystals, Acta Metallurgica 12 (2) (1964) 223-225.
[91] H.F. Kraemer, H.F. Johnstone, Collection of aerosol particles in presence of electrostatic fields, Industrial &; Engineering Chemistry 47 (12) (1955) 2426-2434.
[92] Y.-J. Chou, Microstructure and bioactivity correlation of one-step synthesized bioactive glass, in, Vol. Master, National Taiwan University of Science and Technology, 2013.
[93] G.L. Messing, S.-C. Zhang, G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis, Journal of the American Ceramic Society 76 (11) (1993) 2707-2726.
[94] S.-J. Shih, Y.-Y. Wu, C.-Y. Chen, C.-Y. Yu, Morphology and formation mechanism of ceria nanoparticles by spray pyrolysis, J Nanopart Res 14 (5) (2012) 1-9.
[95] K.H. Kim, J.K. Park, C.H. Kim, H.D. Park, H. Chang, S.Y. Choi, Synthesis of SrTiO3:Pr,Al by ultrasonic spray pyrolysis, Ceramics International 28 (1) (2002) 29-36.
[96] K. Nonaka, S. Hayashi, K. Okada, N. Otsuka, T. Yano, Characterization and control of phase segregation in the fine particles of BaTiO3 and SrTiO3 synthesized by the spray pyrolysis method, Journal of Materials Research 6 (08) (1991) 1750-1756.
[97] B. Yoldas, Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters, Journal of Materials Science 21 (3) (1986) 1087-1092.
[98] K. Nonaka, Y. Onishi, S. Hayashi, K. Okada, T. Yano, K. Uematsu, K. Saito, N. Otsuka, Spray-pyrolytic synthesis of BaTiO3-based fine powders and effect of Ba/Ti ratio and CuO addition on their sinterability, Journal of the Ceramic Society of Japan 98 (8) (1990) 794-800.
[99] S. Shih, P. Herrero, G. Li, C. Chen, S. Lozano-Perez, Three-dimensional structures of mesoporous ceria particles using electron tomography, Microsc Microanal 17 (2011) 54-60.
[100] E. Heifets, R. Eglitis, E. Kotomin, J. Maier, G. Borstel, Ab initio modeling of surface structure for SrTiO 3 perovskite crystals, Physical Review B 64 (23) (2001) 235417.
[101] R.I. Eglitis, Ab Initio Calculations of SrTiO3 (111) Surfaces, in: Y.N. Shunin, A.E. Kiv (Eds.) Nanodevices and Nanomaterials for Ecological Security, Springer Netherlands, 2012, pp. 125-132.
[102] H.P. Klug, L.E. Alexander, X-ray diffraction procedures: for polycrystalline and amorphous materials, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd Edition, by Harold P. Klug, Leroy E. Alexander, pp. 992. ISBN 0-471-49369-4. Wiley-VCH, May 1974. 1 (1974).
[103] 黃宏勝, 林麗娟, FE-SEM/CL/EBSD 分析技術簡介, 工業材料雜誌 201 (2003).[104] http://www.oxford-instruments.com/
[105] J. Fleig, J. Maier, A finite element study on the grain boundary impedance of different microstructures, Journal of The Electrochemical Society 145 (6) (1998) 2081-2089.
[106] J.R. Macdonald, E. Barsoukov, Impedance spectroscopy: theory, experiment, and applications, History 1 (2005) 8.
[107] C.-W. Huang, Electrical properties and microstructure of cerium oxide electrolytes produced by two-step sintering, in, Vol. Master, National Taiwan University of Science and Technology, 2013.
[108] S. Kamba, P. Samoukhina, F. Kadlec, J. Pokorny, J. Petzelt, I.M. Reaney, P.L. Wise, Composition dependence of the lattice vibrations in Srn+1TinO3n+1 Ruddlesden–Popper homologous series, Journal of the European Ceramic Society 23 (14) (2003) 2639-2645.
[109] F. Hardcastle, Raman spectroscopy of titania (TiO2) nanotubular water-splitting catalysts, Journal of the Arkansas Academy of Science 65 (2011) 43.
[110] F. Yu, G. Gong, Z. Zeng, G. Liu, The measurement of temperature with Raman scattering spectra of polycrystal (SrNO3)2, Guang pu xue yu guang pu fen xi= Guang pu 20 (2) (2000) 210-211.
[111] F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, R. Grimes, Advanced inorganic chemistry, Wiley New York, 1988.
[112] Y.L. Du, G. Chen, M.S. Zhang, Investigation of structural phase transition in polycrystalline SrTiO3 thin films by Raman spectroscopy, Solid State Communications 130 (9) (2004) 577-580.
[113] W.G. Nilsen, J.G. Skinner, Raman spectrum of strontium titanate, The Journal of Chemical Physics 48 (5) (1968) 2240-2248.
[114] Q.X. Fu, S.B. Mi, E. Wessel, F. Tietz, Influence of sintering conditions on microstructure and electrical conductivity of yttrium-substituted SrTiO3, Journal of the European Ceramic Society 28 (4) (2008) 811-820.
[115] X. Li, H. Zhao, F. Gao, Z. Zhu, N. Chen, W. Shen, Synthesis and electrical properties of Co-doped Y0.08Sr0.92TiO3−δ as a potential SOFC anode, Solid State Ionics 179 (27–32) (2008) 1588-1592.